
TimeSeriesMaker: Interactive Time Series Composition in No Time
Franziska Becker* Tanja Blascheck†

University of Stuttgart, Germany

a

b

c

d

e

f

Figure 1: The compositor page of TimeSeriesMaker showing (a) page tabs, (b) the list of components for a time series where analysts
can change their parameters, (c) a line chart showing the final result and all components, (d) the compositor tree visualization,
(e) highlighted component with action buttons and (f) the component picker with small previews for each component option.

ABSTRACT

TimeSeriesMaker is an open-source application to visually compose
time series data in an intuitive and shareable manner. Visualization
researchers often use time series data in studies about perceptual or
cognitive phenomena and many other contexts. However, finding or
generating time series data that fits a given scenario is not always
easy. Using a component-based architecture, TimeSeriesMaker al-
lows analysts to compose time series data with complex patterns by
combining different components, such as noise, a linear trend or a
seasonal pattern. An interactive compositor tree of these components
lets analysts explore their combinations using different operators.
We support reproducibility and transparency by including function-
alities that allow analysts to export and share their configuration,
which others can use to reload and modify the same time series. In
a qualitative online study with visualization researchers, we found
that our approach enables them to create a time series based on an
example image or their own requirements. However, system usabil-
ity could be further improved when interacting with the composi-
tor tree. TimeSeriesMaker can be found here: https://unistuttgart-
visus.github.io/time-series-maker/.

Index Terms: Human-centered computing—Visualization systems
and tools; Human-centered computing—Visualization; Information
systems—Open source software

1 INTRODUCTION

Time series data is everywhere—on financial markets, in simulations,
lab experiments, population changes, interaction sequences, weather

*e-mail: franziska.becker@vis.uni-stuttgart.de
†e-mail: tanja.blascheck@vis.uni-stuttgart.de

recordings and more. Visualizations of such time series data can
range from simple and well-known visualizations to complex hand-
crafted visualizations for special analysis scenarios. Because of their
ubiquity, time series visualizations can be an attractive option to
use as experiment stimuli. If researchers aim to study perceptual
or cognitive phenomena, they often want to reach a large and di-
verse audience, so familiar visualizations are well-suited for such
scenarios. Appropriate stimuli may need to exhibit specific percep-
tual or mathematical requirements. Similarly, studies that evaluate
visualization designs for time series data may also use generated
data so they can test data with different characteristics and com-
plexity. On the most basic level, desired characteristics for time
series data often include some portion of noise or randomness to
obfuscate other patterns or to appear more realistic. Other demands
can include the existence of a visible peak, a certain periodicity
or relations between different time series. With TimeSeriesMaker
(cf. Fig. 1), we developed an open-source visualization application
that supports analysts in constructing time series data. It focuses
on a visual composition using components, so analysts can explore
different options to see which ones satisfy their needs. With the
help of an interactive compositor tree, they can iteratively build up
their time series and explore the space of combinations by quickly
swapping components and trying out different operators to combine
them. We evaluated our approach in a qualitative online study with
four researchers who have experience with visualization and pro-
vided some insight into their experiences with time series data and
its generation. TimeSeriesMaker is available at https://unistuttgart-
visus.github.io/time-series-maker/ and the source code can be found
at https://github.com/UniStuttgart-VISUS/time-series-maker.

2 RELATED WORK

In the context of scientific studies, researchers may either generate
data or use existing (open-source) datasets as input for stimuli. We
consider related work that either studies perceptual phenomena using

https://orcid.org/0000-0001-6146-7841
https://orcid.org/0000-0003-4002-4499
https://unistuttgart-visus.github.io/time-series-maker/
https://unistuttgart-visus.github.io/time-series-maker/
https://unistuttgart-visus.github.io/time-series-maker/
https://unistuttgart-visus.github.io/time-series-maker/
https://github.com/UniStuttgart-VISUS/time-series-maker

time series data or evaluates a visualization design for time series
data. Few works (e. g., [5, 16]) consider only real-world datasets,
which has the advantage of providing external validity but may come
at the cost of lower diversity and less control over data characteris-
tics. Depending on the research question and tasks, data may need to
exhibit specific patterns or fulfill certain mathematical requirements.
In their experiments about aggregation in time series visualization,
Albers et al. [4] generated time series data which had to fit several
constraints, for example, noise, different difficulty levels and decor-
relation requirements. The authors generated their data by solving
an optimization problem or manually adjusting a signal. Similarly,
Song and Szafir [18] used constraint-based optimization to adjust the
mean differences of an initial signal created by five different noise
levels. Wu et al. [23] wrote a data generation algorithm to create
time series with different difficulty levels and to fit the tasks they
investigated, such as extrema identification or value comparison.
For extrema identification, they used a mixture of pseudo-random
number generation, noise, smoothing using cubic b-splines and man-
ual tuning to generate data with varying difficulty levels that also
reflect the semantics of a specific real-world dataset. Other works
generate time series data by using a random walk [9, 13, 15] or com-
mon statistical functions like normally distributed random numbers
in Matlab [24]. Thudt et al. [19] looked at the readability of three
stacked graph visualizations and generated visualizations both from
two real-world datasets and by generating data using source code1

that Byron and Wattenberg [8] wrote to visualize streamgraphs. They
state that they used Byron’s generator to create time series with vary-
ing temporal patterns, though this is not described in more detail.
A look at the source code suggests that a fixed number of bumps is
most likely created to generate the time series data. For SineStreams,
Bu et al. [7] similarly employed Byron’s data generation code, but
they supplemented this with a larger number of real-world datasets.

Regarding visualizations of time series data, Aigner et al. [1–3]
provided a thorough overview in three related works. They view
time series data in terms of its temporal structure, related data and
representation. Time can be linear, cyclical or branching; its related
data can exhibit different characteristics like being abstract or geo-
graphic, being uni- or multivariate and require different abstraction
levels to be visualized effectively. The authors emphasize that pa-
rameters for visualization techniques and interaction functionalities
have high importance when analyzing time series data in a visu-
alization context. While our usage scenario is not limited to any
particular type of time series data, we focus on the most common
type—linear time series data. Visualizations of such data include
simple line or bar charts, but also small multiples [20] and circular
layouts [22] as well as stacked visualizations as seen in the theme
river [12] and stream graph [8] approaches. For time series data
with periodic patterns, Van Wijk et al. [21] analyzed clustering and
calendar-based visualizations that allow finding recurring patterns.
Weber et al. [22] visualized time series on spirals, which are suitable
for larger time series and better at showing data periodicity. To
efficiently explore different periodicities in time series data, Franke
and Koch [10] employed dense pixel-based visualizations.

3 DESIGN

For the design of TimeSeriesMaker, we started with our own use
case: creating a time series with specific visible patterns to generate
stimuli for an online study. Based on this use case and related works
with a similar context, we came to the following requirements:

R1 Iterative composition of different time series.

R2 Complete control of all generation parameters.

R3 Inclusion of random factors, like noise.

1https://github.com/leebyron/streamgraph

R4 Visualization of the time series and its constituting elements.

R5 Making the time series generation shareable and replicable.

By iteratively composing the time series from a set of simple time
series (R1), analysts can construct complex patterns and simultane-
ously retain a record of the elements it consists of. A similar strategy
is often used when generating data with scripts, making it possible
to adjust only those parts that need tweaking. Including random
factors (R3) lets analysts construct time series data that more closely
resembles real data or obfuscate patterns from other components.
In addition, most related works we discussed previously include
some form of randomness in their data generation process. While
analysts may have an idea or mental image of what their time se-
ries should look like, they may not know exactly how this can be
achieved through time series composition. Modifying any parameter
(R2) and immediately seeing how this change affects the resulting
time series (R4) allows for rapid exploration of the space of existing
time series. Since a research context demands transparency and
replicability, respective functionalities are included in our approach.
In practice, many researchers share either the data or the algorithms
used to generate their data. Accessing such data can be more or less
difficult, so we include options to share both the resulting data as
well as the settings that are used to generate it (R5).

3.1 Time Series Representation
TimeSeriesMaker employs four types of objects to represent time
series: the time series collection, time series, compositor tree and
component. The time series collection consists of an arbitrary num-
ber of time series, which in turn consists of components that each
contains their own time series. For the collection, analysts can spec-
ify the time range, the number of samples and the drawing range for
all time series that belong to it. Each time series has a name and a
group of components, which are composed by the compositor tree to
form the final time series. In case analysts want to restrict the value
range of its data, they can define an upper and lower bound.

Components Components are divided into six different cat-
egories: SPECIAL, RANDOM, MATH, WAVE, PDF (probability density
function) and CDF (cumulative probability density function). The
stdlib2 framework partly inspired these categories and has a rich
supply of math functions, random generators, statistical functions, as
well as other utilities for scientific computing. Existing knowledge
about patterns in time series data also informed our choice of com-
ponents. Time series data can be viewed in terms of their patterns
over time. Common patterns include trends, outliers and cycles
or are based on seasonality (see e. g., Hyndman and Athanasopou-
los [14]). A trend is an overall persisting increase or decrease, like a
linear line with a positive slope—though a trend need not be linear.
Outliers represent values, unlike all others, for example, a sudden
spike in price in a particular year. The imagery often invoked for
such cases is a valley or hill. Cyclical patterns denote fluctuations
without a specific period, whereas seasonal patterns are fluctuations
with a fixed period, often related to calendar units like weeks or
months. In the following, we list exemplary components for each
category available in TimeSeriesMaker. SPECIAL is the largest
category and contains specific patterns not easily created via other
means, such as outliers and periodic patterns based on days, weeks
or months. Random functions can be found in the RANDOM category,
including different types of noise or random numbers of varying
distribution. When a time series has one or more components from
the RANDOM category, analysts can specify the number of instances
for the time series. The time series is then replicated the chosen
number of times with a unique random seed for each random compo-
nent (cf. Fig. 2). The MATH category contains common mathematical
functions like exponential, logarithmic or trigonometric functions.

2https://github.com/stdlib-js/stdlib

https://github.com/leebyron/streamgraph
https://github.com/stdlib-js/stdlib

It partially overlaps with the WAVE category, where analysts may
choose among different waves like a sine, cosine, pulse, bartlett
pulse or sawtooth wave. Finally, the PDF and CDF categories contain
a few (cumulative) probability distribution functions, respectively.
In total, TimeSeriesMaker features 50 different components, each
with adjustable parameters. For example, a sawtooth wave has a
period, an amplitude, an offset and a scale that defines its shape. In
addition, all components from the random category have a seed that
is fed to their random generator.

Compositor Tree The compositor tree of a time series is a
binary tree that determines how the different components of a time
series are combined. Leaf nodes contain the components, while
intermediate nodes represent one of three operators: addition (),
subtraction () or multiplication (). When generating the data
for a time series, the tree is parsed from bottom to top, combining
components using the respective operator from their parent node.
Leaf nodes can be swapped and operators can be switched between,
thereby allowing analysts to create complex combinations of simple
time series patterns.

3.2 Visualization and Interaction Design
TimeSeriesMaker consists of five views, available in different tabs:
home (), composition (), export (), import () and help ().
Analysts can switch between tabs using an icon menu in the main
panel on the left side of the page, as shown in Fig. 1a. Each tab
follows the same layout but provides different functionalities. In the
main panel on the left side, it always displays the page tabs and any
available settings, e. g. the number of samples for the time series
collection. The middle section of the page displays any available
visualizations, like a line chart depicting the different components
of a single time series. On the right side, we reserve space for an
additional side panel which is only used when analysts are in the
composition tab.

In the export tab (), analysts can download their time series col-
lection or time series, either only as settings or as data. If settings are
exported, a JSON file is created which contains all information that
is required to generate the respective time series in TimeSeriesMaker
(R5). If data is exported, we generate a CSV file in which each time
series corresponds to one row and each column is a sample point.
For both cases, analysts are shown a preview of what their files look
like. Exported settings can be loaded into the application in the
import tab (), allowing analysts to modify previous creations (R5).
The help tab () features a collection of short videos that briefly
demonstrate different system functionalities.

In a typical workflow, analysts start in the home tab (), which
acts as a hub to manage the time series collection. The main panel
displays the collection’s settings and lists all of its time series, while
the center area contains a line chart that visualizes the time series,
each with its respective color (cf. Fig. 2). The line chart can be
zoomed and panned using common scroll and drag interactions.
Analysts can also perform actions on each time series: rename,
duplicate, delete or re-roll random seeds. Finally, they can select
a time series to modify it in the composition tab. Upon selecting

Figure 2: View of the home tab () showing a time series collection
with two time series that each have 10 instances.

a time series, analysts are redirected to the composition tab ().
It has the same overall layout as the home page, but is restricted
to a single time series. Here, analysts can modify the selected
time series by adjusting its components and compositor tree. The
main panel lists all components and their parameters, as shown in
Fig. 1b. Each component in the list can be unfolded to view and
modify its parameters (R2) and its name can be edited by clicking
the pencil icon. At the center of the page, the line chart depicts
the chosen time series and its components, each colored by their
category (cf. Fig. 1c). It acts as a constant overview, showing all
the constituting elements of the time series in a single chart (R4).
Any unfolded components are highlighted in the line chart, which
temporarily reduces the drawing opacity of all the other lines. In
the side panel on the right, the component picker gives an overview
of all available components (cf. Fig. 1f). It has vertical tabs for
each category and displays a small preview line chart to illustrate
how each component looks like with the default parameters (R3).
Hovering over a preview displays a tooltip with a general description
of the component and a list of its parameters with their allowed value
range. For example, if a parameter may only be a positive integer
in the range from 1 to 31, then this is communicated in a common
mathematical notation as follows: [x ∈ [1,31] | x ∈ Z]. When one
of the previews is clicked on, the respective component is added to
the compositor tree (R1).

Right below the central line chart, analysts can find the compos-
itor tree (cf. Fig. 1 d & e). The compositor tree visualization is
based on an icicle plot where each node is a small line chart without
axes. For leaf nodes, these charts depict the respective component’s
time series (R4), which can be swapped via simple drag-and-drop.
Intermediate nodes visualize the result of applying any of the three
composition operators to its children. Each operator has a different
line style it is associated with, as depicted in Fig. 3. The line for
the active operator is drawn with full opacity whereas others are
drawn with reduced opacity. Analysts can switch between operators
either by clicking on the corresponding line or by clicking on the
operator icon (, or) above the node which opens a small pop
up (cf. Fig. 3). Initially, we did not visualize the result each operator
produces when it is applied. However, preliminary tests showed that
operators were mostly ignored and analysts struggled to understand
how they function without further instruction. Therefore, we opted
to visualize any intermediate results and alternative options, so ana-
lysts understand how the final time series comes to be. When adding
a component, the compositor tree is expanded at the currently active
leaf node, which is highlighted with a pink box around it (cf Fig. 1d).
Essentially, the active leaf node is replaced with an operator node
with two children: the new node and the active leaf node. Analysts
can change this behavior by hovering over a leaf node, which shows
a set of four action buttons (cf. Fig. 1e). Basic actions let analysts
delete the node in question and hide the action buttons. The tree
button can be used to mark the current node as active (i.e. where
future nodes should be added). Finally, analysts may also switch to
replacement mode via the arrow button. In this mode, the chosen
node is replaced with the selected component instead of adding a
new node. This functionality gives analysts more control over the

Figure 3: Cleaned close-up of an operator node in the compositor
tree, showing a line with a unique line style for each operator. When
clicking on the operator indicator, a button choice pops up which
analysts can use to change the operator.

construction of their time series and provides an avenue for rapid
exploration because they can try out replacing a specific component,
for example, to compare similar types of components. When switch-
ing to replacement mode, the pink highlight shown previously is
hidden and a cyan-colored box is drawn instead, indicating which
node will be replaced. We opted for the boxed highlights so analysts
do not have to perform long drags between the component picker and
the correct position in the compositor tree. This also lets analysts
add new components without having to plan where in the tree this
component should go.

3.3 Usage Scenario
In the following, we describe a short usage scenario to build a
simple time series. Accompanying screenshots for this scenario can
be found in the supplemental material. Anna wants to build a time
series with an upward trend that also includes some randomness.
She starts out on the home page, where she clicks on the circle for
the available time series to select it. The application automatically
redirects her to the composition tab, which presents her with an
empty time series. On the right side of the page, Anna sees the
component picker with previews for different components. She
hovers over the previews, which lets her read a brief description for
each component. By clicking on the respective preview, she adds
a linear trend component to her time series. This action updates
the line chart and compositor tree visualization. The root node
of the compositor tree has the default operator (addition) and one
child—the linear trend component. Anna returns to the component
picker and chooses the RANDOM category. She considers the different
options and adds a random uniform component. Now the root of
the compositor tree has two children, the linear trend and random
components, which are combined using addition. Content with her
result, Anna switches to the export page and downloads the time
series she created.

4 ONLINE STUDY

We conducted a qualitative online study to evaluate how well ana-
lysts can navigate TimeSeriesMaker with little training, how they
rate its usability and which additional requirements they may have
for such a system. Our main target analysts are researchers with
visualization expertise, therefore we distributed a link to our study at
our own and neighboring institutes via email. The study consisted of
a questionnaire with a consent form, an example recreation task and
an open recreation task. The questionnaire was created using Google
Forms while the tasks were performed with our system that can be
used in any browser. In the questionnaire, we collected demographic
information, self-reported visualization expertise and participants’
experience with time series and data generation. Our application
includes a short interactive tutorial that highlights different interface
elements, together with a brief explanation of their functionality.
The tutorial automatically walks through a few steps of creating a
time series and can be aborted or restarted on demand. For the ex-
ample recreation task, we showed analysts an image of a time series
we created with TimeSeriesMaker, though only the final result, not
its compositor tree. For the open task, we first asked participants to
describe a time series they have generated or seen previously. Then
we asked them to recreate the same time series they described in
the previous question using our application. To complete both tasks,
participants needed to upload a JSON file, which they had to export
from TimeSeriesMaker and then upload using a cloud link provided
in the task description. Their answer should contain the filename
they used for the upload. We analyzed the results they submitted for
both tasks by importing these files into TimeSeriesMaker, which
allowed us to see which components they made use of. Finally, we
asked questions about participants’ opinions regarding the usability
of the application, based in part on questions from the application
usability scale by Brooke [6].

Figure 4: Image given to participants in the example recreation task.

Figure 5: The example recreation task solution for participant P4, in
which components were not combined correctly but the linear trend
intersects the x-axis at a similar position.

4.1 Example Recreation Task
The first task aims to familiarize participants with the different
features of TimeSeriesMaker and simultaneously test their ability
to use them. Fig. 4 depicts the image shown to participants for
this task and Fig. 1d shows its corresponding compositor tree. We
created a simple time series, consisting of only four components with
minor adjustments to their default parameters. However, it uses both
addition and multiplication operators as well as components from
different categories. Specifically, the time series consists of a linear
trend, additive white uniform noise, a sawtooth wave and a natural
exponential function. The latter two components are multiplied and
then added to the former. To get the correct result, the linear trend
needs to be moved so it crosses the x-axis at the approximately right
position and the exponential function needs to be adjusted so it does
not swallow all other components.

4.2 Participants
A total of four participants took part in our study. All participants
are in the age range of 25 to 34, with one female and three male
participants. Everyone rated their visualization expertise as high (P1,
P2) or very high (P3, P4) and all of them have previously worked
with time series data. Three participants (P2, P3, P4) have generated
time series data before and they all reported using Python for the
generation, while P2 also reported using Julia, R and Matlab. When
asked about characteristics of the data they generated, participant P2
said their data includes “noise, dependencies, autocorrelation, com-
plex experimental design dependencies, physical model, equation
application.” For the other two participants (P3, P4) who previously
generated data, the characteristics were simpler. They reported that
their generation included true randomness, outliers, peaks and spe-
cific frequencies. All participants have previously used other data
sources, either openly available or from a project, though only one
(P2) employed synthetic data. Real-world data has been used by all
participants and three of them (P2, P3, P4) have used common toy
datasets. When asked for which usage scenarios they had employed
these datasets, all participants reported using them for applications
(i.e., for prototyping and testing), while three (P2, P3, P4) also used
them for research studies. We also asked participants how easy it
was for them to access and use these datasets. Responses included
“Hard” (P1), “Average” (P3) and “Easy” (P2, P4) while the ease of
use was uniformly rated as “Easy.”

4.3 Results
In the following, we discuss the results of our online study. We start
with participants’ solutions to the example recreation task; then we
describe the characteristics of the time series generated in the open
recreation task. Lastly, we detail the usability ratings and free-text
responses for TimeSeriesMaker.

4.3.1 Example Recreation Task
All participants successfully recreated the time series in the example
recreation task, though the likeness to the solution varied across
participants. One participant combined all components using the
correct operators, whereas the three other participants made the
same mistake: Instead of multiplying the exponential function with
the sawtooth wave and then adding the noise and trend, they added
up the sawtooth and noise first, which they then multiplied with
an exponential function. While the resulting shape is similar, it
is not identical, as can be seen in Fig. 5. Multiplying the noise
function with the exponential function means that noise values are
less pronounced at the start of the time series and simultaneously
more pronounced towards its end. Two participants did not adjust
the default parameters for the linear trend, even though the solution
shows the time series intersecting with the x-axis earlier than the
default value. All but one participant also did not modify components
to fit the y-value range of the solution. This may be due to the task
description, which stated that the overall shape of the time series is
more important than specific values.

4.3.2 Open Recreation Task
For the open recreation task, the complexity of participants’ time
series varied. Two participants recreated their time series using
only two components, a combination of noise and a specific pattern
(outlier for P3 and sine wave for P4). The other two participants both
used eight components and employed exactly one random component
each. Fig. 6 shows the time series participants P2 created based on
the description they gave beforehand: “dampened oscillator, 1/f
spectrum noise.”

4.3.3 Usability
After the two tasks were completed, participants were asked four
questions taken from the SUS questionnaire [6], the results of which
are displayed in Fig. 7. Overall, participants found the application
well-integrated but cumbersome to use. When asked whether the
system was easy to use, answers come to an average of 3 (“Neither
Agree nor Disagree”). When asked how much participants felt they
needed to learn, answers varied more, ranging from 1 (“Strongly Dis-
agree”) to 4 (“Agree”). To get more insight into their usability rating,
participants had to answer two free-text questions asking them how

Figure 6: The line chart (top) and compositor tree (bottom) for the
solution to the open recreation task solution participant P2 submitted.

the application helped or hindered them in accomplishing the two
tasks. For features that helped, all participants named the variety of
components as a useful feature and two participants further stated
that they liked the preview and compositor tree functionalities. One
participant said that they found the tutorial “great.” Regarding what
hindered them, three out of four participants said they would want
to rework or expand the compositor tree interactions. Specifically,
participants wanted more drag-and-drop interactions, like allowing
them to add components in that manner and being able to reorder
and modify complete subtrees. The response from participant P3
captures this well: “I think the drag-and-drop reordering is nice. It
would be good to also be able to drag new components onto existing
ones to create a subtree there. This would make creation easier if the
mental image of the pattern does not match the visualization’s struc-
ture.” Two participants mentioned specific components they would
like to have added to TimeSeriesMaker, like a random walk, cumu-
lative sum or more seasonal patterns. Finally, one participant said
that they would additionally like to see the mathematical formula
that describes the data generation for a component.

5 DISCUSSION

Participants in our online study were able to recreate both a given
time series from an image and one they chose themselves with lit-
tle training. Looking at the time series they created, it seems that
participants with simpler demands are already well-supported by
TimeSeriesMaker, while those with advanced requirements need
more options regarding components, parameters and choice of op-
erators. While participants liked the variety of components and the
concept of the compositor tree to compose a time series, they found
interacting with the tree and modifying it cumbersome—though they
found the various system functions to be well-integrated. In particu-
lar, participants wanted more options to adjust the compositor tree
to their needs, for example, moving whole subtrees and extending
the tree with drag-and-drop interactions. Single components can be
swapped via drag-and-drop, but dragging to add components was
not implemented, as we considered it too inconvenient. In that case,
analysts would need to cover long distances between the component
picker and the tree. However, feedback strongly indicates that ana-
lysts would prefer drag-and-drop for a larger number of interactions.
Overall, interactions in TimeSeriesMaker can be improved to pro-
vide better usability but the concept of time series composition using
a compositor tree seems promising to visually construct time series
without the need for programming.

Participants mentioned wanting an even larger variety of com-
ponents, particularly for random components. Another direction
to provide more options to analysts is to add other operations that
allow for higher complexity. For example, function composition
(i.e., using the output of one function as the input of another) opens

Figure 7: Participant answers for the four usability questions about
TimeSeriesMaker. Answers were given on a scale from 1 to 5 with
the labels “Strongly Disagree” and “Strongly Agree.”

up many new combinations. Other functionalities we considered
but did not incorporate include different sampling strategies, addi-
tional visualizations and a division operator. Regarding the latter,
we hesitated to include division as it introduces invalid values that
create discontinuities, though this may be desirable for some ana-
lysts. In its current state, TimeSeriesMaker samples its given time
range uniformly, but other sampling strategies could be added to
provide more flexibility. For the visualization, we chose a common
and simple one: the line chart. It is easy to understand and requires
little to no training, but does not perform as well as other methods
for certain tasks like finding periodic patterns (see e. g., [17, 22]).
Including additional visualizations could be interesting for analysts
who want to validate other characteristics of their data, but may
require more training that could deter analysts who just want to
generate simpler time series and feel overwhelmed by many options.
We saw in related works that some researchers have specific re-
quirements they achieve using methods like constraint optimization.
TimeSeriesMaker does not provide any means to specify constraints
for a component, relations between different components or even
different time series. How to easily define and visualize such con-
straints is a challenge for future work to investigate, although it
could certainly provide the complexity advanced analysts are still
missing. In terms of scalability, the compositor tree visualization
works well for up to ten components at full HD resolution. However,
scalability suffers for larger numbers, as each component requires a
minimum size to depict its time series. There are two obvious routes
to address this issue: hiding parts of the compositor tree on demand
or implementing a focus+context approach [11]. Both strategies
come with their own challenges. Hiding parts of the compositor tree
means that the overview is lost and interactions with hidden parts
of the tree require more effort. Focus+context approaches could
introduce complexity that may worsen the experience for those with
less visualization experience.

6 CONCLUSION

We present TimeSeriesMaker, an open-source application to visu-
ally compose time series data and share it with others. Analysts
can explore the space of possible time series combinations using a
compositor tree that allows them to switch between different constel-
lations of components. By visualizing both the intermediate results
and their building blocks, analysts can allocate their resources to
finding the right combinations and parameters. The time series cre-
ated with TimeSeriesMaker can be exported to share with others,
either as raw data or as a settings file which can be re-imported to be
analyzed in more detail or modified to fit a different use case. In an
online study with four researchers, we found that participants liked
our approach and could successfully use it to build (and share) dif-
ferent time series, but participants found the way of interacting with
the compositor tree somewhat cumbersome. Our approach provides
a basis for future work to investigate how complex requirements for
advanced use cases could be integrated in an intuitive manner that
does not deter analysts with simpler demands.

REFERENCES

[1] W. Aigner, S. Miksch, W. Müller, H. Schumann, and C. Tominski.
Visualizing time-oriented data — a systematic view. Computers &
Graphics, 31(3):401–409, 2007. doi: 10/dxs9t9

[2] W. Aigner, S. Miksch, W. Müller, H. Schumann, and C. Tominski.
Visual methods for analyzing time-oriented data. IEEE Trans. Vis.
Comput. Graphics, 14(1):47–60, 2008. doi: 10/c2qm3s

[3] W. Aigner, S. Miksch, H. Schumann, and C. Tominski. Visualization
of Time-Oriented Data. Springer, second ed., 2023. doi: 10/mf9f

[4] D. Albers, M. Correll, and M. Gleicher. Task-driven evaluation of
aggregation in time series visualization. In Proc. SIGCHI Conf. Human
Factors in Comput. Systems, pp. 551—-560. ACM, New York, NY,
USA, 2014. doi: 10/gg2c55

[5] M. Brehmer, B. Lee, P. Isenberg, and E. K. Choe. A comparative
evaluation of animation and small multiples for trend visualization on
mobile phones. IEEE Trans. Vis. Comput. Graphics, 26(1):364–374,
2020. doi: 10/gh52ss

[6] J. Brooke. SUS: a ‘quick and dirty’ usability scale. In Usability
evaluation in industry, chap. 21, pp. 189–194. Taylor & Francis, 1996.

[7] C. Bu, Q. Zhang, Q. Wang, J. Zhang, M. Sedlmair, O. Deussen, and
Y. Wang. SineStream: Improving the readability of streamgraphs by
minimizing sine illusion effects. IEEE Trans. Vis. Comput. Graphics,
27(2):1634–1643, 2021. doi: 10/ghv58n

[8] L. Byron and M. Wattenberg. Stacked graphs – geometry & aesthetics.
IEEE Trans. Vis. Comput. Graphics, 14(6):1245–1252, 2008. doi: 10/
dq8747

[9] M. Franke, M. Knabben, J. Lang, S. Koch, and T. Blascheck. A
comparative study of visualizations for multiple time series. In Proc.
17th Int. Joint Conf. on Comput. Vision, Imaging and Comput. Graphics
Theory and Applications, VISIGRAPP 2022, Volume 3: IVAPP, pp.
103–112. SciTePress, 2022. doi: 10/mf9c

[10] M. Franke and S. Koch. Compact phase histograms for guided ex-
ploration of periodicity. In Proc. IEEE Vis. and Visual Analytics, pp.
191–195. IEEE Computer Society Press, 2023. doi: 10/mf9d

[11] H. Hauser. Generalizing focus+context visualization. In Scientific
Visualization: The Visual Extraction of Knowledge from Data, pp.
305–327. Springer, Berlin, Heidelberg, 2006. doi: 10/dh5vbj

[12] S. Havre, B. Hetzler, and L. Nowell. ThemeRiver: visualizing theme
changes over time. In Proc. IEEE Symp. Inf. Vis., pp. 115–123. IEEE
Computer Society Press, 2000. doi: 10/c9hv3q

[13] J. Heer, N. Kong, and M. Agrawala. Sizing the horizon: The effects
of chart size and layering on the graphical perception of time series
visualizations. In Proc. SIGCHI Conf. Human Factors in Comput.
Systems, pp. 1303––1312. ACM, New York, NY, USA, 2009. doi:
10/br9tpv

[14] R. Hyndman and G. Athanasopoulos. Forecasting: Principles and
Practice. OTexts, third ed., 2021.

[15] W. Javed, B. McDonnel, and N. Elmqvist. Graphical perception of
multiple time series. IEEE Trans. Vis. Comput. Graphics, 16(6):927–
934, 2010. doi: 10/dvzcst

[16] B. Saket, A. Endert, and C. Demiralp. Task-based effectiveness of basic
visualizations. IEEE Trans. Vis. Comput. Graphics, 25(7):2505–2512,
2019. doi: 10/gfw9xc

[17] M. Sips, P. Köthur, A. Unger, H.-C. Hege, and D. Dransch. A visual
analytics approach to multiscale exploration of environmental time
series. IEEE Trans. Vis. Comput. Graphics, 18(12):2899–2907, 2012.
doi: 10/f4ft6c

[18] H. Song and D. Szafir. Where’s my data? evaluating visualizations
with missing data. IEEE Trans. Vis. Comput. Graphics, 25(1):914–924,
2019. doi: 10/gqnj3m

[19] A. Thudt, J. Walny, C. Perin, F. Rajabiyazdi, L. MacDonald,
D. Vardeleon, S. Greenberg, and S. Carpendale. Assessing the read-
ability of stacked graphs. In Proc. of Graphics Interface Conf. Victoria,
Canada, 06 2016. doi: 10/gtgz8d

[20] E. Tufte. The visual display of quantitative information, vol. 2. Graph-
ics press Cheshire, CT, 2001.

[21] J. Van Wijk and E. Van Selow. Cluster and calendar based visualization
of time series data. In Proc. IEEE Symp. Inf. Vis., pp. 4–9. IEEE
Computer Society Press, 1999. doi: 10/bvpbs7

[22] M. Weber, M. Alexa, and W. Muller. Visualizing time-series on spirals.
In Proc. IEEE Symp. on Inf. Vis., pp. 7–13. IEEE Computer Society
Press, 2001. doi: 10/drgbqf

[23] K. Wu, E. Petersen, T. Ahmad, D. Burlinson, S. Tanis, and D. Szafir.
Understanding data accessibility for people with intellectual and de-
velopmental disabilities. In Proc. SIGCHI Conf. Human Factors in
Comput. Systems, pp. 1–16. ACM, New York, NY, USA, 2021. doi:
10/gksmw6

[24] C. Xiong, J. Shapiro, J. Hullman, and S. Franconeri. Illusion of causal-
ity in visualized data. IEEE Trans. Vis. Comput. Graphics, 26(1):853–
862, 2020. doi: 10/gh52s5

https://doi.org/10/dxs9t9
https://doi.org/10/dxs9t9
https://doi.org/10/dxs9t9
https://doi.org/10/dxs9t9
https://doi.org/10/dxs9t9
https://doi.org/10/dxs9t9
https://doi.org/10/dxs9t9
https://doi.org/10/c2qm3s
https://doi.org/10/c2qm3s
https://doi.org/10/c2qm3s
https://doi.org/10/c2qm3s
https://doi.org/10/c2qm3s
https://doi.org/10/c2qm3s
https://doi.org/10/c2qm3s
https://doi.org/10/mf9f
https://doi.org/10/mf9f
https://doi.org/10/mf9f
https://doi.org/10/mf9f
https://doi.org/10/mf9f
https://doi.org/10/mf9f
https://doi.org/10/mf9f
https://doi.org/10/gg2c55
https://doi.org/10/gg2c55
https://doi.org/10/gg2c55
https://doi.org/10/gg2c55
https://doi.org/10/gg2c55
https://doi.org/10/gg2c55
https://doi.org/10/gg2c55
https://doi.org/10/gg2c55
https://doi.org/10/gg2c55
https://doi.org/10/gg2c55
https://doi.org/10/gg2c55
https://doi.org/10/gh52ss
https://doi.org/10/gh52ss
https://doi.org/10/gh52ss
https://doi.org/10/gh52ss
https://doi.org/10/gh52ss
https://doi.org/10/gh52ss
https://doi.org/10/gh52ss
https://doi.org/10/gh52ss
https://doi.org/10/ghv58n
https://doi.org/10/ghv58n
https://doi.org/10/ghv58n
https://doi.org/10/ghv58n
https://doi.org/10/ghv58n
https://doi.org/10/ghv58n
https://doi.org/10/ghv58n
https://doi.org/10/ghv58n
https://doi.org/10/dq8747
https://doi.org/10/dq8747
https://doi.org/10/dq8747
https://doi.org/10/dq8747
https://doi.org/10/dq8747
https://doi.org/10/dq8747
https://doi.org/10/dq8747
https://doi.org/10/mf9c
https://doi.org/10/mf9c
https://doi.org/10/mf9c
https://doi.org/10/mf9c
https://doi.org/10/mf9c
https://doi.org/10/mf9c
https://doi.org/10/mf9c
https://doi.org/10/mf9c
https://doi.org/10/mf9c
https://doi.org/10/mf9c
https://doi.org/10/mf9c
https://doi.org/10/mf9d
https://doi.org/10/mf9d
https://doi.org/10/mf9d
https://doi.org/10/mf9d
https://doi.org/10/mf9d
https://doi.org/10/mf9d
https://doi.org/10/mf9d
https://doi.org/10/mf9d
https://doi.org/10/mf9d
https://doi.org/10/dh5vbj
https://doi.org/10/dh5vbj
https://doi.org/10/dh5vbj
https://doi.org/10/dh5vbj
https://doi.org/10/dh5vbj
https://doi.org/10/dh5vbj
https://doi.org/10/dh5vbj
https://doi.org/10/dh5vbj
https://doi.org/10/dh5vbj
https://doi.org/10/dh5vbj
https://doi.org/10/c9hv3q
https://doi.org/10/c9hv3q
https://doi.org/10/c9hv3q
https://doi.org/10/c9hv3q
https://doi.org/10/c9hv3q
https://doi.org/10/c9hv3q
https://doi.org/10/c9hv3q
https://doi.org/10/c9hv3q
https://doi.org/10/c9hv3q
https://doi.org/10/br9tpv
https://doi.org/10/br9tpv
https://doi.org/10/br9tpv
https://doi.org/10/br9tpv
https://doi.org/10/br9tpv
https://doi.org/10/br9tpv
https://doi.org/10/br9tpv
https://doi.org/10/br9tpv
https://doi.org/10/br9tpv
https://doi.org/10/br9tpv
https://doi.org/10/br9tpv
https://doi.org/10/br9tpv
https://doi.org/10/dvzcst
https://doi.org/10/dvzcst
https://doi.org/10/dvzcst
https://doi.org/10/dvzcst
https://doi.org/10/dvzcst
https://doi.org/10/dvzcst
https://doi.org/10/dvzcst
https://doi.org/10/dvzcst
https://doi.org/10/gfw9xc
https://doi.org/10/gfw9xc
https://doi.org/10/gfw9xc
https://doi.org/10/gfw9xc
https://doi.org/10/gfw9xc
https://doi.org/10/gfw9xc
https://doi.org/10/gfw9xc
https://doi.org/10/f4ft6c
https://doi.org/10/f4ft6c
https://doi.org/10/f4ft6c
https://doi.org/10/f4ft6c
https://doi.org/10/f4ft6c
https://doi.org/10/f4ft6c
https://doi.org/10/f4ft6c
https://doi.org/10/f4ft6c
https://doi.org/10/gqnj3m
https://doi.org/10/gqnj3m
https://doi.org/10/gqnj3m
https://doi.org/10/gqnj3m
https://doi.org/10/gqnj3m
https://doi.org/10/gqnj3m
https://doi.org/10/gqnj3m
https://doi.org/10/gtgz8d
https://doi.org/10/gtgz8d
https://doi.org/10/gtgz8d
https://doi.org/10/gtgz8d
https://doi.org/10/gtgz8d
https://doi.org/10/gtgz8d
https://doi.org/10/gtgz8d
https://doi.org/10/gtgz8d
https://doi.org/10/gtgz8d
https://doi.org/10/bvpbs7
https://doi.org/10/bvpbs7
https://doi.org/10/bvpbs7
https://doi.org/10/bvpbs7
https://doi.org/10/bvpbs7
https://doi.org/10/bvpbs7
https://doi.org/10/bvpbs7
https://doi.org/10/bvpbs7
https://doi.org/10/bvpbs7
https://doi.org/10/drgbqf
https://doi.org/10/drgbqf
https://doi.org/10/drgbqf
https://doi.org/10/drgbqf
https://doi.org/10/drgbqf
https://doi.org/10/drgbqf
https://doi.org/10/drgbqf
https://doi.org/10/drgbqf
https://doi.org/10/gksmw6
https://doi.org/10/gksmw6
https://doi.org/10/gksmw6
https://doi.org/10/gksmw6
https://doi.org/10/gksmw6
https://doi.org/10/gksmw6
https://doi.org/10/gksmw6
https://doi.org/10/gksmw6
https://doi.org/10/gksmw6
https://doi.org/10/gksmw6
https://doi.org/10/gksmw6
https://doi.org/10/gh52s5
https://doi.org/10/gh52s5
https://doi.org/10/gh52s5
https://doi.org/10/gh52s5
https://doi.org/10/gh52s5
https://doi.org/10/gh52s5
https://doi.org/10/gh52s5
https://doi.org/10/gh52s5

	Introduction
	Related Work
	Design
	Time Series Representation
	Visualization and Interaction Design
	Usage Scenario

	Online Study
	Example Recreation Task
	Participants
	Results
	Example Recreation Task
	Open Recreation Task
	Usability

	Discussion
	Conclusion

