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Figure 1: Three visualization techniques for the representation of large networks. Node-link diagrams and adjacency matrices are
common in visualization. Bipartite layouts have been proposed as an alternative for solving different tasks. We compare all three
techniques with respect to different network properties and tasks.

Abstract—This work investigates and compares the performance of node-link diagrams, adjacency matrices, and bipartite layouts
for visualizing networks. In a crowd-sourced user study (n = 150), we measure the task accuracy and completion time of the three
representations for different network classes and properties. In contrast to the literature, which covers mostly topology-based tasks
(e.g., path finding) in small datasets, we mainly focus on overview tasks for large and directed networks. We consider three overview
tasks on networks with 500 nodes: (T1) network class identification, (T2) cluster detection, and (T3) network density estimation,
and two detailed tasks: (T4) node in-degree vs. out-degree and (T5) representation mapping, on networks with 50 and 20 nodes,
respectively. Our results show that bipartite layouts are beneficial for revealing the overall network structure, while adjacency matrices
are most reliable across the different tasks.

Index Terms—Bipartite, network, visualization, evaluation

1 INTRODUCTION

Node-link diagrams (NL) and adjacency matrices (AM) are two
of the most common visualizations for static networks (Figure 1).
is easy to understand but suffers from visual clutter when the size and
density of networks increase. is a visualization free of overdrawing
and is highly scalable with respect to network density. However, spatial
properties are neglected, impairing path-related tasks [28, 29, 35] (e.g.,
following a path through a network). To address this problem, several
techniques have been proposed, either by combining the visual variables
of both representations [30, 31, 53] or by introducing a whole new
representation altogether [32, 34, 63]. One of those is the bipartite
layout (BP) .

In contrast to the aforementioned techniques, was originally in-
troduced to visualize bipartite graphs [9], i.e., graphs that have two
sets of non-adjacent vertices. In recent years, the layout has been
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proposed as an alternative visual representation of static and dynamic
networks [11,18]. The layout depicts networks by connecting nodes on
two vertical axes (Figure 2c). Due to its compact design, the layout is
often used to compare multiple instances of the same network, which is
an essential analysis task in dynamic network visualization. The tech-
nique shares some characteristics with and . It uses the same visual
variables as to encode nodes and links. Similar to , it relies on
vertex ordering techniques [13, 27, 40] to reveal the network structure.
In contrast to , the axes in are parallel and not orthogonal to each
other. This makes it more scalable than with respect to the network
size [4, 16]. To our knowledge, there is no formal evaluation of thus
far. Despite the increasing number of empirical user evaluations in
network visualizations in the last two decades [17], the capabilities of

for static network visualization remain largely unknown, especially
in comparison to and .

In the same vein, Yoghourdjian et al. [62] identified multiple aspects
of network visualization that have not been investigated by empirical
user evaluation. For example, the majority of studies (80%) were con-
ducted on small-size networks (100 nodes or fewer), and studies that
considered large-size networks used network abstraction or aggregation
methods for the evaluation [62]. While the basic measures of network
complexity, such as size and density, are important evaluation parame-
ters, they cannot be viewed independently from the underlying network
class or model. Only few studies [63] considered network class as
an important factor in the evaluation and assessed how it might influ-
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ence the performance of the participants. When it comes to network
directionality, 68% of the studies were based on undirected networks.
Regarding user tasks, the most common tasks are the topology-based
tasks [38], with path finding being the most common; and overview-
based tasks are the least common [62].

In our work, we fill some of the aforementioned gaps by evaluating
for network visualization and comparing it to the two traditional

approaches and , with respect to multiple network classes, proper-
ties, and analysis tasks. Our work extends the body-of-knowledge of
empirical evaluations for network visualization in several ways:

• We consider large directed networks with 500 nodes.
• We explore the interplay between network class and density. In

this regard, we consider four different network classes and three
density profiles.

• We evaluate five tasks that target different levels of network gran-
ularity. Three overview tasks (T1 – T3) on networks with 500
nodes. Two detailed tasks (T4 and T5) on networks with (50 and
20) nodes, respectively.

• We contribute new insights regarding as a method for network
visualization and how it compares to and .

We conducted a large-scale crowd-sourced user study (n = 150) to
assess the performance of participants for the different network in-
terpretation tasks. Our results provide empirical evidence about the
advantages and shortcomings of the three techniques under different
conditions. Based on the results, we derive guidelines for the use of the
three techniques depending on the task and data characteristics.

2 RELATED WORK

Related work comprises a multitude of studies investigating node-link
and adjacency matrix visualizations. We focus on studies comparing
both techniques in terms of task performance. We distinguish ourselves
from previous work with respect to: (1) network properties, with a
particular focus on network size; (2) the inclusion of network class as a
variable in the evaluation; and (3) the tasks, with a particular focus on
network overview and comparison tasks. Furthermore, we discuss the
use of bipartite graph layouts in the literature and how it was applied
for network visualization.

2.1 Evaluation of Node-Link and Adjacency Matrix
In the last two decades, there has been an increasing number of em-
pirical user evaluations in network visualization. For a detailed and
thorough review, we refer the readers to the surveys of Yoghourdjian et
al. [62] and Burch et al. [17]. An early evaluation of was conducted
by Purchase [51], where they asked the participants to perform three
tasks, such as finding the shortest path between two given nodes on
eight different layouts of . They found no statistical difference in per-
formance, except for one layout. The finding is interesting as it shows
that graph aesthetic criteria had little influence on task performance.
Ghoniem et al. [28, 29] conducted a seminal study in which they com-
pared and using synthetically generated networks on a number of
simple and abstract tasks, such as finding the most connected node, or
finding a link between two nodes. The main result of the work is that

is useful for visualizing dense networks, whereas is better suited
for path-related tasks. These findings were confirmed later by Keller
et al. [35] and Henry and Fekete [30] on real-world datasets. Beradi
et al. [14] compared and in the context of intelligence tasks such
as identifying the potential leaders within the network or identifying
network clusters. In their evaluation, performed better with respect
to accuracy and response time. Hlawatsch et al. [32] compared both
techniques for visualizing weighted, directed, and dynamic networks.
Participants were faster and made fewer errors in when they had to
compare edge weights across several points in time.

While previous work evaluated basic measures of complexity such
as size and density, more recent studies tried to leverage crowdsourc-
ing evaluation to compare and across a multitude of network
tasks. For example, Okoe et al. recruited 557 online users in [47] and
864 in [48] to evaluate 14 different tasks on two real-world datasets.

Similarly, Ren et al. [52] recruited 600 participants to evaluate how
people understand social networks by measuring their performance in
16 different tasks. Nobre et al. [46] compared and in the context
of multivariate networks. They evaluated 16 tasks with a special focus
on attribute-based tasks. Except for the work of Okoe et al. [47, 48],
most of the previous studies evaluated networks with 100 nodes or less.
Additionally, most of the evaluated tasks are low-level (i.e., topology-
or attribute-based tasks) [38], except for the task “How many clusters
are there in the visualization?” in the work of Okoe et al. [47, 48]. In
contrast to previous work, we consider larger networks with 500 nodes.
Additionally, we focus our evaluation more on network overview and
comparison tasks.

There are a few prior studies that considered network overview and
comparison tasks. For example, Alper et al. [6] evaluated network
comparison tasks on both and , using brain connectivity networks.
Similarly, Jin et al. [34] considered “overall similarity” as one of the
tasks in their evaluation. Our work builds upon that by evaluating
large networks and investigating different network classes in the evalu-
ation. We position ourselves close to the work done by Yoghourdjian
et al. [63], where they compared and using large networks with
thousand nodes across different network classes. In contrast to their
work, we investigate the interplay between the network class and net-
work density by including the density as an additional parameter in
the evaluation. Additionally, while Yoghourdjian et al. evaluated one
overview task (i.e., identifying similarity), we extend that procedure
by evaluating three overview tasks and two detailed tasks for directed
networks. Furthermore, we leverage a large number of participants by
conducting a crowdsourcing user study with 150 participants. Finally,
we evaluate layout as a method for visualizing directed networks
and compare it against the two standard techniques and , which
has not been done to date.

2.2 Bipartite Graph and Layout
Bipartite graphs are a special kind of graph where the vertices are parti-
tioned into two disjoint sets. These graphs are often found in biological
and biochemical reaction networks [9]. While there is a substantial
body of work on visualizing bipartite graph structures [43, 50, 54, 61],
we focus on using bipartite layouts for visualizing single-mode net-
works (i.e., one set of vertices). Inspired by parallel coordinates plots,
Burch et al. proposed Parallel Edge Splatting [18], a technique for
visualizing dynamic networks where they used a bipartite layout as the
underlying visual representation (Figure 2c). To encode the time dimen-
sion, the individual networks from different timepoints are juxtaposed
next to each other in a small multiples fashion. To reduce visual clutter,
the edges are splatted by computing a pixel density map. Several subse-
quent techniques were introduced aiming to increase the scalability of
parallel edge splatting with respect to the number of timepoints, either
by applying a time sliding window [12], interleaving [16], stacking [3],
or by partially drawing the edges [4]. All this work showed that bipar-
tite layouts can be beneficial for dynamic network visualization. The
1D arrangement of vertices allows the layout to be scalable with respect
to the network size and number of timepoints. Furthermore, with proper
vertex ordering, the layout can reveal several network structures [18]
and is therefore beneficial for network overview and comparison tasks.
In previous work, evaluations were typically done by showing use
cases on a few real-world datasets. While this is a valid evaluation
method [37], in our work, we complement the prior work by conducting
an empirical user evaluation to assess the capability of bipartite layout
for static network visualization and compare it against the traditional
network representations.

3 NETWORK REPRESENTATIONS

We investigate three visualization techniques for large and directed
graphs. We consider undirected graphs a sub-case of the directed
ones. In this section, we briefly introduce the layout as it is less
commonly used for visualizing networks and compare it against the
baseline techniques, and .

The layout consists of two vertical, parallel axes. The left axis
corresponds to the source nodes, while the right axis corresponds to
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(a) Node-link diagram
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(b) Adjacency matrix
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(c) Bipartite layout

Figure 2: The three network representations investigated in the study. depicts nodes by dots connected by directional arrows. shows incoming
edges row-wise and outgoing ones (column-wise). In , edges go from the nodes on the left axis to duplicates of nodes on the right axis. Visual
patterns of clusters, chains, and nodes with high in-degree are apparent in all techniques.

the target nodes. To depict a network, the nodes are replicated and
placed on both axes in the same order, and the links are shown by
drawing lines connecting the source and target nodes. Therefore, in

, the link direction always read from left to right (Figure 2c). In
comparison to and , has a limited scalability with respect to
the number of edges, due to the limited drawing space. To mitigate
this problem, edge rendering [4, 18] or bundling techniques [39, 49]
could be applied to improve the visibility of links in cluttered areas.
Similar to , relies on vertex ordering algorithms [13, 40], not
only to reveal the network structures, but also to reduce visual clutter.

combines some of the features of and . On the one hand, it
encodes the connectivity information the same way as does. That
is, by drawing lines connecting the source and target nodes. On the
other hand, similar to , the nodes are replicated and positioned on
two axes representing the source and target axes. Having a separate
drawing space for network nodes allows and to avoid the problem
of overlapping nodes existing in . Therefore, one could hypothesize
that , similar to , would be better suited than for tasks that are
based on node attributes, such as node lookup or identifying node
degree. Additionally, depicting each node twice—once as a source
node and once as a target node—could make and better suited
than for visualizing directed networks. Despite being inherently
built for visualizing directed networks, and can also be used to
visualize undirected networks as well. That is, by transforming them
into directed ones (i.e., adding the edges in both directions).

Due to the replication of nodes on two separate axes, both and
are not well suited for path finding tasks. Both rely on memorizing

node labels to solve the task, which might be challenging without the
aid of interaction techniques [56], if the path is more than just one hop
between the source and target nodes. In contrast, in , one does not
need to read the node labels to find a path between two nodes because
the path information is visually encoded by both the topological and
geometrical properties of the nodes. In contrast to , the node axes in
are rather parallel than orthogonal to each other. Such an arrangement
makes more scalable than with respect to network size. However,
such scalability comes at the cost of restricting the drawing space to
only the area between the two axes, making the least scalable among
the three representations with respect to network density.

Figure 2 shows three structural properties of real-world networks
and their appearance in each representation. The cluster structure is
easy to spot in , due to the two-dimensional spatial layout (Figure 2a).
This pattern forms a rectangular shape along the diagonal (Figure 2b)
in an ordered or as an hourglass-like shape (Figure 2c) in an ordered

. Sparse, small-world networks exhibit chain-like structures as seen
in Figure 2(a), at the top-right corner. This structure is translated into
parallel lines in or entries along the diagonal in . Nodes with high
in-degree are also common in networks. These nodes form fan-like
shapes in or appear as filled rows/columns in . In this example, we
use hierarchical clustering to order both and (Section 4.3).

4 METHODS

Many of the design choices we made throughout the study are based
on a qualitative data study [55] that we performed at an early phase

of the project. During this phase, we investigated different network
properties, classes, and analysis tasks. We also experimented with
different ways of rendering networks on each of the aforementioned
representations, the use of color, and interactivity. This section details
our methodological approach and explains the design choices we made.

4.1 Network Parameters

We visualize different networks with respect to density, size, and net-
work class. An overview of how the stimuli change under varying
parameters is displayed in Figure 4.

Density Profile Network density has a strong impact on the visu-
alization. As described in the previous section, while scales very
well with dense networks, and suffer from overdrawing problems
and therefore have limited scalability. Hence, it is relevant to our study
to evaluate the different representations under different densities. We
adopt a linear density definition with respect to edges and vertices
d = |E|/|V |, which is considered to be a good descriptor of densities
found in real-world networks [42]. In our study, we aim to evaluate
six different densities d = {1,2,4,8,16,32}. To avoid a large number
of trials during the study, we group density values into density profiles
such that we have three profiles dpro f ile = {dlow,dmid ,dhigh} , where
dlow = {1,2},dmid = {4,8}, and dhigh = {16,32}.

Network Size Most previous studies used networks with 100
nodes or less [62]. In our experiment, we consider networks with
approx. 500 nodes for evaluating the overview tasks. Such size is com-
parable to large networks used in some of the previous studies [47, 48].
Yoghourdjian et al. [63] used networks with 1000 nodes. However,
since our study does not involve the use of interaction techniques, in-
cluding such size entails scaling down the resulting network image to
fit the visualization to a standard computer screen. While this is true
for all three representations, it could impair , making the links hardly
visible with low-density profiles. We opted for approx. 500 nodes to
provide a fair comparison with . For detailed tasks, we use networks
of sizes 20 and 50, which is consistent with previous studies [28, 52].

Network Class In our study, we consider four network classes:
Barabási [10], Erdős-Rényi [25], Watts-Strogatz [59], and FARZ [26].
Each class comes with different topological features. Barabási networks
exhibit the preferential attachment property, where new nodes tend
to get connected to the “popular” nodes in the network (i.e., scale-
free networks). We call these nodes “the main hubs”, as they are
characterized by a high in-degree property. Watts-Strogatz networks
exhibit small-world network properties: high clustering coefficient and
short average path length. Erdős-Rényi networks have a low clustering
coefficient as a result of the random connectivity between the nodes.
FARZ networks exhibit modular structures (i.e., community structure),
a property found in many real-world datasets [23, 26]. Our selection of
the four classes overlaps with the work of Yoghourdjian et al. [63], who
used Barabási, Erdős-Rényi, Watts-Strogatz, and Clustered-Barabási.
The latter is a hybrid version of Barabási to emulate the community
structure by loosely connecting two separate Barabási networks. In our
case, we use FARZ for that purpose.
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Figure 3: Study design and variables. We presented the visualizations in a between-subject design with a variation in network parameters. All
participants performed a set of tasks with one visualization technique. We measured their performance and user feedback for evaluation.

4.2 Tasks and Hypotheses
We selected five tasks for evaluation. Tasks T1 – T3 are network
overview tasks, whereas T4 and T5 are detailed tasks for directed net-
works. The choice of tasks and the formulation of the hypotheses were
based on the literature [7, 38, 57, 58, 63] and our qualitative data study.
In this section, we briefly explain each task and state our hypotheses
along with the rationale behind them.

T1: Network Class Identification In this task, we assess the
capability of each representation in depicting different network classes
and the ability to maintain the visual characteristics of each class under
varying densities. Since we want to rule out memory as a factor in
the experiment, we designed this task as a matching task. During the
experiment, we showed the participants one network image at the top
and asked them: To which class does the network belong? At the bottom
of the screen, we showed the participants a reference image for each
network class to choose from. In other words, the participants had to
find out which reference image is the most similar to the given network
image at the top. To account for the density parameter, we paired
different density profiles of the given network image with different
density profiles of the reference images. Since we had three density
profiles, this resulted in six different pairs. In total, there are 4 (classes)
× 6 (density profile pairs) = 24 trials, per visualization condition. Our
hypothesis is as follows:

H1: and are more accurate than for T1.

As seen in Figure 4, and are able to maintain the visual
characteristics of each network class irrespective of the density profile.
In contrast, the visual characteristics seem to disappear as the density
changes in . This can be seen in dense networks, where the hairball
generated by Barabási does not differ much from the one generated
by Erdős-Rényi. However, this kind of problem also occurs at low
density, where it is hard to differentiate FARZ from Watts-Strogatz.
Yoghourdjian et al. [63] arrived at a similar conclusion when they
compared against across different network classes.

T2: Cluster Detection In this task, we assess the capability
of each representation in revealing network clusters under varying
densities. We only considered networks generated by the FARZ model
(Section 4.1). In this task, there are two parameters to vary: the density
profile dpro f ile and the number of clusters k = {1,2,3,4,5,6,7,8}. For
the low-density profile, we excluded density d = 1, since the generated
networks are too sparse to form any cluster. We arranged the k values
into four groups with consecutive values. In total, there were 3 (density
profiles) × 4 (cluster groups) = 12 different combinations. For each,
we sampled two networks, making 24 trials, per visualization. During
the experiment, we showed the participants one network image and
asked them: How many clusters can you detect in this network? Our
hypothesis is as follows:

H2: and are more accurate than for T2.

With respect to this task, Okoe et al. [47, 48] and Berardi et al. [14]
found no significant difference in accuracy between and . In the
study by Nobre et al [46], performed better than . However, the

authors stated that the clusters were difficult to spot in , partially
due to the large node sizes that were used to accommodate many of
the node attributes (i.e., multivariate network). We expect and
to obtain more accurate results than , especially with low-density
profiles. As seen in Figure 4, the links are barely visible in when
the density profile is low. In contrast, links are more visible in and

as a result of overdrawing. One could argue that and amplify
the recognition of links in sparse networks, which will lead to a better
detection of clusters.

T3: Network Density Estimation In this task, we measure the
sensitivity of each representation to changes in network density. We
also investigate whether such sensitivity depends on the underlying
network density and/or the network class. During the experiment, we
showed the participants a pair of network images from the same class
side-by-side and asked them: Which network has more connections
(Left or Right)? In addition to the network class and density profile
parameters, we defined an additional parameter δd that accounts for the
density difference between the network pairs. We evaluated δd for four
values δd = {0.25,0.5,0.75,1.0}. This corresponds to one network
having {25%,50%,75%,100%} more connections than the other. In
total, there are 3 (density profiles) × 4 (δd values) × 4 (network classes)
= 48 trials, per visualization condition. Our hypothesis is as follows:

H3(0): There is no statistical significance in accuracy or
speed between the three representation for T3.

Yoghourdjian et al. [63] and Okoe et al. [47] evaluated the same task
and found no statistical significance in accuracy between and . The
network properties were nnodes = 20 in the former, nnodes = 258 and
nlinks = 1090 in the latter. There was no information provided regarding
the value of δd . We expect the density difference δd and the density
profile dpro f ile to have an influence on the results. With low-density
profile and small density difference δd , and are expected to be
more accurate than , due the low visibility of links in . In contrast,

is expected to be more accurate than and in high density and
with small density differences δd , due to the edge overdrawing in
and . Regarding the network class, the density comparison task on
and is expected to be more accurate for Erdős-Rényi and Barabási
than for FARZ and Watts-Strogatz. As seen in Figure 4, Erdős-Rényi
networks are characterized by a uniform distribution of links. This
makes the density comparison task relatively easy, since one does not
have to pay attention to the network details but rather to the overall
picture. In Barabási networks, participants are expected to pay attention
to the part of the network where the “main hubs” are located (i.e., the
top part of the visualization). In the case of FARZ and Watts-Strogatz,
the networks are composed of several clusters or sub-communities and,
therefore, the comparison task involves inspecting the density within
each cluster separately, which makes the task harder, and therefore,
participants are expected to be less accurate, especially in .

T4: Node In-degree Vs. Out-degree Comparing in- and out-
degrees of nodes is one of the most common tasks on a directed network.
In contrast to the previous tasks, we considered a relatively small
network (nnodes = 50). While we originally planned to evaluate the task
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Figure 4: Overview of different network classes presented in the study. For the three visualizations , , and , we presented visual stimuli of each
class with different densities. Some tasks become more difficult with decreasing density of the data (e.g., detecting clusters in FARZ).

on large networks (nnodes = 500), we found out that solving the task
is not realistic without the use of interaction techniques. We avoided
including interaction features since they would have introduced another
degree of freedom in the experiment, and it would have been quite hard
to implement interactive features without favoring one representation
over the others. In this task, there are two parameters: dpro f ile and
the network class. We excluded the Barabási class as it is trivial to
solve. Therefore, there are 3 (density profiles) × 3 (network classes)
× 3 (repetitions) = 27 trials, per visualization condition. During the
experiment, we showed the participants one network image where one
node is randomly highlighted and asked them: Does the highlighted
node have more incoming or outgoing links? Our hypothesis is as
follows:

H4: is more accurate than and for T4.

and both suffer from overdrawing problems, whereas does
not. Nevertheless, since provides two separate axes for source and
target nodes, the participants are expected to be more accurate in
than in . We expect dpro f ile to influence the results. For mid-density

and high-density profiles, would require the participants to visit the
two endpoints of each link to determine whether it is bidirectional or
not, which is a more laborious and error-prone process than for and

. In contrast, with low-density profiles, we expect no differences,
which is supported by findings from previous work [32, 35]. We expect
the network class to not have an influence on the results as this is a
detailed task that does not take into account the overall structure of
the network, which is more amplified by highlighting the node under
question. We decided not to use color to encode direction information
in , as it would have introduced a bias into the experiment toward one
representation. Instead, we reduced the size of the arrows and altered
their shape to enhance their recognition in cluttered areas.

T5: Representation Mapping The design of this task was in-
spired by the work of Yoghourdjian et al. [63] and Kriglstein et al. [36].
In this task, we want to measure which representation — or — is
“easier” to map to . We used as a reference representation, since
it is known to be an intuitive and easy-to-understand representation of
networks. Therefore, we hypothesized that a network representation is
easy to understand if it could be mapped “easily” to . We used small
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Table 1: Summary of tasks and presented stimuli.

nnodes

dpro f ile Network class Trials
low mid high

1 2 4 8 16 32 Barabási Erdős FARZ Watts
T1: Class Identification 500 � � � � � � � � � � 24 24 24
T2: Cluster Detection 500 � � � � � � 24 24 24
T3: Density Estimation 500 � � � � � � � � � � 48 48 48
T4: Node In-degree Vs. Out-degree 50 � � � � � � � � � 27 27 27
T5: Representation Mapping 20 � � � � - 12 12

123 135 135

(nnodes = 20) and sparse (d = 1) networks and varied the network class
parameter. We intentionally left out the node labels to force participants
into looking at the network structure rather than doing a one-to-one
mapping. We also excluded Erdős-Rényi networks since pilot testing
showed that they were particularly hard to solve due to the absence of
distinctive structure properties, compared to other classes (Figure 4).
During the experiment, we showed the participants one network image
in or representation at the top and provided them with two
diagrams at the bottom and asked them: Which diagram corresponds
to the given representation at the top? In total, there are 3 (network
classes) × 4 (repetitions) = 12 trials, per visualization condition. Our
hypothesis is as follows:

H5: is more accurate than for T5.

Without node labels, we expect this task to be generally challenging
to solve regardless of the underlying visual representation. This was
also confirmed during pilot testing. However, since and use the
same visual variables to encode nodes and links, we hypothesize that
it would be easier to solve the task in than . In , participants
will have to count the rows and columns to uniquely identify the nodes
which would be more laborious, even with small networks. Out of the
three classes, we expect Barabási to be the easiest to solve since it is
characterized by the existence of the “main hub” nodes, which would
be easier to spot in either representation.

4.3 Stimuli Data
We generated stimuli data for each task. Table 1 gives an overview of
the different network parameters used in each task. When a task in-
volves multiple repetitions (i.e., T4 and T5), a new network is generated
for each repetition. We decided on generating synthetic networks in
order to have fine-grained adjustability of network parameters. Task T1
revolves around being able to discern separate network classes, which
requires relatively objective classes in the study stimulus. Real-world
data often exhibit traits of multiple network classes, making it hard to
find a ground truth for the task. Additionally, task T2 revolves around
finding the number of clusters in the provided network. This requires us
to have an objective measure of exactly how many clusters are present
in a given network. This is trivial with a generated dataset, as the num-
ber of clusters is a generation parameter (i.e., k) of the FARZ network
model. With real-world data, it is often unclear how many clusters are
present. We set the k parameter to 4 for tasks T1 and T3, 1 for tasks T4
and T5, and {1,2,3,4,5,6,7,8} for task T2. We re-implemented the
FARZ model [26] and used the igraph R package [20] to generate the
data for the other classes. We used the d3-force [1] algorithm to layout
the diagram. Our experience [5] shows that d3-force obtains results
that are comparable with the best-of-breed layout algorithms such as
neato or sfdp. To order the vertices of and , we used agglomera-
tive hierarchical clustering [2] with average linkage. To calculate the
similarity between two nodes, we use the Jaccard distance based on the
sets of direct neighbors. Hierarchical clustering is widely used in the
literature and known to provide good results [13, 60].

For , we applied the most common technique for graph visualiza-
tion with solid dots for vertices and straight lines with arrowheads for
edges (Figure 2a). For , the columns were used to depict the outgoing
links while the rows depicted the incoming ones. In that sense, the link

direction always reads top to left (Figure 2b). The visual stimuli were
rendered as static images with no interactivity. We omitted the use of
color to focus on the spatial layout of the different techniques. We used
the opacity variable in general to increase the visibility of links in
and . It was also used to highlight the nodes in task T4. Finally, we
downscaled the images by pixel averaging, to make sure they could fit
into a browser window.

4.4 Study Design and Procedure
We used a between-subject study design with three conditions, one per
representation (Figure 3). For a large number of participants and variety
of demographics, we conducted an online crowdsourcing user study
using Amazon Mechanical Turk (mTurk). Similar to prior work [19,33,
47], we aimed for 50 participants per condition. The order of presented
stimuli was counter-balanced between the conditions. In the case of
and , participants had to perform five tasks, and only four (excluding
T5) in the case of . The order of the tasks was assigned randomly.

At the beginning of the study, participants were presented with a
demographics questionnaire. After that, participants read a brief tu-
torial that explained the basics of network visualization and gave an
introduction to the visualization being evaluated. Participants could
browse through the tutorial back and forth until they felt ready to per-
form the tasks. Each task started with basic instructions and examples,
followed by a few training trials where participants had a chance to see
the correct answer. When participants were ready, they performed the
actual trials. For each trial, we recorded the participants’ answers and
response times. After all trials of one task, we asked participants to
rate the difficulty of the task on a 5-point Likert scale from “Very Easy”
to “Very Difficult” and inform us about the strategy they followed to
solve the task. Both questions were required fields. The study had in
total 135 trials for and and 123 trials for (Table 1). The study
web-application was built using client-server architecture using PHP,
JavaScript, and jsPsych [24]. We refer to the supplemental materials
for the source code, data files, and screenshots of the study [5].

4.5 Study Participants and Piloting
We required participants to be at least 18 years old, speak fluent English,
and have a screen-resolution of at least 1920×1080 px. The first and
second conditions were self-reported. The third was verified automati-
cally using the jsPsych library. To ensure a high quality of responses
on mTurk, we set a Human Intelligence Task (HIT) success rate ≥
97% and a total number of accepted HITs ≥ 1000. Furthermore, we
added several attention-check trials throughout the study. We filtered
out participants who did not pass the attention-check trials or those who
took less than 10 minutes to complete the study. In total, we recruited
150 online users after applying our filtering criteria (35% female). The
majority of the participants (44%) had an age between 31 and 40 years,
followed by 19% above 50 years of age. 65% of the participants were
located in North America, followed by 17% located in Asia.

Our pilot testing consisted of two phases. First, we recruited three
visualization experts to test-run the study in an informal laboratory
setting. The objective of this phase was to verify the clarity of the tasks
and the usability of the user interface and to get an initial estimation
of the time and the difficulty of each task. During the testing, we
encouraged the participants to think aloud and ask questions. In the end,
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Figure 5: The overall accuracy of tasks T1 – T5. The shapes represent
the means, and the error bars their 95% CIs.

we held an open discussion where we asked the participants for general
feedback. In addition to shortening the text, fixing the typos, and fine-
tuning the user interface, one of the main results of this phase was to
exclude the Erdős-Rényi class from task T5 as participants showed
signs of frustration or quickly gave up when they were presented with
Erdős-Rényi stimuli compared to other classes. The second piloting
phase involved running a test batch of 20 participants on mTurk. The
objective of this phase was not only to test the functionality of the study
web application but also to ensure the quality of the responses and
obtain a more accurate estimation of the length of the study. The main
outcome of this phase was adding the attention-check trials. Our pilot
testing showed that the study lasted for approximately 45 minutes. We
compensated the participants with a rate of $12 per hour.

5 RESULTS

To investigate the overall hypothesis, we do statistical testing with
Kruskal-Wallis and Wilcoxon Signed Rank tests, as the data was not
normally distributed. In addition, we provide 95% confidence intervals
(CIs) to enrich the evaluation with an estimation-based approach. We
also use this estimation-based approach for further exploratory investi-
gations of the network parameters, as recommended by Cumming [21].
As the network parameters were within-subject, we also normalize the
between-subject variability [41, 44]. Figure 5 shows an overview of the
accuracy of the different representations across the tasks in our study
and Table 2 reports the results of the statistical analysis. The raw data
and the source code used for statistical analysis are provided in the
supplemental materials [5].

T1 As seen in Figure 5, we can confirm H1 (�), see also Table 2.
For (M = 0.54,SD = 0.15,CI = [0.49,0.58]), the task was solved
less accurately compared to (M = 0.92,SD= 0.09,CI = [0.89,0.94])
and (M = 0.86,SD =0.09,CI = [0.84,0.89]). We also looked at
the effect of network class and density pairing as seen in Figure 6a
and Figure 6b. seems to perform worst on Erdős-Rényi, while

seems best for Barabási. Further, low-low density pairings seem
considerably worse than high-high density pairings for .

T2 We cannot confirm H2 (�). (M = 0.66,SD = 0.13,CI =
[0.62,0.69]) performs worse than (M = 0.77,SD = 0.12,CI =
[0.74,0.80]), and there is a small difference for (M = 0.81,SD =
0.11,CI = [0.78,0.84]) and . Figure 6c shows that works best
with 3 or 4 clusters, compared to the other representations. performs
worst for low-density profiles (Figure 6d).

T3 We can reject H3(0) (�), as we see an effect of network repre-
sentation. (M = 0.76,SD = 0.12,CI = [0.72,0.79]) leads to worse
accuracy compared to AM (M = 0.90,SD = 0.10,CI = [0.87,0.93])
and (M = 0.88,SD = 0.08,CI = [0.86,0.91]). performs worse

Table 2: Results of the overall statistical evaluation for the Kruskal-Wallis
and pairwise Wilcoxon tests. p-values for multiple comparisons were
Bonferroni corrected. We also report the confidence intervals of the
mean difference [21,22].

Hypothesis Vis Pair p-value Mdi f f CIdi f f

T1: H1(�)
χ2(2) = 96.357, p < 0.001

- <0.001 0.33 [0.28, 0.38]
- 0.0031 0.05 [0.02, 0.09]
- <0.001 0.38 [0.33, 0.43]

T2: H2 (�)
χ2(2) = 42.342, p < 0.001

- <0.001 0.15 [0.10, 0.20]
- <0.001 0.11 [0.06, 0.16]
- 0.23 0.04 [-0.01, 0.08]

T3: H3(0) (�)
χ2(2) = 51.782 , p<0.001

- <0.001 0.13 [0.08, 0.17]
- <0.001 0.14 [0.10, 0.19]
- 0.21 0.02 [-0.02, 0.05]

T4: H4 (��)
χ2(2) = 19.54, p < 0.001

- <0.001 0.09 [0.03, 0.15]
- 1 0.01 [-0.07, 0.08]
- <0.001 0.08 [0.02, 0.15]

T5: H5 (�)
W = 1411, p-value = 0.264 - 0.264 0.04 [-0.04, 0.12]

than and for high-density profiles (Figure 6f). Similarly, per-
forms worse than and , when looking at network classes. It seems
particularly bad for Barabási (Figure 6e). For the delta parameter δd ,
we could not see an effect.

T4 We can only partially confirm H4 (��). (M = 0.80,SD =
0.21,CI = [0.74,0.86]) is better than (M = 0.72,SD = 0.11,CI =
[0.69,0.75]), but on par with (M = 0.81,SD = 0.17,CI =
[0.76,0.86]). The results for the network class parameters reflect the
overall trend and show that the task in the condition was solved
less accurately for Watts-Strogatz compared to and (Figure 6g).
Density-wise, performs worst on high-density profiles (Figure 6h).

T5 As reflected in Table 2, we did not find a significant effect of
the representation for T5, so we cannot accept H5 (�). As there was no
main effect, we also did not look deeper into the effect network class
parameters might have.

6 DISCUSSION

Based on our results, we discuss the individual tasks, limitations, and
finally, formulate guidelines for the use of the visualizations.

6.1 Task Performance
The results provide valuable information about how well the individual
visualizations were suited to solve the tasks and what strategies were
often applied by the participants. In this section, we discuss the perfor-
mance results and shed light on the participants’ subjective assessment
of the task difficulty, along with their commentary feedback.

T1 Both and are able to maintain the visual characteristics of
each network class under varying densities. This is especially true when
the network is sparse and the reference images are dense or vice versa
(i.e., low-high density pairing). seems to suffer when the given image
or the reference images are of low density (Figure 6b). While both
and provide high accuracy, the results show that the classes seem to
look more distinctive in , except for Barabási networks (Figure 6a).
We assume that this is due to the low visibility of links in when
the network density is low, which might impair the recognition of
class characteristics. In contrast, for , such characteristics would be
amplified on low-density networks. From the qualitative feedback, we
could identify that for , density comparison was mentioned frequently:

“... I tried to focus on density, or where many connections came together
and then the overall shape.” “I ... paid attention to how the nodes and
edges were placed and tried to extrapolate how the network would look
at different stages of denseness...” The terms difficult and hard were
mentioned more often than for the other techniques. Overall, and
were considered easier to compare: “(about )...I matched the pattern
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Figure 6: The accuracy of each representation plotted with respect to different task parameters. The shapes represent the means, and the error bars
are the 95% confidence intervals. The accuracy is calculated by averaging first over the repetitions per task and then averaging over the mean per
participant with respect to the considered parameter.
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Figure 7: Subjective assessment of task difficulty.

I saw, regardless of density...”; “(about ) I just looked at the overall
pattern. It seemed like it was either a diagonal, an x-shape, bands, or
solid.” This impression is also reflected in task difficulty (Figure 7).

T2 We hypothesized that and will be more accurate than
. The results could not support our hypothesis. We noticed that

denser networks increase the accuracy, regardless of the representation
(Figure 6d). However, the results show that is more affected than
and when the network density is low. As it appears, the visibility of
links plays a less important role than the proximity of nodes, when it
comes to detecting clusters in sparse networks. This makes and
less suited than because both representations rely on link visibility
to reveal cluster structure when the nodes are ordered in a proper
way (Figure 6d). However, the results suggest that the overdrawing

in might have impaired the recognition of clusters, in comparison
to . This is also reflected in the participants’ comments. It was
frequently mentioned that the task became hard to solve with for
sparse networks. “My strategy was to look for the darker lines as
they seemed to be a cut-off point for one cluster. This was not always
evident or obvious in the more sparse clusters.”; “I tried to count how
many bands there were. It was a little hard for sparser networks.” A
similar approach was mentioned for : “I looked for the spots that
were most dense and counted them.” However, difficulties with sparse
networks were less frequently mentioned than for . For , many
participants reported that the task was easy and they did not provide
further details on their strategies. By investigating the influence of the
number of clusters in relation to the accuracy, we found that participants
tended to underestimate the number of clusters in the network more
than overestimate them (Figure 6c). Nevertheless, both effects occurred
with low-density and mid-density profiles. This is understandable since
the network size is constant while the number of clusters k varies.

T3 In general, and are significantly more accurate than .
The results suggest that has the least sensitivity to density changes.
The density plot (Figure 6f) shows that and are slightly better
than at low densities, whereas outperforms both at high densities.
However, seems to be impacted at high densities. , and to a lesser
degree , rely on transparency to reduce visual clutter. As such, the
denser the network, the lighter and smoother the lines will appear. For a
non-trained eye, that might be misleading. The participants’ comments
support this: “(about ) I tried to focus more on the white space and
darkness of the images overall.”; “For the ones that had the darker
images, I looked at the darkest area and checked to see how smooth it
was...” In contrast, relies on the density, which increases the overall
contrast of the image, making the comparison task more intuitive. This
is also reflected in the participants’ comments: “(about ) I chose the
square that was more dense or darker.” With respect to the network
class, Figure 6e shows that for and , Erdős-Rényi obtained the most
accurate results among the four classes, which is consistent with what
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we expected. However, the performance did not degrade that much for
FARZ and Watts-Strogatz. This suggests that changes in the overall
structure of the network did not impair the participants from finding
which network has more connections. For , the results in Figure 6e
suggest that the task was harder to solve on Barabási in comparison
to the other classes. One explanation could be that the participants
focused more on the top part of the diagram where the main hubs are
located and neglected other parts of the network.

T4 is not well suited to solve this task, especially when the
network density is high. Contrary to our expectation, the performance
of seems to be on par with , suggesting that visual clutter did not
impair the participants from estimating the node degree (Figure 6h).
Looking at the participants’ comments revealed slightly different strate-
gies to solve the task on versus . For , the words ”estimating”
or ”squinting” was often mentioned: “...some squinting on very dense
clusters. A good bit of counting on more sparse graphs where you could
make out individual lines...”;“I tried to estimate how many were on
each side. It helped to blur my vision slightly and look at the density of
the lines.” For , participants mentioned: “I counted the black squares
unless they were a lot...”;“I counted the empty white squares...”

T5 Although the results show that is more accurate than ,
the difference was not significant (Figure 5). While there are few
participants who managed to obtain 100% accuracy, the majority found
this task hard to solve, regardless of the representation (Figure 7). We
assume that most participants did not spend enough time solving this
task. The data revealed that, on average, participants spent about 30
sec per trial. Only 9 participants in and 6 participants in managed
to obtain an accuracy of more than 83%. The data revealed that
these participants tended to spend one minute on average for each trial.
Looking at the comments reveals some strategies. was investigated
to identify missing and existing connections: “I checked the points
that had no connections and also those points that made multiple
connections to make it easier to identify the correct option.”; “Check
how many solo nodes there were and then compare to the diagram.
Also checking nodes that had a lot of connections coming in...” A
similar behavior was mentioned for : “I tried to match up the empty
rows/columns with how many outliers there were, and if necessary
counted the largest amount of connections...” A short attention span is
a common pitfall of crowd-sourced evaluation [8]. We believe that the
performance of this task might have been better if it had been done in a
controlled-lab setup.

With respect to the comparison between and , our findings
are consistent with the previous work with respect to task T1 [63],
T2 [14,47,48], and T3 [47,48,63], despite the fact that authors evaluated
smaller networks. With respect to task T4, our findings partially match
the previous work [32, 35] in low-density profiles. However, we found
that performs significantly better than in dense networks.

6.2 Limitations
The results of our crowd-sourced study provide new insights for the
visualization of network data. Regarding the number of participants,
we are on par with other work [33, 47]. However, we identified some
limitations for the interpretation of the results.

Crowd-sourced Evaluation Crowd-sourced evaluation has the
benefit of large sample sizes but also comes with problems [8]. Our
pilot testing showed that the study needs about 45 min for a novice
participant (a participant who has no prior knowledge of network vi-
sualization) to complete. To ensure the validity of our results, we set
our filtering criteria based on the time spent to complete the study but
also based on the successful responses to the attention checks we put
throughout the study. We originally recruited 240 unique online users
to take our experiment, but only 150 (62%) passed our filtering criteria.
This shows that some of the participants were not paying attention
during the study, which had to be handled later by the experimenters.

Network Size In our study, we fixed the network size parameter
to not increase the evaluations’ complexity. For the overview tasks, we
chose size 500 as it appeared to be the fairest for the three represen-
tations, considering that we do not include interactive features in the

evaluation. Based on our experience, we argue that the study findings
would still hold for and at a network size of 1000. But it might be
different for . It is an open question how each representation would
scale as the network grows even beyond 1000 nodes.

Network Representation In our experiment, we tried to be fair
in selecting the layout methods and clutter-reduction techniques. This
can explain why we did not include edge bundling techniques in the
evaluation. While edge bundling would certainly be beneficial for
and , it does not have a direct mapping in the representation, and
the question of how edge bundling influences the appearance of network
structures would require more investigation that we deemed beyond
the scope of the study. For layout methods, we used the d3-force [1]
algorithm to lay out and hierarchical clustering [2] to order the nodes
in and representations. Our selection of these methods was driven
by their wide adoption in the community [13, 15] and the availability
of their implementations in many languages/tools. Nevertheless, there
is still room for improvement to ensure the fairest comparison between
the different representations [45].

Selected Tasks The tasks evaluated in this study are not meant to
be an exclusive list. During the data study, we experimented with eight
different tasks. We decided to only include five tasks to not extend
the study beyond a realistic length. The other three tasks that we did
not include are: identifying common neighbors between two nodes,
looking up a node, and finding a path between two nodes. In contrast
to the overview tasks we included in the study, these three are detailed
network tasks. While these tasks are certainly valid candidates for
further evaluation, we decided to focus on network overview tasks,
since they were not often considered by other studies [62].

6.3 Guidelines
In this work, we evaluated three overview tasks (T1 – T3) and two
detailed tasks (T4 and T5) for directed networks. Depending on the task
at hand, one representation might perform better than others. For tasks
that involve comparing the overall network structure, and might
be better candidates than . Both representations are versatile enough
to depict the various structural properties and maintain these properties
under varying densities. In contrast, when the task involves identifying
network clusters or sub-communities, seems to be superior to both
representations, since the cluster information is double encoded by the
proximity and connectivity between the nodes. Due to the overdrawing
problem, does not seem to be a good choice when the task is about
estimating overall density or detecting subtle changes in connectivity.
In such situations, provides the most accurate estimation of the true
density within the network. Finally, for tasks that are based on node
attributes, and offer a better overview, especially in the context
of directed networks, as both representations have two separate axes
for encoding source and target nodes. Overall, seems to be the most
reliable among the three representations across the different tasks.

7 CONCLUSION

We presented a comparative user study about node-link diagrams, adja-
cency matrices, and bipartite layouts for the visualization of network
data. By assessing the performance in five different tasks, we derived a
set of guidelines for using the techniques with respect to the task and
network properties at hand. Overall, this study shows the strengths and
limitations of established graph visualization techniques and provides
insights into when a bipartite layout might help interpret the data. In the
future, we want to investigate solution strategies for the tasks in detail.
Eye tracking methodology might help understand how people read
the visualizations and provide more information about conscious and
subconscious processes than post-experimental self-reports. Further,
we plan to extend the catalog of tasks to derive a more comprehensive
set of guidelines for using the visualizations.
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