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QVis: Query-based Visual Analysis of Multiscale
Patterns in Spatiotemporal Ensembles

Ruben Bauer, Quynh Quang Ngo, Guido Reina, Steffen Frey, Michael Sedlmair

Abstract—Understanding how dynamic patterns vary across
large spatiotemporal ensembles is essential in many scientific
domains. In fluid dynamics, for instance, researchers analyze
how splash patterns in droplet impact experiments change with
physical parameters such as fluid type or impact velocity. These
experiments produce large volumes of data where patterns differ
in size, shape, and duration, making manual analysis tedious
and error-prone. Recently, interactive visualization approaches
have been developed to assist analysis using learned similarity
models for pattern-based querying. However, they assume fixed-
size inputs and only support single-pattern queries, thus limiting
their effectiveness for multiscale, multi-pattern analysis and
exploration of ensembles. In this paper, we present a visual anal-
ysis approach for the interactive exploration of spatiotemporal
ensembles through multiscale pattern querying. Our approach
extends an existing similarity model to support variable-sized
patterns, allowing users to define queries by selecting examples
directly on visualized data. Coordinated views enable interactive
querying, comparison, and analysis of pattern occurrences and
relate pattern occurrences to ensemble parameters. A guidance
mechanism supports the user in finding underexplored regions.
We demonstrate the utility of our approach on synthetic and
real-world datasets. Domain expert feedback confirms that the
approach is intuitive, easy to use, and effective for revealing
parameter-pattern relationships.

Index Terms—Machine learning, Feature extraction or con-
struction, tracking, clustering

I. INTRODUCTION

In droplet impact experiments, researchers analyze how
splash patterns vary with parameters such as fluid type or
impact velocity [1]]. These experiments are typically recorded
with high-speed cameras and produce a large spatiotemporal
ensemble of videos. In these videos, different patterns may
occur that differ in size, shape, and duration. Understanding
how impact parameters relate to these multiscale patterns is
relevant for applications such as inkjet [2] or 3D printing [3].
Yet manually reviewing large video ensembles to identify
such relationships is tedious, time-consuming, and prone to
oversight. This challenge reflects a broader need in physics and
related domains, where researchers systematically vary input
parameters in simulations or experiments to study dynamical
phenomena. Visualization tools play a crucial role in helping
domain experts explore the data generated by these studies,
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detect patterns, and build intuition about underlying physical
models.

State-of-the-art visual analysis approaches for large spa-
tiotemporal ensembles increasingly rely on machine learning
models that learn similarity metrics to support pattern-based
comparison [4], [5]. One notable example is S4 [6], which
learns to compare spatiotemporal data based on their dynamic
behavior. S4 enables query-driven analysis by allowing users
to specify example patterns and retrieve similar instances
across an ensemble. However, S4 supports only fixed-size
inputs, making it difficult to compare patterns that vary in
duration or scale, such as small versus large splash formations
that occur under different impact velocities. While S4 and
related approaches represent significant progress, they lack in
interactive, multiscale, and multi-pattern analysis and compar-
ative exploration of large spatiotemporal ensembles.

To address these limitations, we introduce QVis, a visual
analysis approach for the interactive exploration of large
spatiotemporal ensembles through flexible, multiscale pattern
querying. At its core, QVis extends the S4 similarity model
to support variable-sized inputs, enabling the comparison and
retrieval of patterns that differ in size, shape, and duration. The
visual interface of QVis consists of coordinated and linked
views that support both pattern-based exploration and the
analysis of ensemble members and their relationship to the
parameter space. Users define multiscale pattern queries by
directly selecting example regions in the visualized data of
individual ensemble members. For each query, QVis retrieves
similar patterns across the ensemble and visualizes when and
where they occur. Timeline views enable side-by-side compar-
ison of pattern occurrences across members, while automated
grouping highlights members with similar occurring patterns.
These groupings are linked to a parameter space view, sup-
porting interactive analysis of parameter-pattern relationships.
A guidance mechanism further supports users in discovering
underexplored regions of the ensemble and refining/adding
queries accordingly.

We evaluate QVis using both synthetic and real-world
spatiotemporal ensembles. First, we compare the extended
similarity metric against the fixed-size baseline and demon-
strate with synthetic data that our extended model significantly
improves retrieval of multiscale patterns. Second, we apply
QVis to a droplet impact ensemble, demonstrating how users
can query for multiple splash patterns, analyze and compare
their temporal occurrences across the ensemble, and relate
the patterns to the corresponding droplet impact experiment
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parameters. We validate our findings through two expert inter-

views, which confirm that QVis efficiently reproduces insights

previously obtained through hundreds of hours in manual anal-

ysis. Finally, we demonstrate the general applicability of our

approach using a first-person vision ensemble, where multi-

pattern querying reveals movement dynamics across visitors.
In conclusion, our main contributions are:

o QVis, a visual analysis approach for exploring large spa-
tiotemporal ensembles through flexible multiscale pattern
querying using a learned multiscale similarity metric.

« A prototype implementation of QVis that is evaluated
with expert feedback confirming its usability and effec-
tiveness for non-visualization experts.

o Further evaluation of our metric and visual approach on
synthetic and real-world datasets.

II. RELATED WORK

We review prior work on machine learning-assisted vi-
sual analytics for spatiotemporal data and learning-based
approaches to pattern similarity, with a focus on enabling
multiscale querying.

A. ML-Assisted Visual Analytics for Spatiotemporal Data

In recent years, machine learning (ML) models have been
increasingly used in visual analytics (VA) systems to assist
the analysis of large and complex datasets, such as spatiotem-
poral ensembles [7]-[9]. Many of these systems interactively
incorporate domain knowledge through active learning [10],
[11] or other forms of user input [12]. Other systems support
example-based querying, allowing users to define patterns to
search and analyze from visualized data [6]], [13]]-[15]]. Among
these, S4 by Tkachev et al. [6] is most closely related to
our work. S4 enables the user to specify example patterns
in spatiotemporal data and retrieve similar instances across
an ensemble using a learned similarity metric. However, its
rudimentary UI supports only single queries, and S4 itself
is restricted to fixed-size patterns, which limits users in the
analysis and comparison of patterns that vary in size, shape, or
duration. Our work builds on the core ideas of S4 by building
a novel visual analysis approach for exploring and analyzing
patterns in spatiotemporal ensembles using multiple variable-
sized queries.

B. Learning-based Spatiotemporal Similarity

A central requirement for querying and comparing pat-
terns in spatiotemporal data is a suitable similarity metric.
To address this need, various unsupervised machine learning
approaches have been proposed to learn feature representa-
tions of spatiotemporal data, since labeled data is rare in
scientific datasets [4f], [S]. Among this line of work, several
utilize Siamese networks [[16], [[17]], while others use Auto-
Encoders [18]-[21]. S4, proposed by Tkachev et al. [6],
is also relevant in this regard. It learns a similarity metric
via a self-supervised Siamese network trained on fixed-size
spatiotemporal patches. These patches represent rectangular
subsets of the data, like a bounding box drawn onto an image

frame of a video, but which may extend over multiple time
steps and contain patterns such as splashes in droplet impact
experiments. The model assumes that similar patterns occur
in close spatial and temporal neighborhoods and uses this
assumption to train without labeled data. Once trained, the
model encodes patches into latent space embeddings. There,
two embeddings of similar patterns should have a small
Ll-distance, and a large distance otherwise. The resulting
similarity metric, that is, the L1 distance applied to the patch
embeddings, enables querying an ensemble by comparing
user-provided example patches to randomly sampled patches
in the ensemble. We adopt S4’s querying mechanism and its
similarity metric to implement our visual approach. However,
the S4 model is constrained to fixed-size inputs and cannot be
used on other input sizes without modifying the architecture
and retraining the model. To overcome these limitations, we
extend the S4 model with a spatiotemporal pooling layer and
adjust the training approach for variable-sized input patches.

Our extension of the S4 model builds upon advances in com-
puter vision, where various approaches have been proposed
to extract features from inputs of varying sizes [22[|-[25].
One notable example is Spatial Pyramid Pooling (SPP) [24],
which uses multiple adaptive pooling operations to generate
a pyramid of feature maps. While originally developed to
overcome the fixed-size constraint of Convolutional Neural
Networks for image processing, SPP has also found applica-
tions for spatiotemporal data. For instance, Yang and Yuan [26]]
proposed a multiscale framework for storm nowcasting by
leveraging SPP layers in their model. Inspired by these ideas,
we implement a spatiotemporal pooling layer using adaptive
pooling, allowing the extended model to generate fixed-size
latent space embeddings from variable-sized inputs. This ad-
justment removes the fixed-size constraint of the original S4
model and enables robust multiscale pattern querying in our
visual analysis approach.

IIT. LEARNING A SELF-SUPERVISED SIMILARITY METRIC
FOR MULTISCALE PATTERN QUERYING

Building on the original S4 model, we train a self-
supervised network that encodes variable-size spatiotemporal
patches into latent space embeddings, where the L1-distance
between embeddings reflects pattern similarity. In this section,
we describe how we extend and train the S4 model to enable
multiscale pattern querying in our visual analysis approach.

A. Spatiotemporal Pooling Layer

To enable multiscale querying, we extend the S4 architec-
ture with a spatiotemporal pooling layer. While Convolu-
tional Neural Networks naturally process inputs of different
sizes, their resulting output sizes vary depending on the sizes
of the input, making it challenging to compute distances
between them [27]. To address this issue, we adopt adaptive
pooling, which has been widely used in computer vision to
generate fixed-size outputs from variable-size inputs [24], [28]],
[29].

Our spatiotemporal pooling layer operates separately along
the spatial and temporal dimensions of the input. For each
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Fig. 1: Illustration of the data flow in our spatiotemporal pooling layer for a patch capturing a crown-splash pattern after a
droplet impact. The Pre-Pooling CNN generates feature maps from the input patch, which are then passed to the spatiotemporal
pooling layer. The potentially arbitrarily sized input feature maps are then resized to their next multiple of the predefined output
size using nearest neighbor (NN) interpolation, and then adaptively pooled in first spatial and then temporal dimensions.
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Fig. 2: The architecture of our model. During training, triplets
of anchor (a), positive (+) and negative (-) patches are au-
tomatically sampled from the ensemble data and passed to
the Siamese network. The model is trained such that the L1
distance between the latent space embeddings of (a) and (+)
is 0, and (a) and (-) is 1, using the L1 Loss.

dimension, we interpolate the input to a multiple of the
predefined output size. This interpolation step ensures that the
input is divided into equally sized bins during the adaptive
pooling operation, where the number of bins is equal to
the predefined output size. We then apply adaptive pooling,
where the maximum input value of each bin is taken to
form the output, resulting in a fixed-size spatiotemporal output
regardless of the input size. We first apply spatial and then
temporal interpolation and adaptive pooling.

Figure [I] illustrates the data flow in our spatiotemporal
pooling layer applied to the spatiotemporal output (feature
maps) of the preceding convolution layers. The resulting fixed-
size feature maps can then be passed to downstream layers and
embedded into a shared latent space for similarity comparison.

B. Model Architecture and Training

Our complete model architecture is shown in Fig. P} A
single input patch is first fed to the Pre-Pooling CNN layer

to generate feature maps with reduced spatial extent. We then
apply the Spatiotemporal Pooling Layer to pool the feature
maps to a predefined output size. We then apply additional
convolutions in the Post-Pooling CNN layer to further reduce
the total amount of features. Finally, we flatten the resulting
feature maps to a single feature vector and use it as input
for the linear layers. The output of the linear layers is the
latent space embedding of the input patch. The latent space
embeddings of patches serve as input for the L1-distance
metric as part of the similarity computation during evaluation
and to compute the loss during training.

We train our model based on the same assumption as the
S4, but extend it to also include patches of different sizes.
Each training sample consists of a triplet of patches: an anchor
patch, a positive patch, and a negative patch. The positive
patch is from the same spatiotemporal neighborhood as the
anchor patch, while the negative patch is from outside this
spatiotemporal neighborhood.

We use the L1 loss to train the model such that the
L1 distance of the positive pair (anchor patch and positive
example) should be zero, and one for the negative pair (anchor
patch and negative example). Once trained, our similarity
metric for two spatiotemporal patches is equal to the LI1-
distance between their latent space embeddings generated from
the model.

In our implementation, the Pre-Pooling and Post-Pooling
CNNs use 3D convolutions and standard max-pooling oper-
ations. The post-pooling layer additionally uses 1D convolu-
tions on the temporal dimension only. We use GELU [30]
activations after each convolutional layer throughout the net-
work. We implemented our model using PyTorch [31]]. Further
details on architecture and training are available in the sup-
plemental material to this paper.

C. Multiscale Querying and Matching

We adopt the same concept as the S4 to enable querying
by example using our learned similarity metric. Each query ¢
can consist of multiple positive (p,,,,) and negative (p,.,)
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example patches that represent the desired and undesired
patterns respectively. Given a query ¢, the goal is to retrieve
patches from the ensemble that are similar to the positive
examples and dissimilar to the negative examples, based on
our learned similarity metric. In contrast to S4, our model
supports variable-size input patches, enabling multiscale pat-
tern querying.

To evaluate how well a test patch p from the ensemble
matches a given query ¢, we use the following scoring
function:

Score(p7 q) = Z d(p’p(]posi) - Z d(p7p(hlegj)

Papos Paneg

Here, d(pa,ps) is the Ll-distance between the latent space
embeddings of patches p, and p,, computed using our trained
model. Thus, d represents our similarity metric.

During analysis, the score function is applied to each sample
in a precomputed search space of patches in the ensemble
(see Section . The user can then specify a threshold 6, to
control which of the sampled patches are considered matches
for the query: all samples ps with a score score(ps, q) <= 0,
are considered matches for the query.

This querying and matching mechanism forms the compu-
tational foundation of our interactive visual analysis approach,
which we describe in the following section.

IV. QVIS: QUERY-BASED VISUAL ENSEMBLE ANALYSIS

Our overarching goal is to support real-world analysis work-
flows for spatiotemporal ensemble data. Initially we derive
our core requirements from well-established ensemble analysis
tasks [9]], including feature, overview, parameter, compare,
cluster, and trend. We further refined these requirements
through informal but targeted discussions with domain experts
over the course of several meetings. These experts have
many years of experience in their respective fields, including
porous media research, aerospace engineering, and experimen-
tal fluid dynamics. In these discussions, we identified a clear
need for automated approaches to help accelerate time-costly
analysis steps such as identifying complex patterns in large
spatiotemporal ensembles. We therefore define the following
requirements for our visual analysis approach:

(Rq) Visual Multiscale Querying: Visual querying has
been identified as a fundamental exploratory technique for
spatiotemporal data [32]. It provides an intuitive approach
for a user to select interesting example patterns and then
analyze when and where similar patterns occur. To support
a flexible and intuitive pattern selection and to allow the
retrieval of similar patterns at different scales, we require that
our approach should support a visual querying mechanism for
multiscale patterns.

(Ro) Efficient Ensemble Exploration: Capturing all the
essential patterns is imperative to fully reflect the ensemble
member’s dynamics and draw conclusions about member-
pattern relationships. Due to the potentially very large size
of spatiotemporal datasets, we require an efficient exploration
mechanism that guides the user during the analysis to identify
new patterns in the ensemble.

(R3) Capability in Relating Input Parameters to Pattern
Occurrences: Relating input parameters to occurring patterns
in the ensemble helps to understand the underlying models
and physics of corresponding simulations and experiments.
This has been widely recognized as a key task in ensemble
analysis [9], [33]-[35]]. To guide the user to new insights and
hypotheses about the parameter-pattern relationships during
the interactive analysis, we require the capability of relating
input parameters to pattern occurrences in the ensemble.
(R4) High Responsiveness for Interactive Analysis: To
support an interactive analysis, the visual analysis approach
must return results quickly despite the large search space.

A. QVis’s Core Functionalities

We propose to fulfill the requirements (Rq) - (R4) by
supporting four core functionalities with our approach:

(F1): We fulfill (R1) by utilizing our proposed similarity
metric and query scoring function to perform multiscale pat-
tern querying (see Section [[II-C). It means that users can
select positive and negative example patches of patterns in
the ensemble, and our approach returns patches of varying
sizes that contain similar patterns to the positive examples
and dissimilar ones to the negative examples. To support
flexible and intuitive selection of example patches, the data
is visualized and users are able to select patterns by simply
drawing bounding boxes around them in the visualization.
(F2): To address (Rz), we support the use of multiple
simultaneous queries to capture diverse patterns across the
ensemble.

(F3): Building on (F3), we introduce a guided exploration
mechanism. This mechanism is based on existing queries,
whose matching patches implicitly label parts of the ensemble
data. By providing an overview that automatically reveals
the data that is not labeled yet, the user can be guided
to potentially new patterns. Iteratively creating new queries
for patterns in the unlabeled data will facilitate discovering
all the essential patterns. Functionalities (F2) and (F3) in
combination, therefore, fulfill (Ry).

(F4): To support (Rg), relating input parameter configurations
to the member’s dynamics, we propose an interactive pattern
map of the ensemble, which maps the ensemble’s dynamics to
the respective members and parameters. We characterize the
member’s dynamics by the temporal order of detected pattern
occurrences. This characterization allows us to compactly
describe each member’s temporal trend as a pattern sequence
and group members with similar trends together.

Finally, to fulfill (R4) and enable a fast and interactive
analysis, we propose to sample the ensemble and compute
the sample’s latent space embeddings in a pre-processing
step. For the sake of simplicity, we choose uniform random
sampling to sample the search space while limiting the total
number of samples. For each sample, we randomly choose
a member from the ensemble and then sample a patch from
that member. The pre-processing step yields a set of samples,
each consisting of a patch description (location and size of the
patch) and the patch’s latent-space embedding representation.
This set of samples is the search space during the analysis.
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Fig. 3: Our visual analysis approach consists of five linked views: (A) direct data visualization, (B) querying interface, (C)
ensemble explorer, (D) clustering explorer, and (E) sequence explorer. Here, we used (A) for multiscale querying and selected
droplet impact splash patterns from the data to create the multiple queries shown in (B): drop, crown, jetting, splash, and
bubble-splash. In (B), we specified thresholds to define which samples in a precomputed search space of the ensemble can
be considered a match for each query. The temporal distributions of these matches per ensemble member are visualized in
the timeline views of (C), allowing to compare the members based on their pattern occurrences over time. Our approach
then computes a short pattern sequence for each member, describing the temporal order in which the found patterns occur.
The color-coded overview in (D) enables guided pattern exploration, by allowing us to search new patterns in the clustered
ensemble’s search space for which no matching queries exist yet (uncolored glyphs). Ensemble member with similar pattern
sequence are grouped together and visualized in (E). The accompanied pattern map in (E) then allows to explore the associated
parameters for each identified pattern sequence. Here, we see that splash and bubble-splash patterns (dark circles) can occur
for mid to high values of Weber number and dimensionless film thickness.

B. Visual Components

To support the core functionalities (F'1) - (F4), we designed
a coordinated set of five visual components (views A-E, see
Fig.[3). The views and interaction methods were designed to be
intuitive and easy-to-use for non-visualization experts, while
considering our identified requirements and visual scalability
for large spatiotemporal ensembles. Each view contributes to
a specific part of the analysis workflow and aligns with one or
more of the core functionalities. The views are tightly linked,
allowing users to iteratively select patterns, issue and modify
queries, explore results, and gain insight into parameter-pattern
relationships across the ensemble.

We will now describe the individual views in detail:
View A: Direct Data Visualization provides a direct visual-
ization of the data in a currently selected ensemble member
and time step. A slider allows the user to control the visualized
time step and observe how the spatial data changes over time.
The user can draw a bounding box on the visualized data
to select a patch from the ensemble member (as shown in
Fig. 3] (A) with the gray rectangle and arrow cursor to move it
around) and add it as either positive or negative example in the
currently selected query by pressing the plus or minus keys
respectively. This patch contains the visualized data inside the
drawn bounding box from the current time step plus up to

several subsequent time steps, allowing to capture the pattern’s
dynamics over time. The user can specify this number of
subsequent time steps with a second slider below. With view A,
we partially support (F1) regarding intuitive pattern selection
for multiscale querying.

View B: Querying Interface visualizes all current queries. It
supports (F2) by allowing the user to create additional queries
using the “Add Query” button, modify a query by adding
and removing examples (using the “X” button next to each
example patch), and to remove a query (by using the large
“X” button on the right side of the query). A switch button
allows toggling between showing the query’s example patches
as shown in the first drop query in Fig. 3] (B), or to show the
query’s result as shown in the other queries below. The exam-
ple patches are color-coded to have a blue border for positive
examples, and a red border for negative examples. The query
results are the sorted samples of the ensemble’s search space
scored by our scoring function from Section[[II-C| The borders
of the visualized sorted samples are linearly color-coded
according to their scores: blue for low scores (similar patches)
and red for high scores (dissimilar patches). The user can use
scroll bars to navigate query example patches, corresponding
results, and other queries in the querying interface. Each query
is accompanied by a graph that shows the scores of the sorted

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on November 14,2025 at 09:31:15 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2025.3629575

JOURNAL OF IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

samples using the same color scheme (blue for low, red for
high scores). The user can use this graph to interactively
specify the threshold 6,, which determines the samples that are
considered matches for the query. Only samples with a score
< 6, are considered matches. A checkbox can then be clicked
to enable or disable the rendering of each query’s matches in
To distinguish multiple queries from each other when
linking them with other views, the user can assign name and
color to each query gq.

View C: Ensemble Explorer allows the user to quickly
navigate the ensemble. It visualizes the temporal distribution
of each query’s matches in one timeline view per member.
Each timeline view contains superimposed line-charts that vi-
sualize the member’s temporal distributions of query matches
over their time-axis. The user can analyze the timeline views
to identify when which patterns occur in the member, and
how many corresponding query matches have been found.
Many matches suggest strong, and few matches suggest weak
presence of the queried pattern at the corresponding time steps.
Time intervals with few or no matches suggest unidentified
patterns that the user can explore by navigating to them
(supporting functionality (Fg)). This navigation is achieved
by clicking on the respective time step in the timeline view,
which will select and visualize it in [view Al The timeline
views include a vertical dashed line that shows the current
time step in all members simultaneously, allowing to compare
the dynamics at the same time step across members that vary
in length.

Inspired by Luboschik et al. [[36] towards creating a compact
representation relating parameters to dynamics and support
functionality (F4), we propose to condense the information
in the timeline views by describing each as a short pattern
sequence. The pattern sequence describes the temporal order
of the queries with the most matches per ensemble member.
To compute this sequence, we divide the timeline into fixed
time intervals and count how many matches each query has
in each interval. For every interval, we assign the query
with the highest number of matches as the dominant one.
Intervals with too few matches can be ignored, and consecutive
intervals with the same dominant query are merged to keep the
sequence short and readable. We visualize the pattern sequence
per member as a row of colored rectangles placed above its
timeline view, where each color represents a different query.
For example, in Fig. 3] (C), all members from the droplet
impact experiment share the same pattern sequence. In this
case, the sequence shows that the droplet first falls, then
creates a crown, followed by a splash, a bubble-splash, and
again a splash pattern.

View D: Clustering Explorer allows the user to efficiently
explore the different patterns in the ensemble, and therefore,
supports functionality (F3) guided pattern exploration. It
contains a projection view that shows a clustering of the en-
semble’s search space, though only visualizes the cluster cen-
troids instead of individual samples to alleviate occlusion. The
centroids are positioned corresponding to the 2D UMAP [37]]
projection of their centroids. We use the K-means clustering
algorithm [38]], [39] with K-means++ initialization [40] to
compute the clustering. Both clustering and projection are

based on our learned similarity metric from Section

We visualize the individual clusters in the projection as
flower glyphs to show the number of the cluster’s query
matches compared to their total size. The queries represent
the dimensions of the glyphs. Flower glyphs have been shown
to outperform star glyphs for higher dimensions in outlier and
sub-cluster detection [41]], improving the visualization’s scal-
ability for multiple queries. The user can click on a centroid’s
flower glyph to view a scrollable list of the corresponding
cluster’s elements and analyze the number of matches per
query in an accompanied bar chart, as shown in Fig. 3] (D).

We draw contours around the flower glyphs to further
highlight where certain patterns appear in the projection and
indicate to the user where there are still unidentified patterns.
By indicating which clusters still contain unidentified patterns,
the user can be guided to new patterns and iteratively query
these until all essential patterns have been found. Each change
to one of the queries also updates the clustering explorer.
View E: Sequence Explorer groups ensemble members by
their pattern sequence as previously described in [view Cl
which allows us to support functionality (F4) in relating the
ensemble’s dynamics to its members and associated parame-
ters. Each group of members is visualized in a scrollable list
sorted by group size. The user can select a group by clicking
on the corresponding row in the sequence explorer, which also
filters the members in the ensemble explorer, allowing the user
to explore these members in detail (view C).

The sequence explorer includes a parameter space visual-
ization, which visualizes the members’ associated parameters,
allowing the user to interactively explore pattern-member
relationships. In the parameter space visualization in Fig. [3]
(E), we visualize the 2D parameter space as scatterplot,
where each member is represented as a blue and slightly
transparent circle such that overlapping circles can still be
identified. Selecting a group of members highlights them in
the scatterplot by adding a black halo around their circles,
improving the visual distinction between currently selected
and non-selected members.

We note that ensembles with higher-dimensional parameter
spaces would require other approaches to visualize their pa-
rameter space, such as a scatterplot matrix. Similar brushing
and linking could then be employed to relate the ensemble’s
dynamics with its parameter space.

C. Analysis Workflow

We designed an analysis workflow to outline how the visual
components can be used to make sense of an ensemble.
We provide a flow diagram of this workflow in Fig. @ Our
analysis workflow begins by performing an initial exploration
of the ensemble data. The projection of cluster centroids in
the clustering explorer offers an initial overview of
different spatiotemporal patterns. The direct data visualization
and the ensemble explorer offer means to
investigate individual clusters and ensemble members further.
During the initial exploration, different spatiotemporal patterns
are identified (identificaiton of spatiotemporal pattern). A user
can then query the identified patterns by providing example

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on November 14,2025 at 09:31:15 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2025.3629575

JOURNAL OF IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

] Identification of; Parameter Space
CEIustIenng spatiotemporal Analysis
xplorer
pattern Parameter
Guided Space
Ensemble : Visualization
Explorer Exploration
Direct Data Query Sequence
Visualization Interface Explorer
(Initial) Query identified patterns Identification and grouping of
Exploration & validate metric and results temporal sequences

Fig. 4: The analysis workflow for our visual approach. We
begin the analysis with an initial exploration to identify
different occurring spatiotemporal patterns. Next, we make
sense of the ensemble [42] (Fig. 4) by iteratively searching for
and querying essential spatiotemporal patterns. The updated
clustering and sequence explorer help providing overviews of
the ensemble’s dynamics and parameter-pattern relationships.

patches found during the exploration step. Based on the query
results, a user can then validate metric and results and decide
on the trustworthiness of the metric or whether the chosen
query thresholds are appropriate. Given that the metric returns
expected results, which are similar patterns to the provided
examples, the user can continue the exploration or fine-tune
the query by modifying query thresholds or examples.

Defining queries and corresponding thresholds updates the
clustering explorer and the ensemble explorer
[©) by visualizing where query matches exist. This offers a
guided exploration by searching for clusters or members that
are not well described by the queries yet and contain almost
few or no matches for any query. Further exploration and
analysis of those clusters and query results then leads to
identifying potentially new patterns. This loop of identification
of spatiotemporal pattern, querying for patterns & validation
and analysis of results, and guided exploration generates a
variety of pattern sequences that compactly represent the
trends of the ensemble members.

The temporal trends of the ensemble members can then be
explored and analyzed with the interactive pattern map in the
sequence explorer [(view E)| Inspecting the sequences supports
the verification of expectations or the detection of anomalies.
Parameter space segmentations may become visible and pro-
vide further insight for the overall ensemble analysis.

V. EVALUATION

In this section, we first evaluate our query-based approach
using a case study of a droplet impact experiment ensem-
ble following our proposed workflow. We then conduct two
expert interviews to validate our requirements and respective
design decisions for our visual approach, and to evaluate its
usefulness for the corresponding expert’s domains. Finally, we
compare our similarity metric to its fixed-size baseline (the
S4) using a synthetic dataset, and demonstrate our approach’s
ability to also generalize to a real-world scenario of point-of-
view camera recordings.

A. Case Study: Droplet Impact Experiments

Droplet impact experiments are conducted to investigate
the splash dynamics of liquids, which is relevant for many
industrial applications such as inkjet or 3D printing [2], [3]].
To capture and analyze the dynamics during the many different
experiments, high speed cameras are used, which quickly
results in large spatiotemporal ensembles.

Droplet Impact Experiment Ensemble: The considered
ensemble in this case study contains 1208 different droplet
impact experiments, whereas each is captured by two cameras
from slightly different perspectives, resulting in a total of
2416 members. Each member is a series of 2D grayscale
images recorded with a high-speed camera. All experiments
follow the same procedure: a droplet is dropped onto a small
fluid film. The goal of the experiments were to investigate
the different splash patterns that evolve for different types of
droplet and film fluid, and build a characteristic map that puts
splash patterns into relation to the experiment’s parameters [ 1].
The two key parameters of interest are the Weber number and
the dimensionless film thickness, both derived from measured
properties including fluid type, impact velocity, droplet diam-
eter, and film thickness.

Building a Characteristic Map: In an informal discussion
with a domain expert for droplet impacts, we gained insights
into their process for constructing a characteristic map:

The starting point for the derivation of a characteristic map
for impact outcomes were the individual image sequences
of the raw experimental data, each containing between 300
and 3000 images of raw experimental data. For each image
sequence, the experimenter must determine the impact out-
come (e.g., deposition, transition, or splashing) and annotate
the presence, order, and timing of more detailed phenomena
such as crown, jet or bubble formation. This information is
then manually recorded in a spreadsheet. For an experienced
experimenter, it takes between 5 to 10 minutes to analyze
one image sequence, depending on the number of images
and observed phenomena. Thus, analyzing an ensemble of
experimental data with 1200 image sequences takes between
108 and 216 hours.

Based on this discussion, we identified a clear goal for
our visual analysis approach to help with such analysis,
particularly the time-consuming process of identifying and
tracking of multiple impact phenomena (splash patterns).
Expected Analysis Output: Given the ensemble, our task is to
identify and label essential multiscale patterns in the data. We
then can classify the experiments with respect to the pattern
sequences and analyze their relation to the experiment’s pa-
rameters. The final result should be similar to the characteristic
map that domain experts derived manually.

Procedure: We follow the workflow described in Section [V-C|
applied to the ensemble and provide evidence that our ap-
proach supports the requirements (R;-R4) from Section
For this case study, we first trained our model on the ensemble
data, as described in Section and performed the sampling
and pre-processing steps.

Result: We start with the initial exploration by using the direct
data visualization for the first experiment in the
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Fig. 6: The patches of the drop query consisting of positive

(blue) and negative (red) examples.
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Fig. 7: The best retrieved sample patches for the drop query.

Fig. 8: Score graph over the sorted droplet query results with
a set threshold to distinguish matches and non-matches.

Max Score: 5.36
Threshold: 0.18
Min Score: -1.20

ensemble (see Fig. [5), revealing four different patterns that
we classify as drop, crown, crown-splash, and splash.

We then start by creating a query for each classified pattern,
starting with the drop pattern. To build the drop query, we
choose multiple positive example patches that contain droplets
under different lighting conditions and without including much
background in the selected patches. We also include two
negative example patches that contain background to explicitly
avoid similarity with the background in our query results.
Figure |§| shows the final drop query (evidence for (Rq)).

Adjusting a query automatically triggers a re-computation of
the scores across all samples regarding that query and provides
the results within seconds (evidence for (R4)). Fig. El shows
the first few results for the drop query with its corresponding
score graph below in Fig. [8] The score graph shows that
a small percentage of samples have a small score (similar
to a droplet), and a large percentage of samples have a
high score (not similar). By default, the score threshold for
labeling matches is set to one-third between the minimum and
maximum scores in the query result. We reduce it slightly to
reduce the number of potential false positive matches and to
improve the quality of all views.

Creating the drop query also updates the clustering explorer
which now shows the clusters that contain matches
for the drop query. The previously empty petals of the flower
glyphs in the projection view visualize the number of drop
matches compared to the total number of elements in each
cluster, see Fig. 0] Isoline-like contours additionally highlight

Fig. 9: Highlighted drop
cluster. The isoline-like
contours encode for den-
sity of query matches.

Fig. 10: Ensemble viewer drop
timeline and sequence.

C2 (uncolored cluster) D

Fig. 11: Figures A, B, C1/C2 and D show how the projection
view of the clustering explorer changes with progressing
guided exploration (from A to D). As more patterns are
captured via new queries, the view becomes more colorful.
Uncolored regions indicate not yet captured patterns.

where clusters contain matches for the query.

Similarly, the ensemble explorer [(view C)|now shows in the
individual experiment’s timeline views, when drop matches
occurs (see Fig. [I0). The corresponding pattern sequences
consist only of the drop pattern accordingly.

Following the guided exploration, we also create queries
for the other so-far identified patterns: crown, crown-splash,
and splash. Similar to before, this updates the projection view
of the clustering explorer, as shown in Fig. [[T(A). A large
portion of clusters still has no matches at all. Inspecting
the clusters in the upper half reveals that those include only
background, for which we create another to improve the match
coverage of the search space, resulting in Fig. [IT(B). On
the left side in the projection view are two more clusters
with mostly no matches. In the first cluster, we find many
patterns that we identify as bubbles, while in the second
cluster, we see mostly patterns which we name jetting. We
add a query for both patterns, resulting in Fig. [[T(C1). Only
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Fig. 12: Example time steps of member 229 (top) and member
791 (bottom) with the corresponding member’s timeline for the
drop query at the right. Both members have no crown matches
detected and fall into the sequence that consists of only drop.

one cluster remains with no isolines, and therefore, more
unidentified patterns. Inspecting the cluster reveals bubble-
splash patterns and relatively viscous or thick splashes, that
we cannot clearly differentiate, see Fig. [TT(C2). We still create
an additional query for both patterns, which results in the
majorly colored projection view in Fig. [[T(D) and marks the
stop for our guided exploration (evidence for (Rg) for full
pattern coverage).

We are now interested in how the different pattern occur-
rences relate to the parameter space. The sequence explorer
shows the division of the whole ensemble into
groups with identical pattern sequences and, thus, similar
dynamics. However, the more queries, and thus, potentially
false-positive matches exist, the more potentially different
sequences are computed, which reduces the effectiveness of
grouping individual sequences and yielding an informative
pattern map as an overview for the ensemble’s parameter-
pattern relationships. Furthermore, we are not interested in
patterns such as the background, and only keep the relevant
and distinguishable pattern queries for this analysis: drop,
crown, splash, bubble-splash, and jetting.

Interestingly, while we would expect to see a splash pattern
in all of the droplet impact experiments, the sequence explorer
now also reveals a small group of 57 members that contain no
further patterns besides the drop. Inspecting this group shows
that they either develop only a small crown, which is too small
to be detected by our model, or none at all, as shown in Fig. @
However, we determine this group as outlier and focus only
at the larger groups in the sequence explorer. This leaves us
with four large groups of clearly different pattern sequences
and impact dynamics, which we illustrate in Fig.[T3] and which
we can now relate to the ensemble’s parameter space by using
the linked parameter space visualization.

The linked two-dimensional parameter space scatterplot of
the droplet impact experiments ensemble plots the experiments
by their corresponding dimensionless film-thickness and Weber
number, see Fig. 3] (E). By hovering over the individual
groups of pattern sequences, we can easily inspect where their
member’s associated parameters are located in the parameter
space, allowing us to build a mental characteristic map. It
shows that most experiments with the same pattern sequence
also share a close region (range of parameters) in the parameter

Sequence |# Members

[ 506
- |2| i . [ || 502
[ | 382

B
Fig. 13: The four largest groups of members with the same
sequence for the queries: drop, crown, splash, bubble-splash,
and jetting. The images show example matches for each of
those queries, with the border colors representing the colors
assigned to those queries. The background colors of the
sequences in the right table are used to link with Fig. E
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Fig. 14: The above figure shows our resulting characteristic
map from the analysis. Individual members are plotted as
circles. Isoline-like contours show a density distribution of
the members per sequence. The color-coding corresponds to
the most distinguishing pattern (top-right legend) for each of
the four largest grouped sequences. The figure below shows
the reconstructed characteristic map from a tedious manual
analysis of domain experts [[1](Fig. 1a).

space, and regions of other pattern sequences do generally not
overlap. This interactive visualization provides us with the first
insights into the composition and characteristics of the droplet
impact parameter space (evidence for (Rg)), which we now
use in further analysis.

Finally, we export the final state of our analysis and plot the
members of the four largest sequences color-coded by their
sequence, to build a static visualization of our interactively
built characteristic map. Figure [T4] shows our (top) charac-
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teristic map side-by-side to a reconstruction of the manually
built characteristic map from domain experts (bottom) from
[1](Fig. 1a).

Comparing both maps reveals a number of similarities
and differences, which can be explained as follows. The
observed differences are mainly due to two factors. First, the
ensemble used in our case study covers a broader parameter
space and includes additional experiments compared to the
original characteristic map. Second, our analysis emphasizes a
slightly different set of patterns: crown, splash, bubble-splash,
and jetting. In contrast, the original map focuses on splash,
deposition (i.e., secondary droplets), and transition behaviors,
with bubble and jetting highlighted as additional features.
Nevertheless, our approach effectively identifies regions as-
sociated with jetting and splashing phenomena, and partially
captures features related to bubble formation. This outcome
was achieved in a case study conducted by non-domain experts
in approximately thirty minutes.

B. Expert Interview: Droplet Impacts

We conducted an expert interview for a qualitative evalua-
tion of our visual approach. The expert is a senior researcher
with over ten years of experience working with spatiotem-
poral ensemble data, including droplet impact experiments.
According to the expert, one of the main challenging aspects
in the domain when working with such ensembles is the
identification and classification of the pattern in the data. This
task typically involves a tedious manual analysis with a “huge
time-consuming effort” of “several weeks.”

The interview began with a brief overview of our approach
and the dataset. We then asked a few general questions to
better understand the expert’s background and experience. The
expert indicated limited experience with ML techniques for
spatiotemporal ensemble analysis, so we provided a concise
summary our self-supervised model, training procedure, and
pre-processing steps. We then introduced the concept of pat-
tern queries and query matches, followed by a walkthrough
of the approach’s coordinated views using the droplet impact
experiments as example. During this walkthrough, the domain
expert raised a few questions regarding dimensionality reduc-
tion techniques related to our projection view, which we then
elaborated on.

After the initial walkthrough, we discussed the key aspects
of our visual approach. The domain expert commended the
unbiased analysis approach of the data for classifying patterns.
Unlike manual analysis, where expectations about experiment
parameters may influence the pattern identification, our model
does not know about the parameters, allowing for a more
objective pattern identification.

We then conducted a joint analysis similar to the case
study in Section and collected feedback during and
after this analysis. The overall expert’s response was very
positive. The domain expert was impressed by the speed of
the implementation, such as querying and visualizing identi-
fied patterns in the ensemble during the interactive analysis.
Furthermore, the domain expert appreciated the overview of
the ensemble explorer, calling it to make it “much easier” for

conducting analysis. When asked if the workflow and goals
aligned with their typical process, the expert confirmed it. The
expert also acknowledged the interactively generated “regime
map” (characteristic map) and stated that this analysis is “much
faster” compared to the manual analysis of each experiment.
However, they noted that the regime map lacked structure and
suffered from visual clutter. We note that at the time of the
interview, our visual approach lacked interactive filtering of
the pattern sequences in the parameter space visualization,
leading to the noted visual clutter. This feature which was later
implemented in response to the interview feedback. Overall,
the expert expressed that they are amazed about “how easy it
is to handle”, that the “visual encoding is easy to understand”,
and that such a visual approach is something they “would like
to work with” in future analyses.

Finally, we asked the expert for constructive feedback to
further improve our visual approach. The expert suggested
adding sub-querying capabilities, which means to add sec-
ondary queries on only the matches of a previous query. This
would allow them to further subdivide the query results for a
crown pattern by the crown’s shape, such as a pyramidal, rect-
angular, or v-shape. Next, the expert also suggested improving
the separation capabilities of the metric between crowns and
bubbles, where a few false-positive bubbles were returned as
crown matches during the analysis. As a final suggestion, the
expert expressed that filtering the parameter space view such
that the regions of individual sequences can be interactively
explored, would be helpful to achieve an overview parameter-
pattern relations in the whole ensemble. We implemented this
final suggestion after the interview, which led to the final
version of QVis.

In a brief follow-up interview, the expert confirmed the
usefulness of the enhanced parameter space visualization. The
expert then also suggested that our final approach could also
guide the experiment process by identifying underrepresented
regions, areas with high pattern variance or unexpected results
in the parameter space, for which more experiments should be
conducted.

Overall, we found the expert study evaluation provided
valuable feedback for our visual approach’s improvement,
validated our requirements, and highlighted opportunities for
further improvement and future work.

C. Expert Interview: Turbulent Flow

To validate the requirements and applicability of our visual
analysis approach, we conducted a second expert interview.
The expert has over three years of experience working on
fundamental research of flow phenomena in porous media,
such as “turbulent pumping” and vortex shedding. The expert
works with experimental fluid data captured via particle image
velocimetry (PIV).

During the interview, the expert presented us with two key
challenges they face in their typical data analysis workflow.
First, managing the large data volumes generated by high-
speed imaging (200-600 GB per dataset (R4)). Second, the
significant manual effort which is involved in analyzing time-
resolved data (Rg). While they mentioned that they have
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Fig. 15: Query and visualized matches for a vortex shedding
dataset. The query contains three positive examples of clock-
wise rotating vortices (a). Our approach then manages to track
and visualize similar vortices in the data (b) and when they
occur in the corresponding timeline view (c).

(<)

developed a custom algorithm for vortex center detection,
which they implemented in their data analysis pipeline, they
noted that it cannot be used for other phenomena, requiring
new algorithms and development effort for each case.

Their typical analysis begins with automated image pro-
cessing of the PIV images to enhance the visibility of tracer
particles and compute velocity and temperature features of the
flow. Subsequently, image sequences are analyzed manually
or with their custom algorithm. A typical workflow involves
visually inspecting videos to assign physical quantities (e.g.,
Reynolds number, vertical transport) to time steps. These
quantities indicate when flow features like vortices develop.
These features are then revisited and manually identified and
tracked when and where they appear, allowing subsequent
analysis (e.g., computing a vortex shedding frequency) and
relating them to experimental parameters such as inflow ve-
locity or temperature.

To the question of what their ideal analysis tool should look
like, they answered that they envision a tool where one could
load raw video data, provide a phenomenon of interest (Ra2),
and immediately receive a list of corresponding occurrences
in time and space (R4). These occurrences should preferably
be already visualized within the tool.

We then demonstrated our prototype using a vortex shedding
dataset familiar to the expert. Our approach managed to
identify vortices throughout the entire recording based on a
query of just three examples, and visualize the identified vortex
occurrences along a timeline (see Fig. ﬂjl (c)). The expert
found the interface intuitive and appreciated the arrangement
of the views for query creation, result inspection, and timeline
visualization. While the clustering and projection views ini-
tially caused confusion, they were quickly understood after a
brief explanation. However, we noted that these views might
offer more value in datasets containing a broader variety of
patterns and less pattern periodicity.

MOQ" IR

Fig. 16: Example images of the synthetic dataset at different
time steps.

The expert suggested storing and reusing queries across
other datasets, a functionality already supported in our ap-
proach, assuming the similarity metric remains valid. However,
significantly different datasets require retraining the model
first.

Overall, this interview provided essential insights into the
practical challenges faced in analyzing spatiotemporal experi-
mental data and validated the core requirements and design
of our visual analysis approach. The expert confirmed the
relevance and usefulness of query-based pattern search and
underlined its potential to significantly accelerate the discovery
and understanding of flow phenomena in complex datasets.

D. Generalizability: Synthetic Data & Art Gallery Video

We evaluate our approach’s multiscale querying ability with

a controlled synthetic dataset and provide an outlook regarding
its generalizability using an ensemble of first-person vision
(FPV) video recordings containing art exhibits.
Synthetic Dataset: We created a synthetic video dataset of
just one ensemble member containing three different patterns
at three spatial scales. This dataset provides ground-truth
labels for both the occurring pattern type and scale, enabling
a controlled comparison of our multiscale approach against
the fixed-size alternative. The patterns are the shapes circle,
rectangle, and triangle. The scales are small, medium, and
large. The dataset has 2000 time steps and a spatial extent of
1000 x 1000 pixels. To generate the data, we sampled 165
instances of each shape, where each instance was sampled
from one size range: 150 — 250 for small, 350 — 450 for
medium, and 550 — 650 for large. We placed the instances at
random locations in the data, but avoid overlap (see examples
in Fig. [T6). We then trained two identical model architectures:
one fixed-size variant with a fixed input size, and one multi-
scale variant with variable input size.

To evaluate how well each model retrieves similar patterns
at different scales, we then issued queries containing random
samples for the different available shapes (circle, rectangle,
and triangle), and analyzed which of the available patterns
are closest to the respective queries. Thus, using any circle
pattern as query example to compare with the other patterns
in the search space should result in other circle patterns (at
any scale) to have the lower scores than rectangle or triangle
patterns. Since the fixed-size variant cannot process different
input size, we rescaled the patterns in the search space to
the fixed input size of the model (512 x 512 pixels), while the
multiscale variant can process each pattern in the search space
by its original size.

To quantify the retrieval accuracy, we calculate the preci-
sion@k [43] metric. The precision@k metric describes the
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Fig. 17: The precision@k matrix per shape-size combination
for the synthetic dataset for the multiscale and fixed-size vari-
ant. The row represents the query elements, and the columns
represent the percentage of retrieved elements. We queried
with p = 4 elements of the same label and calculated the
percentage of retrieved elements per label out of k£ = 165,
which is the total amount of available elements per shape.
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Fig. 18: The MDS projection for multiscale (left) and fixed-
size (right) variant of the labeled patches. The marker shape
corresponds to the captured pattern shape in the labeled patch
and color encodes the size.

number of correctly retrieved patterns out of the top k results
of the query.

The results for the precision@k metric for both variants is
shown in Fig. [[7] The multiscale variant retrieves the same
shape across all sizes independent of the input size, except
for the small circle. The fixed-size variant retrieves multiple
different shapes but those of similar size only. It fails to
identify similarities between similar patterns of different sizes.

We visualize the differences between both models by pro-
viding the outcome of multidimensional scaling (MDS) [44]
of the dataset in Fig. [I8] using the respective models as
similarity metrics between the pattern’s patches. Here, the
distance between points encodes for the similarity among
them. We can see that the shapes form clusters regardless
of size when using the multiscale version, though, which is
not the case for the fixed-size variant. This example further
provides evidence that our approach fulfills (Ryq).

Art Gallery Video Ensemble: We applied our approach to
a FPV video ensemble dataset [45] to provide an outlook re-
garding generalizability of our approach. The dataset contains
27 video recordings in which the visitors move throughout a
small art gallery of 5 paintings, while a camera records their
point-of-view. In 12 such recordings, the visitor started at the

Sequence

Fig. 19: The images above show the positive example patch
of each query, with the image border color representing the
color we assigned to the query itself. The grouped sequences
reveal the two primary directions of camera movement and
three outliers with randomized movements.

first painting and moved clockwise from painting to painting.
In 12 other recordings, they moved in counterclockwise order.
The order of the remaining 3 recordings was randomized.

Using our approach, we can easily divide the recordings
according to the visitor’s movements. We first trained the
model on the dataset and performed the pre-processing steps
similar to the case study in Section [V-A] We then created a
query for each painting in our visual approach and inspected
the results, see Fig. @ The timeline views allow to easily
identify each visitors movement order through the art gallery
by highlighting when specific paintings were in their point-
of-view. Furthermore, the sequence explorer nicely divides the
ensemble into clockwise and counterclockwise moving camera
videos, while the three outliers are presented in their separate
groups, but also revealing their order of camera movement as
compact pattern sequence.

VI. DISCUSSION AND LIMITATIONS

In this section, we discuss the algorithmic and visual scal-
ability [46] of our approach, as well as limitations regarding
the trustworthiness of its results.

Computational Scalability: From a computational perspec-
tive, our approach consists of three major parts: training
the model to yield a similarity metric, sampling and pre-
processing, and the interactive analysis (primarily querying).

Training the model largely depends on the maximum patch
size and the overall data complexity of the ensemble, which
affects the time until convergence. However, a single encoding
step can be considered to be of constant complexity regarding
the maximum patch size.

The sampling and pre-processing step depends on the num-
ber of samples required to sufficiently cover the patterns in the
ensemble. Once the average sampling density is determined
— likely influenced by factors such as spatial and temporal
dimensionality and the expected pattern sizes and occurrence
frequency — the total number of samples should scale linearly
with the dataset size.

Querying consists of (a) scoring each sample and (b) sorting
the samples by score. (a) requires computing the pairwise
distances between the number of query examples e and
samples n, which follows O(ne). Sorting n elements (here,
the resulting scores) can generally be considered to be of
O(nlogn) complexity and is, therefore, also the complexity
of a single query.
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Visual Scalability: The views mostly show aggregated infor-
mation and are not directly related to the dataset size. However,
the visual scalability mainly depends on the number of queries
and number of ensemble members. Many simultaneous queries
can introduce visual clutter in the ensemble and clustering
explorer views, and negatively impact the pattern sequence
computation. A very high number of ensemble members could
introduce visual clutter in the parameter space visualization,
requiring adjustments for larger number of members.
Trustworthiness of Results: We have shown that our pre-
sented visual approach allows us to explore and analyze large
spatiotemporal ensemble datasets effectively. However, the
workflow relies on many interacting components and steps
where uncertainties can be induced and propagated throughout
the analysis.

The most critical component in the analysis is the model and
the associated similarity metric. If the model cannot properly
distinguish different patterns, it will negatively impact the clus-
tering, querying, and all other analysis steps. We have provided
various approaches to help evaluate the model’s effectiveness
and build trust in its results, such as interactively exploring the
clustering or query results via the visual approach. However,
even with a robust multiscale similarity metric, the quality of
analysis remains sensitive to other factors.

Other sensitive factors in the analysis include the choice of
projection algorithm, the number of visualized clusters, query
definitions and thresholds, the binning parameters for sequence
extraction, and the sampling strategy for patches. Due to this,
we keep most of these factors interactive so that they can be
adjusted to the current dataset and goals during the analysis.
The choices regarding the projection algorithm and sampling
approach may have to be considered separately and potentially
adjusted before the analysis.

Additionally, numerical problems in the analysis may arise
due to variable time-discretization among ensemble members,
such as changing frame rates in video recordings, which could
lead to over- or under-retrieval of patterns in parts of the
ensemble. This problem could be addressed by adapting the
sampling algorithm or normalizing the ensemble’s spatiotem-
poral discretization in a pre-processing step.

Finally, while our query-based analysis allows to query
similar patterns at different scales, it limits us in cases where
this property is not desired and distinctions based on the size
of the patterns are intentional.

VII. CONCLUSION AND FUTURE WORK

With QVis, we introduce a considerable step forward in the
interactive analysis of large spatiotemporal ensembles through
flexible, multiscale pattern querying. By extending a learned
similarity model to support variable-sized inputs and enabling
users to define multiple pattern queries directly within visu-
alized data, our approach allows domain experts to efficiently
identify, retrieve, and compare complex dynamic behaviors
across ensembles. Our query-based exploration helps reveal
missing or underexplored patterns, supports richer multiscale
analysis, and enables users to relate patterns to experimental
parameters via linked, coordinated views. QVis provides a

dynamic, pattern-based signature for each ensemble member
and facilitates interactive navigation through the ensemble’s
parameter space, significantly reducing the manual effort re-
quired previously. Expert feedback confirms that our system
reproduces complex insights more efficiently and intuitively
than existing manual workflows.

In future work, we plan to extend our approach in several
directions. First, we aim to support more general input data
(e.g., including multiple variables or non-uniform grids), and
explore additional—potentially domain-specific—feature ex-
traction approaches. Second, as suggested by the expert during
the interview, we intend to support sub-querying, enabling
users to explore patterns at varying levels of granularity
and construct hierarchical overviews of complex behaviors.
This could lead to more expressive abstractions, such as
representations of ensemble dynamics akin to scene graphs
for better summarizing and comparing complex data. In addi-
tion, we plan to conduct a systematic evaluation of different
pooling strategies and parameterizations of the underlying
model architecture, and investigate their effects on similarity
learning performance, especially for ensembles with highly
variable spatial or temporal resolutions. Finally, we aim to
scale QVis to larger ensembles—such as those in climate
and weather simulation—which involve higher dimensional
parameter spaces and longer temporal scopes; to support these
cases, future work will explore scalable querying strategies and
abstraction techniques.
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