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Figure 1: In our study, we looked at images from visualization research papers and simulated them in four different color
vision deficiencies (CVDs). We identified issues and helpful aspects regarding accessibility.

ABSTRACT
We present an exploratory study on the accessibility of images in
publications when viewed with color vision deficiencies (CVDs).
The study is based on 1,710 images sampled from a visualization
dataset (VIS30K) over five years. We simulated four CVDs on each
image. First, four researchers (one with a CVD) identified existing
issues and helpful aspects in a subset of the images. Based on
the resulting labels, 200 crowdworkers provided 30,000 ratings on
present CVD issues in the simulated images. We analyzed this data
for correlations, clusters, trends, and free text comments to gain a
first overview of paper figure accessibility. Overall, about 60% of
the images were rated accessible. Furthermore, our study indicates
that accessibility issues are subjective and hard to detect. On a meta-
level, we reflect on our study experience to point out challenges and
opportunities of large-scale accessibility studies for future research
directions.
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1 INTRODUCTION
In recent years, visualization accessibility research is gaining more
and more visibility [45], e.g., by literature reviews [42], efforts to-
ward accessible visualizations for people with intellectual and devel-
opmental disabilities [91], designing tactile visualizations [15], de-
scribing the meta-data of visualizations in multiple modalities [10],
as well as making visualizations more accessible within social me-
dia, such as memes [22], GIFs [21], and images in twitter posts [23].

Still, accessible visualization design in general is challenging
and under-researched [45, 52]. Cornish et al. [12] state that it is
often unclear to visualization and graphic designers what accessible
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design should comprise, and that one needs to foster awareness
and provide more extensive tool support. Furthermore, accessibility
issues in visualizations might be hard to discover for someone
who is not used to looking for them. Here, fostering awareness
with deficiency simulators often helps to bridge the gap between
perspectives [3].

We revisit one of the more extensively researched domains [45],
visualization accessibility for color vision deficiencies (CVD), which
impacts the ability to see the full color spectrum. In the visualization
and human-computer interaction (HCI) community, researchers
have already investigated how tomake colors in visualizations more
accessible [48]. How well is such research turned into practice?
What issues or helpful aspects can we identify in figures used in
our daily research? What can we learn from those aspects to make
our figures more accessible? There is work surveying the acces-
sibility of web pages [2, 50, 58] and research on the accessibility
of psychology [20] and biology papers [37]. However, to the best
of our knowledge, there exist no large-scale accessibility surveys
for figures in the domains of HCI or in the domain of visualiza-
tion research in particular. Our goal is to help fill this gap with an
empirical study for visualization research. Specifically, we assess
images in data visualization research papers in terms of accessibil-
ity, especially related to CVDs. We identify existing issues, as well
as aspects that help accessibility.

To that end, we conducted an exploratory image assessment
study [74] on 1,710 images sampled from the VIS30K dataset [9].
We first applied techniques inspired by qualitative research meth-
ods, such as open coding [8], to prepare a set of labels regarding
accessibility. In the next step, we employed 200 crowdworkers to
actually perform the accessibility labeling task. While our annota-
tors rated over half of the pictures as generally accessible, they also
discovered at least one issue in the majority of all images. Images
simulated in well-known deficiencies were usually more accessi-
ble than in rarer ones. Furthermore, accessibility issues seemed
rather subtle and depended on individual perception. With this
data exploration, we wanted to obtain an initial overview of the
CVD accessibility of visualizations in practice, which also provides
directions for future studies.

In short, we provide three major contributions. First, a large data
study within the context of four CVDs, which to the best of our
knowledge has not yet been done before at this scale. Second, we
analyze the study results to provide an overview of CVD accessi-
bility for images in visualization papers. Finally, we report on our
experiences and challenges during the study to provide pointers for
other researchers with similar aspirations. Based on our findings,
we identify potential directions for future work.

2 BACKGROUND AND RELATEDWORK
Approximately 300 million people all over the world have a CVD,
often facing difficulties with respect to accessing visually presented
information [11]. For people with full trichromatic color vision, all
three types of cones are used for color perception. Having a CVD
means that one type of cone does not function properly (anomalous
trichromacy) or not at all (dichromacy). In this paper, we consider
protanomaly (seeing less red), deuteranomaly (seeing less green),
tritanomaly (seeing less blue) and the most severe form of CVD

monochromacy (seeing no color at all) [11, 65]. In the following, we
review previous work on designing and evaluating visualization
accessibility with special focus on CVDs.

2.1 Designing for Visualization Accessibility
Color perception [69, 87], differentiation [17, 80], and color design
choices [32, 40, 78, 93] are already well researched, but still an
important topic of ongoing work. They are also key to CVD ac-
cessibility. Therefore, the Web Content Accessibility Guidelines
(WCAG) especially stress the need for color contrast both for text
and non-text elements [1], as well as other design recommendations
like labels or textures [63]. Recent research also investigates the
use of heuristics on the basis of the WCAG for image accessibil-
ity, concerning aspects like color contrast but also resolution and
the presence of labels and other factors [54]. Many color palettes
strive to be accessible [62, 88, 89]. Tools like ColorBrewer [28] and
others [25] aim to facilitate the selection of accessible colors for vi-
sualization design and web publishing [75]. The rainbow color scale
is critically evaluated [5], but still in debate for some tasks [49, 68].
It has its accessibility issues and there has been some effort to find
alternative more accessible versions [57, 61].

The avoidance of accessibility problems is not limited to the
design time. There are also attempts to recolor existing visualiza-
tions [38, 39, 59, 67, 70, 76] or to provide help with color identifi-
cation [16, 51, 85]. The standards and guidelines above inspired us
when creating the code set during the first phase of our data study.

2.2 Evaluating Accessibility
Tools that simulate CVDs [19] and other visual impairments, e.g.,
nearsightedness and farsightedness, glaucoma, and cataracts [24,
44, 73], can raise awareness and help designers evaluate potential
accessibility issues. With these simulators, designers can load their
images and qualitatively analyze how a person with visual deficien-
cies might perceive the content. Recent related work pointed out
challenges of disability simulations [81]. However, if used with care,
visual impairment simulators have proven useful in different visual
design-related areas [3, 24] and in raising awareness [18, 86]. Based
on these encouraging findings, we decided to use such simulations
in our data study as well.

Beyond manual analysis, there also exist tools that automatically
check for accessibility issues, for instance, in the context of web-
site design [92]. However, for data visualization, there is still little
tool support besides checking the contrast of two colors automati-
cally [14]. While web design is built upon standardized reoccurring
structures, the visualization design space is much larger and very
diverse [46]. Although there exist automatic approaches to assess
visualization design [31, 56], those have not yet been adapted to
specifically check accessibility.

Another approach is to run user studies to check for accessibil-
ity. Frane et al.’s study [20], for instance, had a similar aim as our
data study, i.e., to investigate the accessibility of research papers,
in their case 243 illustrations and graphics in psychology journals.
They, however, used preselected figures for a controlled study setup.
Twenty participants without and five participants with CVD per-
formed a low-level task and judged the visualization’s accessibility.
Recent efforts by Jambor et al. [37] in the field of biology used a
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Figure 2: Pipeline of our study with the three main phases: 1○ Image Selection and Asset Preparation, 2○ Label Identification,
and 3○ Crowdsourced Labeling.

systematic review by two researchers to assess image legibility in
580 biology papers, looking also at CVD accessibility among other
factors. In contrast to both previous approaches [20, 37], we con-
sider a larger scale of images from the data visualization community
and additionally a larger range of CVDs. Furthermore, we combine
an exploratory visualization review with a crowdsourcing setup.
Crowdsourcing has often been used for labeling tasks to obtain
machine-learning data [7]. Over a decade ago, it was also discov-
ered as a useful tool for user studies [43] and is now often used in
the HCI community [4, 29]. Prior work used crowdsourcing for the
evaluation of the accessibility of sidewalks [26, 72], the readability
of Wikipedia articles [60], the creation of image captions [21, 77],
and even for the accessibility of crowdwork itself [83]. However,
none of these accessibility studies focused on data visualizations,
which is the goal of our work.

3 METHODS
The primary goal of our study is to get an overview of, and insights
into, the current and previous state of image accessibility in visu-
alization research. We want to answer questions like: How is the
perceived accessibility of the images? Which CVD issues are most
prevalent? Are issues in general spotted by the majority of viewers,
or are issues highly individual?

To answer these questions, we conducted an exploratory image
assessment study. We followed the methodological approach of a
structured analysis of a large corpus of data, in our case visualiza-
tion images from scientific publications with different simulated
CVDs. Inspired by coding techniques used in the social sciences [8],
this method focuses on a large set of data points by a small num-
ber of coders. In the visualization community, such approaches
have been used before for analyzing large sets of scatter plots [74],
keywords [34], and scientific papers [71].

Methodologically, our study is split into three sequential phases
(see Figure 2), which we describe in the subsequent sections:

(1) Image Selection and Asset Preparation: In a first step,
we chose visualization images and color vision deficiencies
to consider. We then generated simulated versions of the
images and implemented a simple tool to assist the coding
process.

(2) Label Identification: In this phase, four coders (three of
them are co-authors) separately inspected a subset of 210
visualization images to identify issues and helpful aspects
with respect to accessibility. The four label sets were itera-
tively refined, merged, and divided into categories of issues
and helpful aspects.

(3) Crowdsourced Labeling: The final set of labels was then
applied in a crowdsourced data labeling task on Amazon Me-
chanical Turk. Overall, we analyzed data from 200 workers
that coded 1,500 images.

3.1 Image Selection and Asset Preparation
Image Data. We use visualization figures from IEEE VIS publi-

cations for our study. Leveraging the image database by Chen et
al. [9], we extracted figures from 2000, 2005, 2010, 2015, and 2019.
We started our research before VIS 2020, so 2019 was the most
recent year. At the time we conducted the study, there was only a
preliminary version available. The differences from the published
dataset are file names and a lower resolution. We argue that this
does not affect the study, because the file names are not visible
to participants and, if necessary, can be mapped to their newer
counterparts. We used stationary desktop computers or laptops in
our open coding phase and expect most crowdsourced annotators
to do the same [30, 36, 90]. While the resolution of the final dataset
is 300 dpi, ours had 200. The higher resolution would be of benefit
for printed papers. However, our study was performed on digital
screens, of which only high-dpi displays could potentially benefit
from the higher resolution images. At the time of the study, ap-
prox. 78 % [79] of desktop displays had regular resolutions far below
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200 dpi. While readers can zoom in on digital papers and increase
image size, the underlying resolution of raster graphics does not
change. The same applies to the crowdworkers in our study: they
were able to maximize the image size and use their web browser to
zoom in, but that did not influence the resolution of the underlying
raster graphics. However, paper figures should be readable at the
same zoom level as the text. We argue that, if the image content is
not easily discernible at 200 dpi, the underlying graphics have been
rasterized at an insufficient resolution, or are embedded into the
paper at a too low scale. Both reasons are detrimental to accessibil-
ity, irrespective of our use of 200 vs. 300 dpi in the final published
data set.

For the label identification phase, we used 210 pictures from 2019,
as we wanted to build up our labels on issues that are still of rele-
vance today. In the crowdsourcing phase, we additionally included
the years mentioned above to obtain a broader overview. Accessi-
bility labeling tasks are more time consuming and complex [77]
and thus require higher pay. Therefore, although our budget with
ca. 10,000 $ for the crowdsourcing phase was not small, it was still
not enough to cover all images in the database while considering
multiple CVDs. Thus, we had to restrict ourselves to five years with
overall 1,500 images. Hence, 300 pictures per year were randomly
selected. Pictures labeled in the previous phase were excluded from
that selection. Furthermore, we made sure that this sample only
included images of visualizations, and not photos, tables, or for-
mulas. In addition, crowdworkers’ performance was tested on five
images from the label identification phase. We did not include those
training results in the final data for analysis.

For each considered year, we randomly selected a balanced num-
ber of pictures from each conference track available: Vis/SciVis
(for readability reasons from now on only referred to as SciVis),
InfoVis, and VAST. InfoVis deals primarily with abstract data,for
instance, graphs, and novel interaction techniques. SciVis works
with physical data, e.g., from science and engineering and VAST
focuses on the entire analytical process. In the earlier years, there
were fewer InfoVis and VAST images available (see Isenberg et
al. [33]), which led us to the final number of 650 SciVis, 549 InfoVis,
and 301 VAST images for the final crowdsourcing phase.

CVD Simulation. To generate the simulated versions of these
images, we used Coblis [19], the most commonly used simulator for
CVDs [69]. We chose to simulate anomalous trichomacies because
they occur more often than total dichromacies [41]—at least in the
case of protanomaly and deuteranomaly. Another argument for
testing the milder versions was to test out the borders of accessibil-
ity: if an issue already occurs in the mild form, it is likely intensified
in more severe cases. tritanomaly and monochromacy are rare, but
we included them to obtain a broader overview of issues related to
CVDs.

3.2 Label Identification Phase
The primary goal of the label identification phase was to generate
a codeset that could be used to label a large set of images in the
next phase.

Four analysts (three co-authors of this paper) independently
analyzed images from VIS 2019. One coder has protanomaly and
only assessed the original images. The other three are of normal

A
B

Figure 3: Custom tool for the assessment of the images. Orig-
inal and CVD-simulated versions of the subject. The free
text field A○ provides custom keyboard shortcuts for often
used snippets. Radio buttons B○ or corresponding hotkeys
store the accessibility rating in an external spreadsheet.

vision and examined the resulting 1,050 image variants (one original
and four simulated versions).

During our label identification process, the following questions
guided the assessment of each image:

• What issues are already present in the original image? Is the
original image accessible?

• Are there aspects that foster accessible design?
• Look at the simulated image. What issues do you see based
on the design?

• In comparison to the original, is the simulated image per-
ceived differently? Why?

• Is the simulated image accessible?
Each of the analysts distilled their own code set after a certain

number of images.
We created a simple tool (see Figure 3) to accelerate the work-

flow. The tool also allowed rating each image either as accessible,
borderline accessible (from now on referred to as borderline), or not
accessible, and supported free text annotations.

We merged the resulting separate label sets into a single one by
unifying different terminology that conveyed the same meaning.
To further refine our labels, we discussed all images that had at
least three different accessibility ratings. Finally, we grouped the
labels into issues that have a negative impact, and helpful aspect that
support accessibility. Within these groups, we organized the labels
in terms of whether they are (i) directly related to color, or (ii) more
generic issues that might impact the readability of images on top
of color-related issues. Here, we were inspired by an initial survey
regarding general accessibility issues of images with 13 participants
(5 with CVD, 6 short-sighted). In this survey, readability issues were
mentioned as well as color issues. For example, one participant
with monochromacy and short sightedness expressed: “wording can
even merge into background colours and become unreadable” or one
other short-sighted participant that stated “sometimes insufficient
resolution” as problematic.

While issues with readability, such as font size or resolution,
might not relate to color vision, they could impact CVD accessibility
nonetheless, e.g., if labels or descriptive text is not readable that
should ensure the double encoding of information. Table 1 and
Table 2 show and explain the final set of labels.
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Table 1: Labels for accessibility issues in images, those in the generic category refer to general readability issues, while the
others are caused by color. We use the listed abbreviations within our figures to avoid repetition and to make more efficient
use of space.

Code Abbrev. Explanation

colors barely distin- colbadi Two or more colors that should be different but look
guishable (color) similar. It might be difficult, but with enough effort they

are still distinguishable.

colors not distinguish- colnodi Two or more colors that should be different but are
able (color) indistinguishable.

continuous color scale scambi The colors in a continuous scale are ambiguous or in-
ambiguous (color) distinguishable. For example, it is hard to discern indi-

vidual yellow hues of the bar on the right. The original
on the left has orange and red hues mixed in.

brightness contrast too locont The brightness contrast between individual elements
low (color) or between the foreground and background is too low.

highlighted elements nopop Elements that are marked or highlighted are not imme-
do not pop out (color) diately noticeable without focusing or requiring effort.

loss of detailed informa- infloss Information shown in the original image is missing in
tion content (color) the simulation. In the example, the turquoise halo near

darker image areas disappears.

fabricated information fabinf The simulation adds new and imaginary information
(color) that was not present in the original or alters existing

information, giving it a different meaning. In the exam-
ple, the boxes encode categorical information (A and
B) in bar charts of different measurements (purple and
orange). In the simulation, it looks as if the boxes are
labels for the bars because their colors are similar to
the bars (also a case of colbadi).

resolution too low lores Content is hard to see because the image is blurred or
(generic) pixelated.

shapes too thin / small thin Elements in the images are hard to perceive because
(generic) they are too thin or too small. This might coincide with

lores.

issues with font or text texize Existing text in the visualization is hard to read because
size (generic) of its size or font

text broken (generic) brotex Characters within text are mispositioned or misaligned.
Might lead to unintelligible gibberish.

Example (original ⇒ simulation/zoom)
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or between the foreground and background is too low. ⇒

highlighted elements
do not pop out (color)

nopop Elements that are marked or highlighted are not imme-
diately noticeable without focusing or requiring effort. ⇒

loss of detailed informa-
tion content (color)

infloss Information shown in the original image is missing in
the simulation. In the example, the turquoise halo near
darker image areas disappears.

⇒

fabricated information
(color)

fabinf The simulation adds new and imaginary information
that was not present in the original or alters existing
information, giving it a different meaning. In the exam-
ple, the boxes encode categorical information (A and
B) in bar charts of different measurements (purple and
orange). In the simulation, it looks as if the boxes are
labels for the bars because their colors are similar to
the bars (also a case of colbadi).

⇒

resolution too low
(generic)

lores Content is hard to see because the image is blurred or
pixelated. ⇒

shapes too thin / small
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thin Elements in the images are hard to perceive because
they are too thin or too small. This might coincide with
lores.

⇒

issues with font or text
size (generic)

texize Existing text in the visualization is hard to read because
of its size or font

text broken (generic) brotex Characters within text are mispositioned or misaligned.
Might lead to unintelligible gibberish.
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Table 2: Labels for helpful aspects in images, again categorized by color and generic. Abbreviations are for use within figures.

Code Abbrev. Explanation

colors do not change colstay Colors barely change between the original and
(color) the simulation. Therefore, the images look al-

most identical.

works with only one singcol The image is monochromatic and does not rely
color (color) on multiple colors.

has labels (generic) labels Textual labels support the understanding of the
image’s visual content and meaning.

descriptive text desc Longer text elements that help to understand
(generic) the image content.

order helps (generic) order The order of the elements helps to understand
the meaning. In the example on the right, all
bars are sorted in the same order as the legend.
This assists viewers to match the color of the
bars to their labels in the legend.

texture helps (generic) texture In addition to color, texture is used to con-
vey the meaning (e.g., hatched, dotted, dashed
lines).

Example (original ⇒ simulation)
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the color of the bars to their labels in the legend.
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ing (e.g., hatched, dotted, dashed lines).

3.3 Crowdsourced Accessibility Labeling Task
In the final phase, we hired crowd workers to label and assess the
full set of 1,500 images.

Annotators. In total, we recruited 200 workers (80 female, 120
male) through Amazon Mechanical Turk (MTurk). We considered
different age groups, ranging from 18 to 24 to over 65 years (mode = 18
to 24). As we wanted to keep our workers diverse, we also welcomed
annotators with vision deficiencies. 71 % had no problems with their
vision, 22.5 % suffered from myopia, 8 % hyperopia, and 3% had
other issues (astigmatism, cataracts). 1.5 % participants mentioned
that they had a color vision deficiency (two participants deutera-
nomaly, one monochromacy). These workers were instructed only
to consider the original images and we evaluated their data as
submissions in the deficiency condition they specified.

Furthermore, we used four Ishihara test plates [35] to check
whether participants might unknowingly have a CVD.

The test scores for five participants indicate potential color weak-
nesses, even though they did not specify so in the questionnaire.
After careful consideration, we decided to not exclude them from
the study, as our goal is exploratory and not confirmatory. Under
this methodological lens, the value of including their interesting
perspective outweighs the potential bias through their vision anom-
alies.

Annotator Setup. Figure 4 shows the interface we provided for
the coders. Each worker was assigned randomly to one of the four
CVD conditions. The image order was randomized and we made
sure that each image received annotations from at least five different
coders. We also made sure that no image was coded twice by the
same coder.

Our labeling task benefits from experience gained over time.
Hence, we opted for a setup in which we could make sure that
coders would label a minimum number of images. Based on our
own experience from the open coding phase, we deemed 30 images
to be a good threshold. Therefore, we set up the study with an
initial set of randomly chosen 25 images, mostly from 2019, and
five test images from the prior phase that needed to be completed
as an initial training task.

Annotators were paid $ 12 and took on average of 58 minutes
to complete the first set of images. Workers could take breaks
whenever they liked.

Based on their performance and interest, we then offered them
to continue labeling as many stimuli as they wanted. We paid $ 0.15
for each additional image, as the average trained worker took 50
seconds to complete the task (= $ 10.80 average hourly rate). The
annotators should use a resolution of at least 700 x 400. If images
needed to be scaled down, we showed a warning to remind workers
that they should click to enlarge the pictures to show them in
more detail. Additionally, we encouraged annotators to view the
enlarged images when they selected codes that could potentially
be influenced by screen size. For additional labels or feedback, text
fields were provided.

4 RESULTS AND DISCUSSION
To gain insight into our collected data, we used descriptive statistics
as well as interactive tool support to conduct our exploratory data
analysis. We received over 30,000 answers to our labeling tasks,
containing accessibility ratings, labels, and comments by partici-
pants. The following subsections present answers to the questions
we asked ourselves during the data analysis regarding the way of
evaluation as well as the actual discoveries of the analysis.
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Figure 4: Labeling task interface for the crowd workers. Left is the original image, while right is the CVD simulated version
of it. Check-boxes are used for coding, and an open text fields provides the possibility to add free-form feedback.

containing accessibility ratings, labels, and comments by partici-
pants. The following subsections present answers to the questions
we asked ourselves during the data analysis regarding the way of
evaluation as well as the actual discoveries of the analysis.

4.1 How to Evaluate the Data: Challenges
during Evaluation

In contrast to other labeling tasks like in Machine Learning, our
setup did not target high inter-coder reliability, but rather strove
for ecological validity. What one perceives as accessible highly
depends on one’s abilities and interpretation. Thus, it is highly
individual [18]. To honor that individuality, instead of predefining
a scale of what makes an image less accessible, we left that up to
the user to decide. We merely showed examples to illustrate the
labels used in the study.

This approach also brings its challenges, which we will discuss
in the following.

4.1.1 What are subjective opinions and what is noise? According
to Peer et al. [66], a worker’s reputation or approval rate often
ensures a certain quality, thus we followed common practice and
only recruited workers with a 98 % approval rate and at least 1,000
MTurk task experience. Additionally, we tried to check the data for
noise post hoc. However, aside from incomplete answers or random
number answers on the Ishihara test plates not indicating a CVD,
there were no clear indicators for noise. Nevertheless, we tried to
do some quality checks on the data by the following pointers:

• Analysis of the rating behavior. We looked at how the
participants rated. Here, we identified outliers, like partici-
pants that rated all their pictures as accessible or participants
that only rated an image as not accessible, without specifying
issues.

• Checkinghowparticipants rated the test images. In the
test images, we identified issues as definitely not present and
checked whether participants marked at least two of them
regardless. If a participant did so in 3 out 5 test images, we
marked them as a candidate for a sanity check.

• Looking at participants comments. If a participant added
random comments to the free text field or comments that
indicated they could have misunderstood the task (e.g., P201:
“different color on the image compared to the original” ), we
double-checked their data.

If one or more pointers were true, two researchers looked at
the data again in more depth to decide whether it was sane or not
and then finally decided on the exclusion of the data. That way
we excluded in total 386 answers. We decided to keep post hoc
exclusion as minimal as possible to avoid selection bias [66].

4.1.2 How to summarize the data? Standard data analysis focuses
on general trends we can uncover, often discarding outliers. In our
case, outliers might hold interesting findings as well. If the majority
of coders agrees on a certain rating or issue, it gets a certain weight.
However, if a single participant encounters an issue, it might be
also relevant in terms of accessibility, as there might be a mismatch
between the needs of an individual and the majority. If the majority
is even nondisabled, as was the case for our study, according to
Mack et al. [53] you could even be biased by “ableist beliefs.”

Thus, we try to report different perspectives on the data: We
report means to give an overview over general tendencies, but
also look at the data through the lens of the majority (more than
50% of the coders) or minority of coders (at least one coder). In
case of accessibility ratings, the majority vote was sometimes not
conclusive; in these cases, we counted the image as a borderline
image.
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We report the number of images as percentages compared to
either all simulated images (6,000), all images of one CVD (1,500),
or images of one year (1,200), or images of one CVD in one year
(300), but will state the numbers again when we are switching the
base.

To additionally uncover connections or potential clusters in the
data, we built our own visual analysis tool1 using UniformManifold
Approximation and Projection [55] (UMAP). First, we averaged
over the issues and helpful aspects per image. The aggregated
data was input to the UMAP algorithm. We projected the data in
three different ways: (i) with the values of the average issues only,
(ii) the average helpful aspects only, and (iii) with the values of
both issues and helpful aspects (see Figure 16 for the projection
including both groups). We used the default parameters the UMAP
Python library provides. We gridified the resulting scatterplots
with Hagrid [13] (default parameters). The tool allows showing
thumbnails of the respective images in place, or different coloring
to encode information like year, CVD, or accessibility rating (see
also Figure 16 and Figure 17.)

4.2 What we found: Discoveries Regarding
Visualization Accessibility

4.2.1 How Accessible were the Images in General? We received
82,830 labels in total, from which 48% were issues and 52% were
helpful aspects.

Overall, on average 60 % of all 6,000 simulated images were rated
as accessible by the majority. Borderline were 33% of the images
according to the majority and 7% not accessible. However, only
28 % of the images stay rated borderline by the majority in all four
CVDs.

For 97 % of the images, there exists at least one person finding that
image accessible. However, 77 % of the images were also borderline
and 50 % not accessible for at least one user.

The rarer the CVD, the worse the accessibility according to the
majority. According to Figure 5, tritanomaly and monochromacy
have the highest percentage of not accessible pictures. Additionally,
monochromacy has the lowest number of accessible pictures. This
result was largely expected given the fact that existing CVD visu-
alization research focuses on the more common red-green CVDs.
Interestingly, when taking a closer look at the minority ratings
again, the number of pictures rated as accessible by the minority
does almost not differ among the CVDs, which slightly differs from
the majority rating.

Workers agree more on accessible images. Cases where all coders
agreed on one accessibility rating were rare but more common for
accessible rated pictures, who make out 13.3 % of the in total 13.8 %
unanimously rated images of all 6,000 simulated ones. This agree-
ment on accessible images is also slightly reflected when comparing
majority and minority votes, the difference of accessible images is
not as large compared to the differences between borderline and
not accessible ratings, see the overall ratings in Figure 5.

1https://renecutura.eu/visacctool/

Almost all images have issues, but also helpful aspects. Of all
6,000 simulated images, only 13% were without issues but also
only 6% without any helpful aspect. The maximum number of
issues an image had on average was five, this was however just the
case for three simulated images. Regarding the helpful aspects, the
maximum was four and this was the case for two images.

The minority identifies more images with issues and helpful aspects
than the majority. On average over all CVDs, at least one coder
found issues in 40% of the 6,000 images, while the majority only
found issues in 4 % of the images.

This pattern repeats itself also when looking at helpful aspects,
although here the ratio between minority and majority is smaller
(61 % of 6,000 pictures vs. 15 %).

4.2.2 What Issues/Helpful Aspects are Most Common? We now
explore in how many pictures issues and helpful aspects occurred,
based on the overall data and the individual CVDs. Specifically,
Figure 6 and Figure 7 show the percentage of pictures an issue or
helpful aspect occurred according to the majority or minority. We
will now discuss the most interesting observations in more detail.

Regardless of CVD, resolution seemed to be an issue. If one looks
at all simulated pictures, the most selected issue by majority (10 %
of all 6,000 simulated pictures) and minority (61 %) was low reso-
lution. Next up according to the majority selection are colors not
distinguishable (9 %) and issues with text/font size (9 %). For the mi-
nority, the second and third most issues overall are loss of detailed
information content (57 %) and shapes too thin/small (51 %).

For red-green CVDs, the most common issues are more non-color
related according to the majority. For deuteranomaly, resolution too
low, shapes too thin/small, and issues with text/font size ranked the
three most common issues for the majority as well as the minority
of coders although the ranking order varies (see Figure 6).

For protanomaly, the majority identifies the same issues as for
deuteranomaly as the most common ones. Looking at minority
ratings, however, a color-related issue loss of detailed information
content ranks second: 62 % of the pictures are concerned with this
issue according to at least one coder. For the majority, this issue
only occurs in 3 % of the images.

The minority shows color issues, especially for rarer CVDs. For
monochromacy, majority and minority agree on colors not distin-
guishable as themost common issue, but they disagree on the second
and third most issues. For the minority, they stay related to color
with loss of detailed information content and colors barely distin-
guishable, whereas the majority indicates only readability-related
issues as problematic, as Figure 6 shows. Regarding tritanomaly, the
minority identifies continuous color scale ambiguous and highlighted
elements do not pop out the most occurring issues followed by low
resolution.

Labels are the most occurring helpful aspect in general. Minority
andmajority report labels to be the most present helpful aspect with
labels occurring in 47% of 6,000 images and 84%, respectively. In
addition, among the top three helpful aspects overall are descriptive
text (majority: 16 % and minority 67 %) and texture helps (majority:
11 %, minority: 75 %).

https://renecutura.eu/visacctool/
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Figure 5: Percentage of pictures rated as , , by minority and majority. The filled bars reflect
the majority, the hatched bars the minority rating.
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Figure 6: The bars reflect the percentage of pictures where the issue was found by at least one coder (hatched) or the majority
(filled).
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majority (filled).



CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Angerbauer, Rodrigues, Cutura, et al.

The most common helpful aspects do not differ across CVDs, except
for monochromacy. Figure 6 denotes the most common helpful as-
pects for each CVD, but largely reflects the distribution mentioned
above. Only monochromacy stands out, as raters naturally seemed
to benefit most, if an image works with one color.

4.2.3 Does Accessibility Change over Time? The following section
provides cautious observations of potential developments over time.
Even though our dataset of sample images is not small, it might n
be large enough to see robust trends. Thus, the following obser
tions should be tested further in the future.

ot
va-

Overall, image ratings seem to stay rather constant over the years
with a slight tendency toward improvement. Looking at the average
accessibility votes (based on all votes we got per year), there seems
to be a slight trend toward increasing accessible and decreasing not
accessible ratings, see also Figure 8. Only 2005 seems to be an outlier
to this trend, with only 55% of the total ratings being accessible
and 18 % not accessible. Furthermore, the average issue and helpful
aspects counts in Figure 8.

Color issues seem to decrease over the years, except for monochro-
macy. Figure 9 shows how many pictures were reported to have
issues. With colors not distinguishable and colors barely distinguish-
able, there seems to be a decrease over the years according to the
majority and minority ratings. For colors not distinguishable it de-
creases from 12% (50% minority) to 3 % (20 % minority) of 6,000
pictures in 2000 and 2019, respectively. Pictures with colors barely
distinguishable go from 3% (55 %) to 1 % (18 %).

Interestingly, for both issues, 2005 seems to be an outlier with a
higher number of affected pictures: 15 % (51 %) for colors not distin-
guishable and 4 % (62 %) for colors barely distinguishable. This might
explain why the year 2005 is also an outlier in accessibility ratings.
For monochromacy, there is no clear decreasing trend, especially
with the minority ratings (see Figure 9 colnodi and colbadi).

4.2.4 Any Correlations Between Labels and Accessibility? While
we know that correlation does not constitute a causal relation-
ship, it could provide a good overview of the labeling quality and
might provide hints for possible future studies on causal effects.
To calculate the correlation, we first aggregate the data for each
simulated image. Here, we map each accessibility rating to a value
between from 1 (not accessible) to 3 (accessible) and average over
the number of coders an image had. Similarly, we transfer issues
and helpful aspects to values between 0 and 1, by averaging over
the coders’ observations for that particular label. For more detailed
information on the data processing procedure, we refer to the sup-
plemental material. We use the resulting numerical data to calculate
the Pearson correlation coefficient summarized in Figure 10. As
expected, all available helpful aspects have a positive correlation
with accessibility, while all problematic issues have a negative one.

Overall, the issues that correlate most with a bad accessibility
rating are loss of detailed information content (ρ = −0.44), issues
with text size or font, and resolution too low.Works with one color and
fabricated information had almost no correlation with accessibility.
This finding seems surprising, given that intuitively these labels
should have a large impact. However, fabricated information is hard
to detect and a visualization that works with a single color only
is of real benefit in case of monochromacy. Thus, when we only

consider the ratings of stimuli in the monochrome condition, the
coefficient ρ rises to 0.64.

Labeling has the strongest positive correlation with accessibil-
ity (ρ = 0.24). This sounds reasonable, as text is often black or
white and will not change much when viewed with a CVD. It can
disambiguate where color fails due to changes or not noticeable
differences in continuous scales. Robust colors that will stay the
same also correlate positively with accessibility, having the second
highest correlation coefficient. Descriptive text and the use of tex-
ture follow closely. A consistent order of visual elements can help
transfer information between them. An example of this are tables
where we only write the header once and do not change the column
order within the body. However, this method of labeling is only
applicable in specific circumstances, leading to a lower correlation
coefficient (ρ = 0.15).

Issues related to readability often appear together. The Pearson
coefficient can also give us insight into connections between the
various labels themselves, without taking accessibility into account.
Thematrix in Figure 10 shows a cluster of relatively high correlation
within resolution too low, shapes too thin/small, and issues with text
size/font. It seems plausible that a low resolution is insufficient to
render thin primitives or text clearly.

Helpful text aspects seem to co-occur. Descriptive text and labels
seem to often appear together (ρ ≈ 0.61). They form a cluster
of weak negative correlations with color perception issues, high-
lighted elements not popping out, and loss of detailed information
content. Does this mean that authors who add text and labels to
their figures might also be more likely to take the effects of color
vision deficiency into account? Could it be that their figures need
fewer colors? Or did the annotators potentially not notice some
of the issues because they were neutralized? This last cluster can
lead to interesting hypotheses, but we would need a more focused
investigation to arrive at a valid conclusion.

4.2.5 Can Helpful Aspects Neutralize Issues? Analysis of the corre-
lation coefficient gave rise to the supposition that helpful aspects
might be able to neutralize issues. This seems to be plausible accord-
ing to the principle of least effort: visualization designers would
not add helpful aspects if they could not improve the resulting
image. However, the correlation matrix in Figure 10 indicates that
the issues weigh more heavily toward inaccessible images. To get a
better overview of the role that helpful aspects and issues play, we
transform the coding results into numerical data. The approach is
similar to the one from Section 4.2.4, but aggregates the data even
further. We refer to the supplemental material for more detailed
information on the transformation procedure. The result is only a
simple 3-tuple for each original and simulated image:

( ⟨% of issues⟩, ⟨% of helpful aspects⟩,
⟨majority vote on accessibility⟩)

The two-dimensional histograms in Figure 11 show the resulting
6, 000 data points. To avoid issues with clutter and overplotting,
we created separate plots for each accessibility rating. Looking at
the visualization of accessible images, we can observe an apparent
diagonal cut-off line (red): there are no accessible images beneath
it. On the plot for not accessible images, there is a similar line.
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Figure 8: Average ratings over the years, based on the total amount of ratings we received per year, as well as the
average amount of issues and helpful aspects over time. Overall shows the average over all years.
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This shows that with rising levels of issues, the images require an
increase in helpful aspects to remain accessible.

The plot for borderline ratings contains imageswith a low amount
of issues and a high amount of helpful aspects (red ellipse). It seems
the issues were quite severe and did not allow for accessible images,
despite the efforts of the paper authors. On the other hand, there is
an outlier close to the maximum number of issues (red circle). It has
more helpful aspects than some not accessible images with a similar
issue rating. Again, this could indicate a neutralizing effect that
might have made the difference between an image being mostly
rated not accessible and borderline.

These aggregated views do not distinguish between the types of
issues. Nonetheless, we were able to confirm that helpful aspects
could have the potential to mitigate the negative effects of issues
to some degree.

4.2.6 What Images are Most Accessible? Using the same data as in
Section 4.2.5, we took a closer look at individual images and ranked
them. The lower the accessibility, the lower the score. Issues have a
negative impact and helpful aspects a positive one (see Section 4.2.4).
Please check the supplemental material for specifics of the ranking
procedure. At this point, we want to stress that it is not our goal to
point out, accuse, or judge any author. We were only interested in
the particularities of images with certain ratings.

Less content is ranked more accessible. The top ranks are occupied
by images rated as accessible over all CVDs. Note that our sample
of the top five images in Figure 12 seems to favor visualizations
with a low density of information content. The first two images
are schematic diagrams or drawings and the following ones are
abstract two-dimensional charts with an increasing number of
visual primitives. We suspect that there might be two underlying
reasons that would require a more targeted investigation. The less
content there is in an image, the less a viewer has to interpret. The
higher the amount of monochrome text, the lower the impact of a
color vision deficiency.

4.2.7 What Images are Least Accessible?

Low resolution issues revisited.
want to finger point, thus we will not reprint the worst ranked
images but provide abstract examples in Figure 13 for better under-
standing of the issues present. These images consist of a node-link
diagram, a spatial representation using a rainbow scale with a
complete graphical user interface and window chrome, very small
thumbnails of maps and legends, and a map with overlaid line
charts. They are severely limited by their low resolution (73 % of
coders). Issues with text size or font and shapes being too thin are the
next most reported codes, which could also be related to resolution
(see correlation in Figure 10).

As mentioned before, we do not

4.2.8 How Accessible are Certain Image Types? In Section 4.2.6
and 4.2.7, we looked at particularities of selected images. This anal-
ysis inspired us to take a more systematic look at the type of images
and their accessibility. At the moment, the VIS image data set does
not provide any meta-data on image/chart types. We thus opted
to code image types ourselves, for the details of the coding pro-
cedure we refer to the supplemental material. The selection of a
detailed and complete set of image types is nontrivial—especially

for figures with mixed content—and would provide material for
an independent publication. Therefore, we only considered seven
coarse categories:

• 2D abstract: An image belongs to this category if it is, e.g.,
a bar chart, box plot, or another representation of abstract
data (38 % of the images).

• 2D continuous: Heatmaps or other 2D visualizations with
continuous data representations (8 % of the images).

• Schema: Figures explaining, e.g., processing steps with text
and arrows as example key elements (10 % of the images).

• 3D abstract: 3D bar charts or other representatives of abstract
data in 3D (6 % of the images).

• 3D continuous: Volume visualization or other forms of 3D
visualization with continuous representations (19 % of the
images)

• GUI : Screenshots of user interfaces (7 % of the images).
• Undetermined: Used when we could not agree on the figure
type, or if the image did not fit the above categories, or if it
matched multiple types (10 % of the images).

The resulting distribution of accessibility ratings across image
types is shown in Figure 14.

Simple visualizations like schemas seem more accessible. Schemas
have the highest value for majority votes of accessible. This is in
line with the findings from Section 4.2.6. However, figures with
3D abstract content have the second highest accessibility score,
yet did not appear in the top ranked images in Figure 12. The
majority ratings for the categories 3D continuous, 2D continuous, and
undetermined are on a high level and similar to each other. Images
of GUIs are most problematic, as they have approximately the same
number of accessible and borderline ratings and the highest score
of not accessible. The minority votes do not show large differences
between the content types when observing accessible and borderline
images, but schemas have the lowest rating of not accessible.

A richer design space might also hold chances for accessibility. We
also analyzed the distributions of ranks from Section 4.2.6 by image
category. They mostly correspond to the known results. However,
contrary to the information in Figure 14, 2D abstract and 3D con-
tinuous have different distributions in our highscore. While 2D
abstract appears to be a bimodal distribution favoring both high
and low ranks, 3D continuous resembles a normal distribution, see
also Figure 15. Could the larger design space with more dimensions
and continuous mapping also provide more possibilities for acces-
sible design? These richer configuration possibilities could be an
explanation for the normal distribution of 3D continuous, whereas
abstract 2-dimensional visualizations seem to either work well or
break down with less middle ground according to the ranking dis-
tribution. However, to confirm this phenomenon, more in-depth
research needs to be done.

GUIs seem to have more readability issues. We further analyzed
whether there were specific issues or helpful aspects of certain
visualization types. Here, schematic figures make most use of labels
and descriptive text, but textures appear most often in 3D continuous
visualizations. Figures containingGUIs seem to suffer themost from
issues with low resolution, insufficient font size, and too thin or
small visual elements.
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(a) I: 0.0136 – H: 0.475 – schema (b) I: 0.0182 – H: 0.4083 – schema (c) I: 0.0227 – H: 0.3833 – 2D abstract

(d) I: 0.0227 – H: 0.3333 – 2D abstract (e) I: 0.0273 – H: 0.35 – 2D abstract

Figure 12: The five best ranked images over all conditions. All have the highest value of accessibility (3) and show either
schematic content or abstract 2-dimensional graphs. We used the probability of issues (I) and helpful features (H) being de-
tected to order them from (a) to (e). Reprinted with permission from IEEE: (a) from [64] (Fig. 11), (b) from [6] (Fig. 1), (c)
from [84] (Fig. 5), (d) from [6] (Fig. 3), and (e) from [47] (Fig. 6).

(a) I: 0.2682 – H: 0.1
2D abstract

(b) I: 0.2909 – H: 0.1583
GUI

(c) I: 0.2591 – H: 0.1167
2D abstract

(d) I: 0.2773 – H: 0.125
2D abstract

Figure 13: Abstract representations of the worst ranked images over all conditions. Their mean accessibility score is approxi-
mately 1 (not accessible). We also used the probability of issues (I) and helpful features (H) being detected to order them (a–d),
starting with the worst.
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Figure 14: Percentage of pictures of a certain image type rated as , , byminority andmajority.
The filled bars reflect the majority, the hatched bars the minority rating.

This might be related to their potential purpose: screenshots
might be intended to give a broad overview of software applica-
tions, not for reading and interpreting the details of the contained
visualizations.

In the interest of keeping the length of this publication within
reasonable limits, we do not include all analyses of the issues and
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Figure 15: Probability distribution of the image rankings of
3D continuous (solid line) and 2D abstract (dashed line).

accessibility of certain image types. Instead, we refer the interested
reader to the supplemental material for more details.

4.2.9 Are There Clusters in the Data? To analyze our data for clus-
ters, we created our own tool as described in Section 4.1. Different
colors gave us insights into various aspects of the data, see Figure 16
and Figure 17.

There are clusters regarding accessibility as well as CVD.. In region
A○, there seem to be simulated images of all CVDs that are less
accessible. Closer inspections lead us to identify screenshots of tools,
for example. This is in line with the observations in Section 4.2.8.
To see thumbnails of the images, we refer to our online tool.

Cluster B○ is where monochromacy pictures mostly are located,
whereas the outer rim shows less accessible pictures compared to
C○. Here, there seem to be clustered pictures that work well with
one color.

Some pictures with continuous color scales seem to be clustered
in region D○. Interestingly, on the left of this cluster there are color
scales that work for deuteranomaly, but on the right, there are
pictures that are more problematic for tritanomaly, which could
potentially reflect that tritanomaly has more issues with continuous
color scales.

4.2.10 What do participants comment on? Participants could give
feedback after the training phase (187 comments), specify prob-
lematic color choices (1,218 comments), and provide input for task
feedback and other issues/helpful aspects (2,282 comments). In
the paper, we will now focus on the task feedback and other is-
sues / helpful aspects and refer to the supplemental material for
an evaluation of all comment categories. The submissions in our
free-text fields for feedback and other issues concerned 2,261 of
6,000 simulated images.

Three authors performed a content analysis inspired by affin-
ity diagramming [27]. As such, we split the comments into 4,142
statements and assigned them topics, subtopics, and categories. We
found seven main topics, which are visualized in Figure 18 with
their subtopics, categories and absolute occurrences.

Participants identified the eight additional issues and helpful as-
pects, besides mentioning already existing issues/helpful aspects. The
additional issues/helpful aspects were sometimes specializations or
generalizations of our labels like problems with text color or works
with less colors. For the helpful aspects, sometimes the opposite of
issue was mentioned, like colors easily distinguishable. Additional
issues like relies and colors or the helpful aspect simple design add a
more general perspective to our labels that was not there before. The
subtopic bad color choice generalizes our color labels mentioning,

e.g., “[t]oo bright [colors]”, (P38) or colors that are not aesthetically
pleasing: “Pink shade is awful on the eyes [...]”, (P124).

In general issues, helpful aspects, and improvement suggestions
centered around readability, understandability and color. Improve-
ment suggestions covered a wide range, from change of color choices
(“Other contrasting colors should be used in the chart”, (P49)) to the
call for interactivity (“the ability to zoom in would probably help”,
(P195)).

In addition to just pointing out issues and helpful aspects, their
effect, or the effect of the simulator was also mentioned. Effects of
issues and helpful aspects described again the impact on readability
and understandability, but two annotators even mention eye strain.
For the simulator effect color change comprises neutral comments
on color transformations such as “Pink becomes blue in the simulated
image”, (P54).

Workers also explained their work (T7) and gave feedback on the
task itself (T2). Our results are similar to Simons et al. [77], who
found that workers often tend to provide explanations behind their
thought process or express insecurities and provide feedback on
the task itself. Specifically for T7, comments aimed to justify or
further specify the accessibility rating, adding a more fine-grained
accessibility scale. This includes the justification requires effort,
where workers judged the accessibility additionally through the
effort that was needed to perceive the information: “Slightly blurred
but with some effort accessible (P20)”. Further, some participants
also reported to be insecure/indecisive like “this one is tricky. [I]t’s
teetering towards not accessible, but I’ll stick with borderline”, (P6).
General remarks like no issues/nothing helpful were also to justify.
An interesting justification was issues are there by design where
participants made assumptions on the purpose of the visualization:
“The contents of the graphs doesn’t seem important here so I don’t
think that text matters”, (P19).

5 LESSONS LEARNED, LIMITATIONS, AND
FUTUREWORK

In the following, we reflect on our findings, but also share some
experiences regarding our study itself, which might be of interest
for the community.

5.1 Action Items for Creating Accessible
Images (Retold)

Our findings regarding visualization confirm and refine those of
Frane et al. [20] and Jambor et al. [37] for the HCI community. In
this section, we present aspects to consider while designing CVD-
friendly figures. Rather than re-inventing the wheel, they rely on
basic design principles which are put into context with our results.

Don’t rely on accessible color choices only. In accessibility guide-
lines for papers for conferences like CHI, advice on creating CVD-
friendly figures focuses on color alone2. In our image assessment,
however, we noticed that issues are often connected to understand-
ability and readability in addition to color. We hope that the labels

2https://sigchi.org/conferences/author-resources/accessibility-guide/

https://sigchi.org/conferences/author-resources/accessibility-guide/
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Figure 16: Gridified 2D embedding of the coding results with UMAP. Each cell represents a stimulus as viewed with a specific
color vision deficiency. It contains a horizontal stacked bar chart that shows the ratio of the stimulus’ accessibility ratings.
Accessibility is mapped to color: . A to D represent interesting image clusters we found.○ ○
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Figure 17: Gridified 2D embedding of the coding results with UMAP. Each cell represents a stimulus as viewed with a specific
color vision deficiency and it is colored accordingly . A○ to D○ again represent the same interesting image clusters.
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Figure 18: Topics we identified during our content analysis with their subtopics and categories and absolute occurrences in
the data. The * signifies new issues or helpful aspects the workers identified.
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we identified might serve as a checklist when preparing accessible
figures.

Provide helpful aspects to mitigate issues. As our data indicates,
helpful aspects could help to make an image more accessible and
robust. This is also stressed by participants: “This has so many labels
and text going on that it would be hard to mess up” (P45). However,
Jambor et al. [37] warns not to overdo labeling and descriptive text,
as that might be an accessibility pitfall of its own, when introducing
clutter (see also the paragraph below).

Keep figures simple. According to our ranking, simply designed
figures seemed to do better. Simplicity is also reflected as helpful
in some participants comments: “[...]simplicity [...] that help[s] ac-
cessibility” (P148). More detailed design might need more colors as
stated by P6: “[T]oo much detail needed in the graphs for them to be
colorless.” We acknowledge, however, that this might not be trivial
to do when trying to convey complex information.

Keep figures readable. In our study, resolution seems to corre-
late with the accessibility of an image. Furthermore, participants
criticized an image as being too small to reflect the main content:
“Main elements of the image are too small for visualization and under-
standing of the figure” (P49). Making images small is often one go-to
strategy when trying to save scarce space in publications according
to our personal experiences. Thus, we support Jambor et al.’s [37]
suggestion for more conferences to drop the page limit in favor
of a word limit similar to ACM CHI to give authors the freedom
to make figures as large as need be. The frequent occurrence of
resolution issues might be dataset-specific and dependent on hard-
ware, as well as the way a figure is presented (interactive vs. static).
Studies on interactive graphics on the web might yield different
results regarding the occurrence of the problem. However, we still
argue that one should bare readability problems and compensation
strategies thereof in mind.

Pay attention to color nevertheless. While color is not the only
aspect affecting accessibility, it is an important factor, as seen most
clearly in the monochromacy condition which has the worst accessi-
bility ratings. In particular, continuous color scales and highlighting
could be affected by a rarer CVD like tritanomaly, while the color
design for deuteranomaly seems already to be fairly robust (see,
e.g., Figure 17).

Be aware of diverse vision abilities. Related work [3, 20, 37] urges
to use simulators to test for CVD compatibility. We too encourage
others to do so, however, also refer to other related work advocating
to do so with care [81]. Speaking from the personal experience of
the authors, taking part in the label identification phase really
changed and sharpened our perspective regarding accessibility
issues. Increasing awareness was also noted by P49 in an email
concerning the crowdsourcing phase: “[The task] made me have
more empathy with people who face [CVDs], made me search the
internet to better understand the subject and thus be able to perform
the task more effectively.”

5.2 Challenges and Opportunities of our Study
Experience

We experienced researching CVD accessibility on a larger scale
as a nontrivial endeavor. In the following sections, we revisit the
challenges we faced during the phases of our study and discuss
opportunities.

5.2.1 Study Design.

Deciding on what to evaluate. Even though we designed for a
large-scale study, we had to limit ourselves somewhere. In our
case, we decided not to explicitly rate the original images in the
crowdsourced labeling phase. We suspect that this evaluation might
have provided additional insights regarding accessibility ratings
and issues. However, some issues like the loss of detail or loss of
highlighting and others are only clearly visible in comparison. Fur-
thermore, generic issues like text size could provide hints on the
accessibility of the original image. From a more pragmatic per-
spective, if we had included the original image evaluation as an
additional task, it would have resulted in higher costs. While de-
bating this option internally, we rather opted for the consideration
of more CVDs as well as more coders per image and a broader
time span. Nevertheless, future studies could further investigate
the impact of the original image accessibility of course.

Leveraging the perspective of experts and the crowd. Previous re-
lated work [20, 37] relied mostly on experts for their accessibility
evaluation, producing results with higher internal validity, but po-
tentially lacking ecological validity, due to the nature of expert
reviews [82]. While we relied on experts for the initial label identi-
fication, we also leveraged abilities of the crowd to gain additional
knowledge on how accessibility issues and helpful aspects are per-
ceived by non-experts. Even though workers could provide their
own aspects in free-text fields, existing check boxes might have
influenced their answers and limited the addition of more aspects
to consider. For future work, it would be interesting to directly
compare the perspective of the crowd to the perspective of experts
to identify potential limitations: What issues are only recognized
by experts and not by the crowd and vice versa? If we had not
provided check boxes but only free-text fields, would the answers
have differed?

Accessibility labeling is not a standard labeling task. Compared
to labeling tasks for ML, accessibility labeling adds complexity [77],
which was also remarked by workers in the feedback after the
training phase, e.g., by P148:“I found this task more challenging than
expected.” As discussed before, this had consequences on the study
costs. Furthermore, we opted to iteratively improve our task design
based on the feedback we gathered during the pilot and the training
phase. However, we only decided to include minor improvements
to not bias the results.

5.2.2 Study Execution.

Communication with workers helps to tackle insecurity. During
an initial pilot, we struggled to get our tasks done due to the fear of
task rejection and the skepticism toward unknown task providers
expressed by crowdworkers. This insecurity was also reflected in
the feedback after our training task and in the overall comments: “I



Accessibility for Color Vision Deficiencies CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

really hope I don’t get rejected. I’m trying my best!” (P64). To coun-
teract that fear, we actively communicated with workers via e-mail
and through the presence within the crowdworking community on
Slack3 and other websites4. Around 200 mails and messages were
sent to build trust and reduce insecurity. Based on our experience,
we believe communication with workers to be essential to a suc-
cessful collaboration and encourage other researchers to also seek
direct communication channels, particularly when offering subjec-
tive tasks, although this communication was time-consuming in
our case.

Benefiting from the crowdworkers’ (intrinsic) motivation. While
there was the insecurity mentioned above, we also noted a high
motivation and positive feedback on our accessibility tasks, similar
to other related work crowdsourcing accessibility tasks [77]. 85
out of 135 feedback statements on the task after training were
positive, while the remaining stressed challenges (16), found the
task “easy” (2), or provided critical improvement suggestions (34).
Furthermore, in the general feedback, participants emphasized on
gaining knowledge “[...] I learned a great deal about visualization
accessibility [...]” (P52) or also their intrinsic motivation for the task:
“I was legally blind until two years ago. I judged some of these on
the issues I had back then and I hope it helps” (P84) or “This was
fascinating to me since I’m a long time artist and have dealt with
poor images for many years” (P13).

5.2.3 Data Evaluation.

Taking care of data quality is challenging. As discussed in detail
in Section 4.1, by not setting gold standards for labeling, we re-
ceived more diverse answers, which were challenging to control for
noise. Sanity checks were more time-consuming as one had to look
deeper into the data to find random answers to remove. However,
this study aimed to discover potentially interesting patterns for
future investigation, for which we argue the current data quality
was sufficient. Our assumptions should be further tested in more
controlled setups, to gather more evidence for or against them.

Accessibility aspects are hard to agree on. Participants seemed to
agree more on the positive side of accessibility ratings as mentioned
in Section 4.2.1. Furthermore, it seemed to be difficult to judge the
severity of an issue in relation to the accessibility rating: “I don’t
know if [the image] will work due to not seeing the green or red lines
and [I] don’t know how to rate that” (P2).

Additionally, it was very rare that all raters agreed on issues and
helpful aspects in general. Raters unanimously selected the same
helpful aspect for 2% of all 6,000 simulated images. For issues, this
was just the case for 0.2% of the pictures.

Highest were the unanimous votes for deuteranomaly and prot-
anomaly pictures regarding has labels: all workers found labels in
18 % and 13 % of the simulated images of the respective CVD. Thus,
the unison ratings for helpful aspects seem slightly higher than
those for issues. It could be that helpful aspects like labels are easier
to spot (they are either there or not), while issues related to color
are inherently subjective. More research is to be done to confirm
those observations. Further investigation on the degree of harmful

3https://turkernation.slack.com/
4https://turkerview.com/

or helpfulness of aspects could bring additional insights as well
as also expressed by P158: “I wish there was some type of slider to
indicate how bad a problem is.”

Determining the image type is nontrivial. Our first naive approach
to gaining insight into image types was by using the previous
conference tracks (Vis/SciVis, InfoVis, and VAST). However, after
internal discussion, we abandoned this evaluation because VIS does
not distinguish between conference tracks anymore5 since 2021.
Furthermore, the conference track does not necessarily determine
all visualization types used, e.g., a SciVis-related paper could still use
a bar chart to illustrate their results. Hence, we decided to annotate
the image types of the 1,500 images ourselves into coarse categories.
Creating a more detailed typology of visualization images is beyond
the scope of this paper.

5.2.4 The Minority is Worth a Look. We tried to get another more
individual perspective on the data by looking at both majority and
minority judgments. The minority ratings provided an opportunity
to look at the data independently of the factor of agreement, which
might as well add biases in the case of accessibility research, where
one should also take into account individual opinions [53]. Through
the minority ratings, we learned that in particular some color issues
were often more problematic to individuals than the majority as
discussed in Section 4.2.2. Additionally, minority ratings are useful
to identify cases of rarer issues like fabricated information. However,
we stress the need for multiple perspectives to avoid biases or
unwanted noise. While minority ratings in our case were useful to
identify subtleties in the data, majority or average ratings could be
more useful to provide a more general overview.

5.3 Next Steps Toward Visualization
Accessibility

In the following, we outline future research directions to gain a
better understanding on the complex matter of visualization acces-
sibility by extending our efforts into different directions, as well as
potential next steps for more tool support for visualization accessi-
bility.

5.3.1 Toward a better Understanding of Visualization Accessibility.

How do people with CVDs actually experience figure accessibility?
A CVD simulation does not fully reflect the abilities of a person
with CVDs. Over time, they might develop individual coping strate-
gies to partially compensate the CVD. Nevertheless, we argue that
if used with care and with the aforementioned limitations in mind,
simulations could still be useful to build bridges and share experi-
ences. We tried to incorporate actual experiences of people with
CVDs both in our label identification and in our crowdsourcing
phase. However, the data stemming from eight people with actual
or potential CVDs was not enough data to detect patterns for people
with CVDs specifically. More studies should be run to determine the
actual impact of our issues and helpful aspects on the perception
of images by people with CVDs.

What is the impact of simulation parameters? Additionally to our
main exploration, we started to investigate the effect of simulation

5http://ieeevis.org/year/2021/info/call-participation/call-for-participation

https://turkernation.slack.com/
https://turkerview.com/
http://ieeevis.org/year/2021/info/call-participation/call-for-participation
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Figure 19: The simulator we use (IS) vs. the VSS from related
work [73].

parameters by comparing a subset of our data to another simulator,
the Visual System Simulator (VSS) by Schulz et al. [73] with its
many adjustable parameters. A first glimpse of the simulation and
data showed that monochromacy is not comparable to begin with,
because VSS introduces a blur effect. The reason is a reduced num-
ber of photo receptors that affect visual acuity [73], which leaves
merely blurred shapes as images. For the results of the other defi-
ciencies, see Figure 19. Further research is required to investigate
other simulators and parameter settings.

What issues are faced by other disabilities? Visualization acces-
sibility has many facets besides CVD [45, 52, 91]. We purposely
started our accessibility review in the CVD domain as it is already
well researched and we could draw on many existing findings to
generate our labels to ensure a certain validity. However, to get a
more complete picture of visualization accessibility in general, it
would be necessary to extend our findings to other disabilities as
well.

How do visualization context, visualization types, and concrete
tasks interact with accessibility? We have specifically chosen a de-
sign without a task in mind to foster unconstrained exploration
of different visualizations. A subsequent study could be based on
certain tasks and context to investigate more specific aspects in
a controlled fashion. Our current results could inform the type
of stimuli to be investigated. Furthermore, we only scratched the
surface with broad visualization type categories. Studying the con-
nections of more specific visualization types to certain issues might
be another interesting subsequent study: do medical or scientific
visualizations rely more on color and continuous color scales while
bar charts struggle with too small labels of the data? Moreover, our
study framework could be applied to other domains like visualiza-
tions in newspapers or social media to yield interesting results.

What are barriers of accessible visualization design? The fact that
minority and majority ratings differ could have another reason
besides the difficulty to judge in general. The differences could hint
to potential trade-offs while designing visualizations. While going
for a good design for the majority, issues of the minority might
be overlooked. An example from our own paper writing: choosing
aesthetically pleasing colors and designs might discriminate CVD
users. Here we tried to opt for the opposite, which resulted in less

pleasing but accessible colors. Another trade-off is the simplicity
of design vs. the richness of the information. Further investigation
should be done in this regard by asking the following questions:
what are trade-offs in accessible visualization design and how could
we minimize them? For what kind of visualizations do accessible
design efforts reach their limits?

5.3.2 Toward More Tool Support for Visualization Accessibility. Ac-
cessible visualization design needs more tool support [12]. We
envision tools that improve accessibility from the general or the
individual perspective.

Developing metrics for accessibility checks. Existing visualization
linters already detect basic design issues [31, 56]. With extensions,
they could target specific accessibility use cases and automatically
identify problematic areas in images. Our labels are not yet usable
as metrics, further studies are needed to assess the impact and
quantification of the issues and helpful aspects by asking questions
like: how do issues or helpful aspects influence accessibility ratings
in detail? What is a possible scale for accessibility? The fact that
agreement on issues and accessibility ratings was scarce, however,
indicates that this is no trivial task, as tools might need to train on
and cope with potentially noisy data.

Designing for and with individual abilities. To capture issues that
are not implementable by standard metrics, one might include the
minority perspective again to gain more insights. We could envision
ability-aware visualizations, where as a first step the user’s individ-
ual abilities or preferences are learned and saved as parameters for
visualization creation, which could be either applied proactively or
changed in retrospect similar to previous work [18, 67].

6 CONCLUSION
In this paper, we assessed the CVD accessibility of 1,710 paper
figures in a large-scale exploratory study. We gained insights into
aspects helping or hindering accessibility and further explored clus-
ters, potential trends, and individual images. Overall, 60 % of the
images was rated accessible by the majority, however, given the
fact that almost every image still had issues, we believe there is still
room to improve visualization design with respect to accessibility.
Here, we envision efforts toward automatic accessibility evaluation
as well as ability-aware visualization as beneficial. On a meta-level,
we learned that accessibility evaluation is not a trivial task and data
evaluation can be challenging. The subjective nature of accessibil-
ity led us to explore the data from different directions, especially
the perspective of the minority and majority. We believe that our
identified issues and helpful aspects could support authors when
designing visualizations. Furthermore, our study experiences and
research directions could also help and inform fellow researchers
in future endeavors to make visualizations more accessible.
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