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Abstract
Varying the input parameters of simulations or experiments often leads to different classes of results. Parameter sensitivity
analysis in this context includes estimating the sensitivity to the individual parameters, that is, to understand which parameters
contribute most to changes in output classifications and for which parameter ranges these occur. We propose a novel visual
parameter sensitivity analysis approach based on Voronoi cell interfaces between the sample points in the parameter space to
tackle the problem. The Voronoi diagram of the sample points in the parameter space is first calculated. We then extract Voronoi
cell interfaces which we use to quantify the sensitivity to parameters, considering the class label information of each sample’s
corresponding output. Multiple visual encodings are then utilized to represent the cell interface transitions and class label
distribution, including stacked graphs for local parameter sensitivity. We evaluate the approach’s expressiveness and usefulness
with case studies for synthetic and real-world datasets.

CCS Concepts
• Human-centered computing → Information visualization; Visual analytics;

1. Introduction

Studying the influence of parameters on the result is a common task
in many areas [SHB∗14], including the study of input parameter
spaces of simulation ensembles or measurement results. The output
data can often be divided into classes of similar behavior or labeled
based on domain knowledge. One example is the study of droplets,
where different parameter configurations lead to different droplet
shapes [TFE22]. Transferring these labels to the parameter spaces
induces a unique label for each parameter sample point. In many ap-
plications, the transition regions in the parameter space are the most
interesting in the analysis process [FFRE19]. This allows answering
questions such as which parameter to change to transition from one
class to another and where the results are the most stable to small pa-
rameter changes. Therefore, a common goal is the quantification of
the relevance of parameters. A range of local and global sensitivity
analysis techniques [SRA∗08], such as Sobol indices [Sob01], has
been proposed, but they commonly require a differentiable outcome
in parameter space. However, discrete labels that, for example, de-
scribe different shapes of droplets are not differentiable and do not
have an inherent order. Thus, existing sensitivity analysis techniques
cannot be applied.

In this paper, we propose a visual parameter space analysis ap-
proach that supports the sensitivity analysis of discrete labeled data.
Inspired by the work of Fernandes et al. [FFRE19], we focus our
study on the transitions between regions of different behaviors in

the parameter space as a sensitivity measurement. Thus, the sen-
sitivity is higher if changing the value of one parameter leads to
more transitions between regions. However, we do not assume that
the parameter space is sampled on a regular grid. In many appli-
cations [BJP∗21, ARR23], regular sampling can be costly or even
impossible. Given our input samples’ discreteness (category) and
irregularity, we propose to compute a Voronoi diagram to obtain a
partitioning of the parameter space. The Voronoi cells approximate
the regions in the parameter space and the Voronoi cell interfaces
approximate the boundaries between them at which transitions oc-
cur. We then use the interfaces’ sizes to determine the amount of
transitions that occur when changing a single parameter. A detailed
analysis of the influence of the input parameters is supported by
looking at the labels between which the transitions occur. Consid-
ering the transitions over the total range covered by a parameter
provides a quantitative measure of the parameter’s sensitivity.

We visualize the different sensitivity measures to analyze the
sensitivity in labeled parameter spaces on different levels of detail,
going from local to global analysis. While the aggregated sensitivi-
ties for individual parameters can be easily visualized using common
statistics visual representations, encoding the pairwise label-to-label
transitions over the parameter change is more challenging as the
amount of sensitivity values grows, in the worst case, quadratically
with the number of labels. We propose using stacked graphs [BW08]
combined with carefully designed color coding and patterns to show
the quantified sensitivity values and encode the class labels between
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which transitions occur. We verify our approach by applying it to
synthetic data and evaluating its deviation from the analytical result.
The usefulness of our approach is shown by applying it to different
real-world datasets.

In summary, our main contributions are:

• A novel Voronoi-based parameter sensitivity quantification ap-
proach given labeled samples

• A corresponding parameter sensitivity visualization supporting
local and global sensitivity analysis

2. Related Work

For a general overview of the area of visual parameter space analysis,
we refer to the work by Sedlmair et al. [SHB∗14] and the more recent
survey by Piccolotto et al. [PBM23]. Several different aspects of pa-
rameter space analysis have been explored, often focusing on param-
eter optimization [BM10, TWSM∗11, USKD12, PBCR11, BPFG11].
This work focuses on the parameter sensitivity analysis of given
labeled samples. These labels come from either domain experts
or via certain similarity measures for clustering or classification
models on the output. Several approaches have been proposed to
generate and visualize a higher-dimensional partitioning of parame-
ter spaces [EL22, vWvL93, TWMSK18, OBJ16, WLSL17, BSM∗13,
EST20]. While we do not support the classification of sample points
within our approach and any classification of input samples ob-
tained with one of the approaches above could be used as input, we
partition the parameter space using Voronoi to yield a geometric
representation of labeled regions and their boundaries in that space.

2.1. Parameter Sensitivity Quantification

Sensitivity analysis methods can usually be divided into local and
global methods [SRA∗08]. Local sensitivity analysis studies the
influence of small changes in one parameter, while global meth-
ods consider the entire parameter space. In this paper, we propose
sensitivity analysis methods on both levels of detail. Pianosi et
al. [PBF∗16] present an overview of a range of sensitivity analysis
techniques. Eichner et al. [EST20] use correlation to quantify the
dependency on the input parameters. However, these approaches
target continuous data and cannot be applied directly to labeled sam-
ples. While some methods can be generalized to ordinal categorical
data, our labels generally cannot be ordered.

2.2. Visual Parameter Sensitivity Analysis

Different approaches allow for visually analyzing the impact of local
variations of parameters [BPFG11, BVPtHR09, CHAS18, HWG∗20,
FML16,HEG∗22] but they do not provide a more global view on the
impact of the parameters. HyperMoVal [PBK10] visually supports
sensitivity analysis by using isolines in the output space. The sensi-
tivity of the simulation output to the input parameters can also be as-
sessed visually [LRHS14]. Booshehrian et al. [BMPM12] proposed
Vismon with a contour plot matrix to analyze the sensitivity of mod-
els with respect to two dimensions of input parameters. However,
these approaches neither derive quantitative sensitivity measures nor
provide an overview of the sensitivity to all parameters.

Only a few approaches for visualizing the quantified sensitivity

have been proposed. Fanovagraph [FRM13] provides a visualization
of the interaction strength between different parameters. It has been
extended to a computationally effective tool for visually analyzing
Sobol indices [YBRP21] but does not support sensitivity analysis
on different levels of detail. A recent approach visualizes the spatial
variation of parameter sensitivity in the simulation output [ELRL24]
but only uses global sensitivity indices. Most of the aforementioned
approaches focus on differentiable parameter spaces.

Evers and Linsen [EL25] consider transitions between partitions
in parameter space and also take sizes of neighboring segments
into account. While their visualization provides an overview of the
different partitions and their connectivity, they do not relate the
information to the input parameters and, thus, do not support a
sensitivity analysis. Fernandes et al. [FFRE19] proposed a glyph-
based approach to analyze transition patterns among partitions of
labeled parameter space. The approach has scalability issues with
respect to the number of partitions in the case of high-frequency
partitioned parameter space. Both approaches require a regularly
sampled grid or a resampling of the parameter space, which we can
avoid by using the Voronoi diagram of the sample points.

In summary, none of the discussed approaches supports a quanti-
tative sensitivity analysis of discretely labeled parameter spaces on
different levels of detail.

3. Voronoi Cell Interface-Based Parameter Sensitivity
Quantification

This section provides instructions on quantifying the parameter
sensitivity given the discretely (category) labeled samples in the
parameter space via the geometric representations from the Voronoi
diagram. We show how the Voronoi cells and interfaces can be
used to quantify the sensitivities on a local or global scale, for
considering label-to-label or per-label sensitivities, approximating
the multidimensional regions’ volume (the label distribution), and
also for determining non-axis aligned primary changes in labeling.

3.1. Sensitivity Quantification and the Concept of Flux

To explain our approach of sensitivity quantification for a labeled
parameter space, we first consider an example without constructing
a Voronoi diagram. We assume that there is some mapping from
the parameter space to a set of discrete labels, which results in a set
of continuous regions in the parameter space where all points in a
single region are mapped to the same discrete label. For instance,
in Figure 1, there is a two-dimensional parameter space where every
point is mapped to one of the discrete labels “A,” “B,” or “C,” form-
ing three continuous regions. We note that there could be multiple
disconnected regions of the same discrete labels, which is not the
case in Figure 1. Our goal is to quantify the sensitivity of the labeling
to a specific parameter, i.e., measure how many changes in labeling
(transitions over region boundaries) occur for varying that parameter
in a certain range, which is usually some quantity rather than a dis-
crete number. Our approach for measuring the amount of transitions
is inspired by the concept of flux [SLS09], a mathematical concept
describing the resulting flow of a vector field through surfaces. In
our case, the surfaces are the boundaries between different regions
in the parameter space, and the sensitivity to a parameter is the flux
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Figure 1: Schematic parameter space segmentation with three
continuous regions A, B, and C; a theoretical constant flow parallel
to parameter axis p1, and the flux at the region boundaries along
the p1-axis. Where the boundaries are perpendicular to the flow
direction, more flux occurs (see the two striped boxes). The line
chart represents the flux for infinitesimal ranges. However, when
computing the local sensitivity, we would consider the flux that
occurs in certain small but not infinitesimal ranges, which would
correspond to integrating the area under the curve per range.

that occurs at these boundaries for a constant vector field with a flow
direction that is parallel to that parameter’s axis. In Figure 1, the
arrows indicate the direction of such flow field with vectors parallel
to parameter axis p1. The boundaries between the regions A, B,
and C are the surfaces where flux occurs. Boundary segments that
are perpendicular to the flow direction result in large flux, whereas
segments that are rather parallel to the flow axis result in small
flux due to less surface area that is exposed to the flow. The flux,
therefore, corresponds to the projected size of the surfaces onto the
plane (or in 2D, the axis) defined by a normal vector parallel to the
flow direction, i.e., the p2-axis in Figure 1.

The above model of parameter sensitivity provides flexibility for
considering different levels of detail:

Local sensitivity analysis: By choosing small ranges for the param-
eters in which we consider the flux we can assess local parameter
sensitivities that show fluctuations that would be not visible for more
extensive ranges.

Global sensitivity analysis: By choosing a range that spans the
whole available domain for a parameter, the parameter’s sensitivity
on a global scale can be assessed.

Label-to-label or per-label sensitivity analysis: By considering
only the flux that occurs from one label to another label along the
parameter axis (for an increase of the parameter (on any scale)), a
more fine-grained sensitivity analysis is possible. A label-to-label
analysis would show between which labels the flux occurs. A per-
label analysis could answer questions like: “How does changing the
parameter affect a specific label.”

Figure 2: A Voronoi diagram clipped with the convex hull (red)
of the samples (colored by label 0,1,2). The interfaces between
differently labeled cells are colored blue and the clipping points
are marked gray. Dashed lines represent originally infinitely large
interfaces. The colored dotted lines show the length that is perpen-
dicular to each parameters’ axis for one example interface: dotted
brown lines (A) for parameter axis x1, and dotted green lines (B)
for parameter axis x2.

3.2. Voronoi-based Approximation of Regions and Boundaries

In practice, it is challenging to compute the actual flux that occurs
at the region boundaries. We usually only know a set of labeled
sample points in the parameter space without a definition of re-
gions or their boundaries. Therefore, we propose to approximate
them using the nearest-neighbor scheme with the multi-dimensional
Voronoi diagram. Each Voronoi cell then corresponds to a sample
point and label in the parameter space. Connected Voronoi cells
with the same label approximate the multidimensional volume of a
region, and their cell interfaces that connect differently labeled cells
approximate the surfaces corresponding to region boundaries.

From now on, we refer to the sensitivity in a specific range as
the total amount of transitions, instead of “flux,” whereas transitions
always have a direction and occur at an interface from one cell to
another cell with different labels. If we refer to transitions “from” a
specific cell “to” another cell, we always assume a positive transition
direction for the considered parameter.

3.3. Clipping Voronoi-Cells and Interfaces

Constructing a Voronoi diagram results in a set of unbounded cells
at the diagram’s outside with infinitely large interfaces (for instance,
the dashed black lines in Figure 2). These unbounded cells and
infinitely large interfaces introduce artifacts to our later computa-
tions. Similar artifacts occur if cells and interfaces at the outside
become very large, even though they might be finite. Therefore, we
propose two options to clip the Voronoi diagram and reduce artifacts:
axis-aligned bounding box clipping and convex hull clipping.

In the first case, the Voronoi diagram is clipped by an axis-aligned
bounding box. This can be chosen as the bounding box of all samples
or any bounding box containing a subspace of the parameter space,

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



4 of 12 Ruben Bauer et al. / Voronoi Cell Interface-Based Parameter Sensitivity Analysis for Labeled Samples

offering a view of the transitions in that subspace. In the second
case, the diagram is clipped by the convex hull of its samples to
avoid the influence of very long interfaces that developed due to
under-sampling. The choice between the clipping options is highly
domain-dependent and can be chosen based on analysis goals.

3.4. Computing Voronoi Cell Interface Transitions

In the following, we will describe the computation of the amount
of transitions for a single interface between two cells in the 1D, 2D,
and then generalized 3D or higher dimensional example.

Quantifying the amount of transitions at an interface depends on
the interface’s size that is perpendicular to the considered param-
eter’s axis. We describe the sizes of Voronoi cells and interfaces
by their volume. A Voronoi cell in n-dimensional space contains
a n-dimensional volume (short: n-volume). A cell interface of a n-
dimensional Voronoi cell is of one dimension less (it is “flat” in the
n-dimensional space) and lies on a (n−1)-dimensional hyperplane
enclosing an (n−1)-volume.

In the one-dimensional case, the cell size is a 1-volume (a length),
and the interface size is a 0-volume with a constant size of one.
Here, the “amount of transitions” for a single interface between
two neighboring cells with different labels is always 1, and the
transition is located at the midpoint between the neighboring cells’
corresponding sample points. For a specific range r(p0,bw) = [p0−
bw
2 , p0 +

bw
2 ], specified by an evaluation point p0 at the center of

that range and a bandwidth bw, the total amount of transitions is the
number of such midpoints that fall into that range.

In 2D, a Voronoi cell size is a 2-volume (an area), and an interface
between two Voronoi cells is a line segment with a 1-volume (a
length) that is defined by two points. As the parameter axes are
orthogonal to each other, the size of the projected line segment to
the other parameter’s axis is precisely the amount of transitions
the interface contributes for the considered parameter. We present
an example in Figure 2, where we project one of the interfaces to
each parameter axis, resulting in A: the amount of transitions at this
interface when considering parameter x1, and vice versa, B: when
considering parameter x2. Due to the steeper slope of the chosen
example interface for parameter x1, the projected length A is larger
compared to the projected length B, i.e., the labeling at this interface
is more sensitive to parameter x1 than to parameter x2, for the same
absolute variation in parameter values. To consider only a specific
range, similar to the 1D example, the line segment (interface) has to
be clipped to that range before projecting it.

We can follow the same procedure as before for three- and higher-
dimensional spaces. However, in contrast to the 2D case, where each
Voronoi interface is defined by exactly two points, in 3D or higher,
each interface may be determined by 3 or more points (at least n
points for an (n−1)-dimensional interface of an n-dimensional cell),
resulting in an arbitrary convex polytope. To consider the amount
of transitions of an interface for a specific range r(p0,bw), similar
to before, the interface has to be clipped to that range first. The
clipping range for parameter xi is enclosed by two n-dimensional
halfspaces (xi = p0− bw

2 ) and (xi = p0+
bw
2 ), which are two (n−1)-

dimensional hyperplanes with normal vectors in opposite directions.

In the 3D case, a cell has a 3-volume, and cell interfaces are

Figure 3: A Voronoi cell in 3D in the shape of a cube. The figure il-
lustrates the projected 2-volume of the blue interface in the x1-range
enclosed by the two gray planes. The projection of the interface onto
the x2x3-plane after clipping to that range is shown in orange.

convex polygons with a 2-volume. Figure 3 shows an example of a
single interface (colored blue) of a 3D Voronoi cell that resembles
a cube. The interface is clipped by two halfspaces shown with the
two gray planes and then projected to the remaining x2x3-plane.
The 2-volume (area) of the projected clipped interface (colored in
orange) is the amount of transitions this interface facilitates in the
range enclosed by the two gray planes considering parameter x1.

3.5. Sensitivity Computation

In the previous section, we showed how we compute the amount
of transitions that occur at a single interface regarding a specific
parameter and range. Depending on the aggregation of transitions
from individual interfaces, we can get measures for label-to-label
sensitivity and per-label sensitivity on a local or global scale.

Choice of the bandwidth: Conceptually, we can compute the
amount of transitions for the interfaces in any parameter range.
However, by choosing non-overlapping ranges of a fixed width (the
bandwidth bw) along a parameter axis, similar to the bins of a his-
togram, we can yield comparable local sensitivity values along that
axis. Summing up all local sensitivity values for one parameter
then yields the global sensitivity for that parameter and does not
require computing it again for the whole range. The bandwidth is
domain-dependent and may be chosen differently per parameter. It
determines the amount of bins required to cover the whole available
parameter range. A larger bandwidth generally requires higher com-
putational effort but offers more details on a local scale, whereas a
higher bandwidth may obscure local fluctuations of the sensitivity.

Local label-to-label sensitivity We propose to discretize each pa-
rameter dimension of the parameter space into ni non-overlapping
bins b j , each of extent bwi, per parameter dimension xi, and L to be
the number of labels from the input sampled data set. We then com-
pute the amount of transitions per interface for each bin’s range, as
described in Section 3.4, and aggregate the individual values based
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Figure 4: A convex hull-clipped Voronoi diagram with label-colored
cells (left), and its absolute label distribution plots (right).

on the involved labels per interface to yield (directed) label-to-label
sensitivities. Our local label-to-label sensitivity computation output
along parameter dimension xi is a list of multidimensional arrays
Mi, each with shape (L,L,ni). Each entry Mi[A,B, j] = s( j, i,A,B)
contains the amount of transitions from label A to label B for all
interfaces in the clipping range of bin b j for parameter dimension xi.

Local per-label sensitivity: We aggregate the above label-to-label
sensitivity regarding incoming and outgoing transitions per label.
Specifically, we denote is( j, i,A) = ∑Bk

s( j, i,A,Bk) for an aggre-
gated quantity on the amount of transitions that leave the label A.
And os( j, i,B) = ∑Ak

s( j, i,Ak,B) for an aggregation quantity on the
amount of transitions that add to a label B.

The global sensitivity per parameter dimension: We propose
aggregating the above sensitivity values for all bins b j along the
parameter dimension xi; we denote gs(i,A,B) to be the global
label-to-label sensitivity to changes from region A to B for xi with
gs(i,A,B) = ∑

j
s( j, i,A,B). By comparing gs for different parame-

ter dimensions, the most influential parameters can be identified.
Similar aggregations can be done for is and os. Finally, a global
measure that considers all transitions between label pairs can be
computed via ĝs(i) = ∑Ak ,Bk

gs(i,Ak,Bk), which is a single scalar
per parameter dimension xi.

3.6. Voronoi Cell-Based Label Distribution

Besides the parameter sensitivity computation, we also study the
label distribution for each parameter dimension xi. Mainly, it is a list
of matrices Di, each with shape (ni,L), where ni is the number of
discretized bins per parameter dimension xi and L is the number of
labels from the input sampled data set. Each entry Di[ j,A] contains
the summed cell sizes (n-volumes) of all the cells with label A
clipped to the clipping range of bin b j for parameter dimension xi.

Computing the label distribution provides an overview of the
parameter space. It complements the parameter sensitivity quantifi-
cation by providing the context of the overall label distribution. For
instance, a high sensitivity does not necessarily mean that the overall
label distribution changes since there could be many simultaneous
transitions from one label to the other and vice versa. Furthermore,
when convex hull clipping is applied, a change in the absolute distri-
bution does not necessitate transitions but instead may be induced by
a change in the size of the convex hull and the considered parameter
space. Overall, convex hull clipping should be used carefully, or
even replaced with a different strategy, when the data is distributed
in a highly non-convex space.
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Figure 5: Left: A Voronoi diagram clipped via the convex hull
that results in two primary transition directions (indicated by the
two arrows, scaled proportionally to the corresponding clusters’
weights). Right: the centers of the two corresponding clusters are
weighted by their overall amount of transitions in the stacked bar
chart, with each bar representing a parameter dimension. A striped
bar indicates a negative entry, e.g., x1 in cluster c0.

The absolute label distribution shows the total sizes of clipped
cells per label and clipping ranges determined by the bandwidth, as
shown in Figure 4.

3.7. Interface Orientations and the Primary Transition
Direction

The described sensitivity quantities focus on transitions along param-
eter axes. In another perspective, the orientation of interfaces could
provide insights into the primary non-axis-aligned transition direc-
tions to complement the overall sensitivity analysis. For instance,
transitions that majorly happen due to a joint change of parameters
can only be estimated given the axis-aligned evaluation approach.

By considering the normals of the hyperplanes that each interface
lies on, we can determine the direction of the maximal transitions,
i.e., the highest sensitivity due to changes in multiple parameters at
once. Since there might be multiple common transition directions,
we first apply the K-Means clustering technique to the normals. To
cluster the normal vectors, we transform them to have a positive
dot product with the one-vector 1N by reversing their orientation.
Otherwise, a mean between two normal vectors with opposite di-
rections would result in the zero vector, which is undesired. We
then apply K-Means with a plane-plane distance metric that com-
putes the angle between two planes defined by their normal vectors:
d(n1,n2) = arccos(|n1 ·n2|)∗ 2

π
. The K-Means algorithm is further

slightly adjusted by adding an additional step to normalize the means
when updating the centers (mean normal vectors). The supplemental
material contains illustrations for the plane-plane metric.

The K-Means output provides the clustered orientations of the
interfaces transformed for improved clustering as a list of cluster
means, which represent the primary transition direction per cluster,
and the total amount of transitions per cluster.

Figure 5 shows an artificial example (left) that displays two clear
primary transition directions. The visualization of the clustering (at
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the right) displays their orientation and magnitude (see Section 4 for
details on the visual encoding of the quantity).

3.8. Implementation Details

We use the QHull (quickhull algorithm) [BDH96] Python bindings,
available via scipy [VGO∗20], to compute Voronoi diagrams, con-
vex hulls, clipping of cells and interfaces via halfspace intersections,
and the volumes of interfaces and Voronoi cells (represented as
convex hulls). For clustering, we use the K-Means implementation
of Novikov [Nov19] with the plane-plane distance metric. Our im-
plementation is available at https://doi.org/10.18419/DARUS-4930.

4. Visual Encodings

In this section, we provide our design choice for visual encodings of
the derived quantities using our quantification approach described
in Section 3, which includes: (a) Voronoi cell interface-based param-
eter sensitivity quantification, including local and global amount of
label-to-label and per label transitions per parameter dimension, (b)
Voronoi cell-based label distribution, and (c) interface orientations.
We first present analysis tasks, possible visualization designs, and
the reasoning for our final design choice. We used convex hull clip-
ping for deriving the quantities in the corresponding example figures.

4.1. Analysis Tasks

Our visual analysis approach should support different levels of
details, e.g., global and local sensitivity analysis. To achieve that,
we identify a list of analysis tasks:

I. Identify the most sensitive parameters: compare and find
which parameter dimension leads to the most transitions.

II. Discover the transition between labels: observe and identify
which transitions between which labels happen.

III. Find sensitive parameter ranges: present local sensitivity
and compare them to find the most sensitive parameter ranges
and how they affect the label distribution.

IV. Visual present the overview of the multidimensional distri-
bution of labels along parameter axes.

V. Determine the primary transition direction: which simulta-
neous parameter changes lead to the most transitions.

4.2. Design Options and Choices

We aim to provide static visualizations for the quantities (a)-(c) to
perform the analysis tasks (I - V).

Task I: The most sensitive parameter is the one that has the most
transitions. A bar chart provides a good option for visualizing the
global amount of transitions. However, (a) also provides additional
information that we may use to answer which transitions between
labels happened most frequently along each parameter dimension,
i.e., the label-to-label transitions. We can encode this additional
information by color-coding the bar chart bars. However, we cannot
generally color-code each label-to-label transition to the quadratic
number of possible pairs and thus lack differentiable colors. There-
fore, we choose a different color coding. We use one bar per pa-
rameter dimension and one color per label. The bar consists of

Figure 6: The global transitions per parameter for the Iris dataset,
color-coded to visualize label-to-label transitions. Rectangle colors
encode target labels, while stripe colors encode origin labels.
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Figure 7: The label-to-label transitions per parameter for the iris
dataset as stacked graph. The areas of the stacked graph encode
for transition volume. Their color encodes the target label, and the
color of their stripes encodes the origin label.

stacked rectangles, each belonging to one label-to-label transition,
e.g., setosa → versicolor. The height of the rectangle encodes the
amount of transitions of this pair. To differentiate between transition
pairs, we color the rectangle with the target label and add stripes with
the color of the origin label, as shown in Figure 6 for the Iris dataset.

Task II: We can visualize the local label-to-label transitions in (a)
directly. It supports identifying the transitions between labels that
happen at different parameter values. We chose a symmetric stacked
graph for visualizing the local label-to-label sensitivity. Similar
to the stacked bar chart, the stacked graph supports viewing the
individual label-to-label transitions compared to the total sum (per
bin), making it easier to assess their proportions. We encode the
label-to-label transitions in the stacked graph with the same color
coding we used in task I. An example visualization of label-to-label
transitions for the Iris dataset is shown in Figure 7.

Task III: With the same argument above, we also visualize the local
transitions per label for incoming and outgoing transitions in (a)
with stacked graphs. We encode the relevant label by color. Figure 8
shows the visual encoding for incoming (upper row) and outgoing
(lower row) transitions per label.

Task IV: We also visualize the label distributions (b), a list of two-
dimensional matrices, using stacked graphs. However, this time, we
chose a stacked graph with a zero baseline instead of a symmetric
one to better assess the absolute values in the distribution. Figure 9
shows the visual encoding of our distribution quantity per label and
dimension for the Iris dataset.

© 2025 The Author(s).
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Figure 8: Input- and output transitions per parameter for the Iris
dataset as stacked graphs matrix. The upper row shows the incoming
transitions for each label and the lower row shows the outgoing
transitions for each label. Color encodes the corresponding labels.
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Figure 9: The label distribution per parameter axis for the Iris
dataset. It is based on the cell volumes resulting from constructing
the Voronoi diagram on the labeled samples.

Task V: Quantity (c) describes the primary transition directions
of the parameter space. Potential options include star-glyph visual-
izations or flower-glyphs [vOVR23], and parallel coordinate plots
(PCP) [LMW∗17] for visual encoding (c). PCPs suffer from over-
plotting, and comparing individual parameters by their magnitude
would be tedious. Flower- and star glyphs can show the absolute
values per dimension but would need additional encoding to encode
whether the original entry was positive or negative. Neither option
supports the accurate assessment of the overall magnitude. There-
fore, we choose a bar chart to visualize the vectors of (c), where each
rectangle in the bar chart is color-coded according to one parameter
dimension, and its size corresponds to the absolute value of the
parameter’s entry. We add black stripes to the rectangles of negative
entries. Figure 10 shows such a visualization in the example of the
Iris dataset. We clustered the interface orientations into five groups
and sorted them by their total size of interfaces. We annotate the
bar chart with additional information, such as the total transition
size and the average distance of the interfaces to their normal vector
(cluster center, ∼ x) above, and with the cluster index (cx) and total
number of interfaces (#x) below.

5. Evaluation

In this section, we provide an algorithmic evaluation of our sensitiv-
ity quantification, a brief comparison to alternative approaches, and
evaluate our technique’s results with three case studies. Individual
parameters can span different ranges or even have different orders
of magnitude. For all case studies, we scale the parameters to the
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Figure 10: Primary direction of transition vectors for the Iris
dataset. The transition interfaces were clustered into five groups.
The total height encodes the size of total transitions along this di-
rection. The height of individual rectangles encodes the proportion
of transitions per parameter dimension. The rectangles are color-
coded by their parameter dimension.

Figure 11: Top left: ground truth segmentation (and perfect place-
ment of three samples). Top right: 100 random samples labeled by
their segment. Bottom: Average error between ground-truth transi-
tion interface sizes and Voronoi-based transition computation given
n random samples and 5 trials per n.

range [0,1] before constructing the Voronoi diagrams but assign the
original values for visualization. The Voronoi diagrams in the case
studies were all clipped with the convex hull of the scaled samples.

5.1. Algorithmic Evaluation

We evaluate the Voronoi-based sensitivity quantification provided
an artificial 2D parameter space segmentation to assess how well a
random sampling with correct labeling would approximate the “real”
boundaries and resulting parameter sensitivity. The ground truth seg-
mentation is shown in Figure 11 (top left). With a perfect placement
of three labeled samples, our approach would precisely approxi-

© 2025 The Author(s).
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Figure 13: Scatter plot-
matrix of the Iris dataset.

mate the same segmentation and transitions. However, in practice,
many random samples will probably approximate the ground truth
segmentation, such as shown in Figure 11 (top right)). Increasing
the number of random samples should improve the approximation
and reduce the average error between ground truth transitions and
those computed with our approach. This is reflected in Figure 11
(bottom), which shows the error to the ground truth by the number
of random samples. However, while the error keeps decreasing, it is
still relatively high given the large number of random samples. This
difference is given due to the roughness of the aggregated Voronoi in-
terfaces (many small, slightly differently oriented interfaces), which
lead to many more transitions per parameter dimension than the
few long and smooth segmentation boundaries of the ground truth.
However, a sensitivity analysis with our approach is still meaningful.
The “approximation roughness” is introduced throughout the whole
parameter space and differences at local and global scale are still
comparable since they suffer from the same approximation problem,
i.e., the computed sensitivity is slightly higher everywhere.

5.2. Comparison to Alternative Approaches

Typical design choices for visualizing multi-dimensional parame-
ter spaces are parallel coordinate plots (PCP, see Figure 12) and
scatter plot matrices (SPLOM, see Figure 13). Both plots visual-
ize the sample distribution per label projected to one (PCP) or two
(SPLOM) dimensions simultaneously. Neither provides a means
to quantify the proportion of labels in the multidimensional space
or the amount of transitions that occur. While the quantification
is lacking, SPLOM and PCP may still indicate possible sensitive
ranges for the parameters, e.g., ranges that have a lot of overlap
from samples with different labels as well as clear gaps between
two clusters of samples with the same labels. The pairwise projec-
tions in the SPLOM also support estimating the transition direction
regarding two parameters at a time, though it is hard to estimate
the actual transitions that happen due to the missing relation to
other dimensions. Both approaches suffer from overplotting and
usually require interaction with brushing and linking to make sense
of the data. We provide static visualizations that fully visualize the
computed quantities to solve our analysis tasks without interaction.

5.3. Case Study 1: Iris Dataset

The Iris dataset contains 150 flower samples, where each flower is
either from the species setosa, versicolor, or virginica. The flowers
have been examined by their sepal- and petal length, as well as
sepal- and petal width. We consider the Iris dataset a parameter

space of four dimensions (N = 4), with three potential output labels
(L= 3). PCP and SPLOM visualizations of the Iris dataset are shown
in Figure 12 and Figure 13.

Species distribution: One interesting aspect when inspecting the
pairwise distribution of the labeled samples in the SPLOM of Fig-
ure 13 is that the label versicolor appears to be more distributed in
the multidimensional space, e.g., regarding the sepal length than
virginica. However, the plot of our distribution quantity in Figure 9
(bottom) shows that versicolor takes up a more significant portion
of the space along sepal length parameter dimension. A notable
difference is also visible regarding the stacked histogram of sample
distribution in the SPLOM, which significantly differs from our
distribution for petal length and petal width. The histogram contains
peaks and gaps that are not present in our distribution.

Most sensitive parameter: The global transition plot in Figure 6
shows the aggregated amount of transitions per parameter dimen-
sion. It shows that parameter petal width is responsible for most of
the transitions, followed by petal length and sepal width. Interest-
ingly, we see no transitions between setosa and virginica for either
parameter dimension and direction, which we could only identify
by thoroughly inspecting the SPLOM or PCP.

Sensitive parameter ranges: Figure 8 shows the overall amount
of incoming and outgoing transitions for different flower species
along each parameter axis. It shows, for instance, that setosa regions
lose volume along the first half of the extents for sepal length, petal
length, and petal width while gaining volume starting with increas-
ing sepal width. Furthermore, it clearly shows two major sensitive
ranges for parameters petal length and petal width, displaying two
clear transition peaks for each.

Transition between labels: The label-to-label transition plot in Fig-
ure 7 shows the origin and target regions for transitions. For instance,
the volume lost for setosa in the first half of sepal length transitions
to versicolor. Meanwhile, an increase of sepal width generally leads
to transitions from versicolor regions to setosa.

Primary transition directions: The primary transition directions
in Figure 10 indicate the set of directions in the parameter space with
the largest amount of transitions. For the Iris dataset, we can see that
the primary transition directions are not axis-aligned but generally
happen due to a combination of parameter changes. Here, most
transitions occur for simultaneous changes of all four parameters,
weighted similarly to the global transitions per parameter.

5.4. Case Study 2: Semiconductor

This dataset contains simulation data for studying the transport
properties of a semiconductor quantum wire [EL22,EL25]. The sim-
ulation output can be clustered based on similar behavior. Typical
simulation outcomes that represent different classes are shown as in-
lays in Figure 14. In this paper, we use the same clustering as used by
Evers and Linsen [EL22]. The simulations depend on four different
parameters, which are the delay between laser pulses (pulsedelay),
the energy difference to the bandgap energy (exciteOverGap), the
spatial variance (pumpsigmax) and the area (pumparea) of the laser.

When looking at the global parameter sensitivity, it becomes clear

© 2025 The Author(s).
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Figure 14: Gobal (left) and local (right) sensitivity analysis results for the semiconductor quantum wire. The global sensitivity analysis shows
similar values for the different parameters while the local sensitivity analysis shows variations over the parameter range (pulsedelay) and
transitions from class 7 to 5 and 1 to 3 (exciteOverGap).

that all parameters show a similar sensitivity (see Figure 14). In-
vestigating the local sensitivity provides more detailed information.
Looking at the overall distribution of the sensitivities reveals that
increasing the pulse delay from 0.0005 ns to 0.0007 ns leads to the
most transitions which clearly shows that this parameter region is
the most sensitive to changes. The sensitivity to the other parameters
varies less over the investigated range.

The label-to-label sensitivity with respect to the parameter exci-
teOverGap reveals variations with respect to the parameters between
which the transitions occur. Especially notable is the high sensitivity
with respect to transitions from class 7 to 5 for the lower part of
the parameter range. The characteristic behavior for these classes,
which is shown in the inlays in Figure 14, reveals that changing
this parameter in this range leads to transitions from two connected
peaks (see inlay for class 7) to two separate peaks (see inlay for class
5). In the same parameter region, a significant amount of transitions
from class 1 to 3 can be observed. When observing the visualization
of the simulation outcome, it also indicates a separation of peaks but
with other patterns at the boundary of the peak. Thus, the sensitivity
analysis does not only highlight parameter ranges in which the sen-
sitivity is increased but also indicates in which parameter range the
transition occurs, which can be used for parameter tuning.

5.5. Case Study 3: Droplet Impact Experiments

This case study investigates a labeled set of droplet impact experi-
ments. Here, in each experiment, a droplet of one fluid is dropped
onto a small film of a different fluid, resulting in different splash
patterns. The experiments study the splash patterns that develop
for different types of liquids, velocities, film thickness, and other
parameters. The experiments were labeled by their resulting splash
patterns. The labels are “crown”, “splash”, “jetting”, and “crown
splash.” The type of fluids were indexed to represent them numer-
ically. We calculated the three quantities using our approach for a
subset of the experiment parameters, that are, the dimensionless film
thickness, Weber number, droplet liquid, and wall-film liquid.

Figure 15 shows the global label-to-label transitions (left) and
the local label-to-label transitions (right) side-by-side. The global
view makes it easy to spot the most sensitive parameter, the Weber
number, closely followed by the dimension less film thickness. The
type of liquid appears to be overall less relevant.

The most sensitive range for dimensionless film thickness and
Weber number are around 0.3 and 1000 respectively. Multiple tran-
sitions to bubble-splash occur for film thickness values around 0.2
and Weber number values 1000 to 1500. Most of these transitions
originate from splash or crown pattern. There is a significant spike
between Hyspin and Hexadecan liquid for both droplet- and wall-
film liquid. For the wall-film liquid, exchanging Hexadecan with
Hyspin shows many transitions from splash to crown patterns. For
the droplet liquid, it results in a shift from bubble-splash to crown
patterns instead. The primary transition directions appear mostly
axis-aligned with one of the parameters, as shown in Figure 16. We
note that the transitions resulting from changes in discrete values
like liquid depend on the ordering of the values. A different ordering
would show different transitions between other pairs of liquids.

5.6. Runtime Experiments

The runtime of our approach regarding the number of bins m, which
relates to the bandwidth by bw= 1

m , given normalized sample points,
appears to be growing linearly by m. We also see a linear growth in
runtime regarding the number of samples. The runtime regarding
the data dimensionality appears to be growing exponentially. More
results are available in the supplemental material.

6. Discussion

Our approach supports the sensitivity analysis for multi-dimensional
parameter spaces. We show the plausibility of the results by applying
our techniques to the well-known Iris dataset. The applicability for
real-world data is shown based on the application to two real-world

© 2025 The Author(s).
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and wall-film liquid of the droplet impact experiments, by label-to-label transitions.
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datasets. The continuous description of the boundaries between dif-
ferent regions does not require a resampling of the parameter space
as employed by Evers and Linsen [EL22]. Further, our approach
generalizes to any existing partition of a multi-dimensional space if
the interfaces are provided explicitly.

Our approach also has some limitations. Computing the Voronoi
diagram and clipping interfaces and cells in high-dimensional spaces
is computationally expensive. As the Voronoi diagram computation
can be done as a separate preprocessing step for the analysis, longer
computation times do not hinder the analysis process. Still, we
found that our approach is computationally feasible for up to 7
dimensions on consumer hardware such as a computer with 32 GB
RAM. Our approach strongly depends on the quality of the Voronoi
diagram, so numerical problems such as degenerate interfaces or a
rough approximation of the original region boundaries also affect
our approach. Similar to other sensitivity analysis approaches, we
require a sufficiently dense sampling of the parameter space. Missing
values might lead to artifacts in the Voronoi diagram, which can
cause wrong estimates of the amount of transitions.

Our visualizations allow for showing label-to-label transitions and
their variations over changing each parameter. While this approach
provides a static overview of the parameter transitions, the amount
of label-to-label transitions scales, in the worst case, quadratically
with the number of output labels. This limits the visual scalability
if many transitions between different segments occur. While our
approach depends on a set of hyperparameters like bandwidth, the
clipping method, and the choice of parameter range normalization,
little dedicated hyperparameter tuning is required. Except for the
bandwidth, all hyperparameters can be directly chosen based on
analysis tasks and domain expertise.

7. Conclusion

We quantify sensitivity based on transitions between differently
labeled regions. Our sensitivity measures allow for detecting param-
eter configurations in regions of the parameter space that are more
or less likely to change the output behavior of a simulation when
slightly varying some of their parameters.

In the future, we plan to explore other applications or improve-
ments of the Voronoi-based parameter sensitivity model. For in-
stance, improving the approximation error of region boundaries by
further processing the individual interfaces, or using ray tracing-
inspired approaches for searching interesting patterns along a ray
and identifying oscillating changes between different regions. An-
other future research direction includes the integration of our ap-
proach into an interactive parameter space analysis system. By com-
bining our method with other existing methods, we see the potential
for a more comprehensive investigation of the parameter space.
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