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Strategies for selecting the next data instance to label, in service of generating labeled data for machine
learning, have been considered separately in the machine learning literature on active learning and in
the visual analytics literature on human-centered approaches. We propose a unified design space for
instance selection strategies to support detailed and fine-grained analysis covering both of these perspectives.
We identify a concise set of 15 properties, namely measureable characteristics of datasets or of machine learn-
ing models applied to them, that cover most of the strategies in these literatures. To quantify these properties,
we introduce Property Measures (PM) as fine-grained building blocks that can be used to formalize instance
selection strategies. In addition, we present a taxonomy of PMs to support the description, evaluation, and
generation of PMs across four dimensions: machine learning (ML) Model Output, Instance Relations, Measure

Functionality, and Measure Valence. We also create computational infrastructure to support qualitative visual
data analysis: a visual analytics explainer for PMs built around an implementation of PMs using cascades
of eight atomic functions. It supports eight analysis tasks, covering the analysis of datasets and ML models
using visual comparison within and between PMs and groups of PMs, and over time during the interactive
labeling process. We iteratively refined the PM taxonomy, the explainer, and the task abstraction in parallel
with each other during a two-year formative process, and show evidence of their utility through a summative
evaluation with the same infrastructure. This research builds a formal baseline for the better understanding
of the commonalities and differences of instance selection strategies, which can serve as the stepping stone
for the synthesis of novel strategies in future work.

CCS Concepts: • Human-centered computing→ Visual analytics; • Theory of computation→Active

learning;
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1 INTRODUCTION

Labeling datasets is a precondition to conduct supervised machine learning. The fundamental idea
of data labeling is to transform a data instance from unlabeled to labeled by assigning a label to
it, allowing it to be used as training data to build models or testing data to evaluate built models.
Manually assigning enough labels to support supervised learning in a large dataset would be ex-
pensive and time-consuming, so considerable work has been devoted to accelerating the process
by reducing human involvement. The standard approach is to carefully select a small set of data in-
stances to manually label, then propagate these labels to unlabeled instances using semi-supervised
learning techniques [17, 89]. In these cases, the labeling task is split into two parts: selecting an

instance from a set of unlabeled candidate instances, and actually assigning label information to
that instance. In this work, we focus on the former: the problem of instance selection (also known
as query selection) [118]. The scope we consider is categorical label information supporting the
training of binary or multi-class classifiers across all application domains. These categorical labels
are attached to instances of any type of data that can be represented with numerical feature vec-
tors. There are many possible instance selection strategies: for example, concentrating on the most
dense regions first or starting by selecting one instance per cluster near its centroid. In this work,
we break down instance selection strategies into lower-level building blocks that we call properties,
to support fine-grained analysis of the commonalities and differences between these strategies.

We define a property as a measurable characteristic of the data directly, or of a machine learning
model applied to data. For example, the Dense Areas First strategy combines the properties of data
density and data coverage, leading to a strategy that prefers dense data regions at different loca-
tions in the feature space [20]. The Centroids First strategy combines the properties of centrality
and coverage to select instances located near cluster centers across the feature space. We identify a
concise set of 15 primary properties that serve to cover most of the purposes followed by strategies
proposed in previous work, listed in Figure 2(b). We prioritize concepts behind properties that are
interpretable and well studied in the existing literature on instance selection strategies.

Instance selection strategies have been studied from two perspectives, machine learning (ML)

and visual analytics (VA). In this work, we explicitly build upon a unified concept of instance
selection, combining both the ML and the VA perspective, referred to as Instance Selection Strate-

gies. The ML-driven perspective is strongly shaped by active learning (AL) [118], which is a
semi-supervised technique where the machine learner proactively asks the user for a label for a
specific instance. In this case, the instance to be labeled next needs to be chosen by an algorithm,
i.e., an instance selection strategy based in AL. AL is a well-known, intensively investigated, and
frequently applied concept to address data labeling problems [54, 100, 118]. The properties used
in AL-based strategies are straightforward to formalize, due to the wealth of references and al-
gorithmic descriptions available in the ML literature. Recent surveys of AL strategies [54, 118]
feature taxonomies with individual properties we incorporated into our set of 15 primary
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properties. For example, uncertainty is the main property of uncertainty sampling strategies, den-

sity of density-weighting strategies, variance of variance reduction strategies, and the agreement

and disagreement properties are used for query-by-committee strategies.
The VA-driven perspective on instance selection strategies, which we call human-centered

(HC), has been explored by the visualization community. In contrast to the AL approach of au-
tomatically choosing which instance to select next, HC approaches employ visual interfaces [30,
60, 64, 115] that enable humans to directly identify and select the next instance to label. Visual in-
terfaces exploit the pattern detection capabilities of human perception, allowing that knowledge
to be directly expressed through wise choices of what instance to label next in a way that can
immediately be exploited within ML models. HC approaches are most suitable very early in the
labelling process [24], where algorithmic approaches often struggle to cold start [9]. Recent ex-
periments showed that HC approaches can outperform AL approaches [20] in the first 50 labeling
iterations, and identified 10 HC instance selection strategies some of which diverge in interesting
ways from AL-driven strategies and do not align well with AL-driven taxonomies [54, 118]. While
the literature on formalizing HC strategies is minimal to date [24], HC strategies appear to have
complementary strengths to AL strategies [25].

We seek to understand the design space of instance selection strategies broadly, encompassing
both AL and HC approaches and thereby providing a unified perspective. One motivation is to
design better strategies that outperform current approaches, possibly with hybrid approaches that
combine the strengths of both [25]. Another motivation is to assess the performance of instance
selection strategies with respect to data and ML model characteristics; i.e., with respect to under-
lying properties. While the 15 properties we identify in Figure 2(b) do cover most of the design
space, they do not suffice for either of these goals in terms of descriptive, generative, or evalua-
tive power [14]. To precisely distinguish between existing strategies, design new ones, or assess
how they relate to data and model characteristics, we need a systematic breakdown into a more
fine-grained set of building blocks. A final motivation is to provide novel platforms for future
systematic evaluation of strategy performance [80].

We propose Property Measures (PM) as a lower-level building block for describing the behav-
ior of instance selection strategies: For each instance (data point) in the input dataset, a PM quan-
tifies a specific property by assigning a numeric output value for it. This concept is very general;
concrete examples include Lowest Centroid Distance to asses the centrality property of instances,
Largest Median Neighbor Distances as a means to identify outlierness, or Largest Entropy where the
probabilistic outputs of a classifier (i.e., class likelihoods) are used to highlight instances of high
uncertainty. Virtually any existing selection strategy can be built from combinations of PMs. The
explanatory power of PMs comes from considering the full space of possibilities of how they can
be constructed and what purposes they can serve. We define the design space of PMs through a
taxonomy that consists of four orthogonal dimensions: Model Output, Instance Relations, Measure

Functionality, and Measure Valence. The main components of each dimension are summarized in
Figure 2(c). In addition, the teaser figure (Figure 1) shows an overview of the connections between
the four dimensions and provides details about the characteristics of individual dimensions. As we
will show in the following sections, the taxonomy has enough descriptive power to distinguish
PMs by their primary characteristics and enough generative power to support the design of new
measures. In support of these goals, we further present a functional decomposition of the PM de-
sign space that describes PM synthesis as a cascade of eight atomic functions that allow us to
represent a PM as a compact functional signature.

We created and refined the taxonomy through a highly iterative process. Our research was
grounded in a thorough review of the literature for both the ML and VA perspectives on strategies
for selecting instances to label, to be informed by previous taxonomies and understand their gaps
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Fig. 1. Overview of our taxonomy of PM at two levels of detail. PMs measure a specific property given
the Instance Relations of data (blue), ML Model Output (yellow), or both. The Measure Functionality (green)
describes how the syntactic information that pertains to both the ML model and the data is combined. The
Measure Valence (purple) defines the polarity of the measure. Numbers (1–15) link the legend of properties
with the distribution of properties across two dimensions of the design space (blue and yellow).

in terms of descriptive, generative, and evaluative power [14]. We synthesized ideas across these
rather disparate literatures to create an initial characterization of PMs, an initial taxonomy artic-
ulating their design space, and an initial task abstraction for the goals of PM designers. We were
also informed by standard taxonomies of ML models, as shown in Figure 2(a) [48]. Guided by these
ideas, we also created an interactive VA explainer to support the qualitative visual data analysis
of PMs and the PM taxonomy through tasks that we had identified. The deeper understanding of
PMs and their characteristics resulting from this analysis led us to improve the taxonomy, through
many rounds of iteration: The VA explainer system helped us refine the taxonomy, and in turn as
our taxonomy evolved it led us to improve the explainer and refine our task abstraction. All three
research artifacts—the PM taxonomy, the explainer software, and the task abstraction—were iter-
atively refined and developed in parallel, with insights from one leading to the improvement of
the other, over a period of two years. After many rounds of formative evaluation and refinement
of intermediate versions, we used the same infrastructure for summative evaluation of the final
version to provide preliminary validation of its utility. Section 6 presents this qualitative visual
data analysis using the final version of the explainer with our final set of tasks to assess the final
version of the taxonomy.

In summary, our research process culminated in two contributions. Our primary contribution
is to establish a design space encompassing instance selection strategies from both AL and HC
perspectives. We

• identify a set of 15 properties that substantially cover this space,
• define and characterize PMs that systematically quantify these properties, and
• present a taxonomy of PMs consisting of four dimensions that span the instance selection

design space.

Our secondary contribution is to design and build computational infrastructure to analyze and
assess the components of this design space. We

• propose eight analysis tasks to assess PMs,
• create a VA explainer to enable qualitative visual data analysis of the PMs taxonomy through

the eight tasks, and
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Fig. 2. (a) Summary of a ML-driven taxonomy [48]. (b) The 15 primary properties of instance selection strate-
gies that cover ML-driven and HC-driven strategies. (c) The four dimensions of our design space for PMs are
shown. Our ML Model Output dimension (yellow) connects PMs to the ML domain. The Instance Relations

dimension (blue) connects PMs to the input data.

Fig. 3. Overview of the work process showing core elements and the iterative process of this research effort,
with the linearization into article sections for these elements.

• implement a large class of PMs through cascades of eight atomic functions, incorporated
into the explainer.

We evaluate the final versions of the PMs and the taxonomy in terms of qualitative visual data
analysis via their implementations in the explainer, presenting summative evaluation using the
same infrastructure that was used for formative evaluation during the iterative process of refining
them. Figure 3 depicts the process and its iterative nature, showing the connections between the
key elements of literature review, the development of the design space and the explainer, and the
validation through visual analysis that led to the iterative refinement of these. Figure 3 also shows
how we linearized these elements into sections, providing an overview of this article.

2 RELATED WORK

We discuss the related work for instance selection strategies, measures and metrics of properties,
and explainable AI, considering each from both the ML and VA perspectives. The work presented
here is an extended version of a workshop short paper [19] that contains preliminary ideas and
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first implementations; our contributions here surpass these baselines with respect to scope, extent,
and the level of detail, as discussed below.

2.1 Instance Selection Strategies

Research into the selection of instances either by algorithms (AL) or by humans (HC) has evolved
quite differently, as our overview of these two perspectives shows.

2.1.1 The ML Perspective. AL heavily relies on instance selection strategies for identifying the
most useful instances to be labeled by a human user. AL strategies are discussed in detail in a
number of surveys [54, 100, 117, 133, 137] and can be coarsely partitioned into five groups: (i) un-
certainty sampling, (ii) query-by-committee, (ii) error reduction schemes, (iv) relevance-based se-
lection, and (v) purely data-centered strategies. We briefly describe the basic intuition behind these
groups. Uncertainty sampling aims at finding those instances that the ML model (the “learner”) is
most uncertain about (e.g., instances near decision boundaries) [133]; example AL strategies are
least significant confidence [118], smallest margin [143], as well as maximum entropy [135]. In Query

by committee [121], instances for which a committee of classifiers disagrees in prediction most
are considered interesting and most helpful [92]. Error reduction strategies select those instances
that may change the underlying classification model most. Selection criteria are expected model
change [120], risk reduction [104], or variance reduction [66]. Relevance-based strategies [135] fo-
cus on instances with the highest probability to be relevant for a certain class. Thus, this strategy
fosters the identification of positive examples. Data-driven strategies are independent of the su-
pervised ML model but rather operate in an unsupervised manner. Many techniques build upon
density-based or clustering-based selection criteria [117, 143], where the instances are selected
from representative areas of the feature space. Density-based sampling is particularly promising
for initiating an AL process when no labels are available at all, i.e., cold start problems [9, 80]. Re-
cently, approaches toward learning instance selection strategies have been introduced [78]. How-
ever, this requires a series of previous AL experiments from which to draw useful conclusions.
Learned strategies represent an interesting topic for future research that is not targeted explicitly
in this work but that may benefit from the formalization and building blocks introduced introduced
herein.

A comprehensive taxonomy of AL strategies has been introduced in Fu et al. [54]. The authors
differentiate between strategies that either (i) operate on the uncertainty of individual and inde-

pendent samples or (ii) build upon correlations of instances. The first group is partitioned into Un-

certainty Sampling, Expected Gradient Length and Variance Reduction, similar to the taxonomy of
Settles [117]. The second group extends existing categorizations and introduces four sub-types,
namely strategies that exploit feature correlation, label correlation, feature and label correlation,
and structure correlation (i.e., spatial closeness). This taxonomy mixes instance selection and label
inference in the same structure and lacks detail in some branches. While being inspiring at the
macro-level, the proposed categories are less useful to characterize a design space for instance se-
lection strategies. From the literature, we observe that existing taxonomies strongly overlap and
build upon properties of input data and ML models that are common to many different instance
selection strategies. These commonalities enable a more comprehensive and better formalized de-
scription of existing strategies as presented in this article.

2.1.2 The VA Perspective. In contrast to AL, HC-based approaches enable users to select in-
stances, by using interactive visual interfaces. Interactive labeling interfaces can, e.g., be built upon
scatterplots (combined with dimensionality reduction) [16, 68, 113] or upon spatial mappings of
pairwise distances of instances [23, 30]. The star coordinate interface [115] and list- or row-based
interfaces [47, 75] have also been used for user-based instance selection. Finally, some approaches
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combine visualization techniques to enhance the instance selection informed from different per-
spectives [33, 84].

While powerful visualization techniques exist to enhance instance selection, the principles be-
hind how users select instances are scarcely investigated in surveys or taxonomies. A pioneer
work was presented by Seifert and Granitzer [115], who aimed at simulating and formalizing user-
picking strategies. Their star coordinates interface emphasizes classifier uncertainty/certainty, en-
abling users to develop strategies based on uncertainty, relevance, and variation properties. In a
user study that compared the performance of AL strategies with user-based strategies, Bernard
et al. identified ten different user strategies while observing users [20]. In followup-work, the au-
thors algorithmically formalized these 10 user-based strategies and employed them in simulated
AL experiments [24]. Observed user strategies include equal spread, centroids first, outliers first and
class borders first.

This article refines and extends work originally introduced in a workshop short paper [19],
which proposed a preliminary taxonomy for low-level building blocks called degree-of-interest
functions building upon the identified user selection strategies. That taxonomy coarsely differen-
tiates between data-based and model-based degree-of-interest functions. Data-based functions can
be based on clustering, outliers, and density while model-based functions describe relevance, un-

certainty, spatial relations, model change, or the agreement of committees. The degree-of-interest
functions [19] were an intermediate state in our process for what we now call PMs. PMs, their for-
malization, and the task characterization are coined by the reflection on degree-of-interest func-
tions and by insights gained from working with these functions. A shortcoming of the preliminary
taxonomy of degree-of-interest functions [19] was the tree-based structure: While it was useful
for the identification of many of the 15 primary properties, the taxonomy lacked generative power
for the creation of new PMs. In contrast to the previous version, the PM taxonomy we propose
here defines a novel design space across four orthogonal dimensions, with enough generative and
descriptive power to encompass both the ML and VA perspective. In addition, we present a func-
tional decomposition of the PM design space, which can be used to implement all of the 605 PMs
investigated in this work as cascades of eight atomic functions.

2.2 Measures and Metrics

At a high level, one difference between ML and VA is the purpose of measures and metrics. While
the ML perspective is mostly used to assess properties in a non-visual way, in VA assessed prop-
erties relate to user perception and preference, using visual interfaces as a means to amplify
cognition.

2.2.1 The ML Perspective. Most AL strategies build upon measures or metrics to compare or
estimate data and model properties. Metrics like Manhattan distance and Euclidean distance are
typical candidates for distance measurements [59, 111] between different instances or an instance
and a class boundary or cluster centroid. Not all distance measures are, however metrics in a
mathematical sense, e.g., cosine similarity. Another class of frequently used measures are functions
for the comparison of different probability distributions, such as Kullback-Leibler divergence [85],
the Kolmogorov-Smirnov test [77, 125], and the Jensen-Shannon divergence [71]. When it comes
to AL strategies based on clustering [69], cluster validity, and quality measures are important, such
as Dunn-like indices [49], Silhouette index [110], Davies-Bouldin measure [45], and Ward’s linkage
criteria [139]; see Reference [58] for an overview. Further measures that may be employed in AL
strategies are graph-related measurements, such as graph centrality measures which estimate the
importance of a node in a graph [27]. Related to these are measures that define distances to cluster
centroids [39] to assess the centrality of instances. The above measures are important building

ACM Transactions on Interactive Intelligent Systems, Vol. 11, No. 3-4, Article 20. Publication date: August 2021.



20:8 J. Bernard et al.

blocks for the estimation of different properties and thus represent one dimension of the design
space for PMs.

2.2.2 The VA Perspective. Measures play also an important role in data visualization. These mea-
sures are often referred to as visual quality metrics and their primary goal is to support an analyst
in identifying “interesting” patterns in the data. The most established set of visual quality metrics
are the Scagnostics measures [141], which allow to quantify patterns such as clumpiness and out-
lierness in scatterplots. The nine Scagnostics measures are most related to our outlierness, density,
and compactness properties. Many others have built upon this idea, seeking to further strengthen
the original Scagnostics measures [42, 93, 138], and proposing new metrics for other tasks and vi-
sual idioms [15, 41, 43, 88, 112, 124, 130]. Many of them relate to the properties that we characterize
in Table 1. While Scagonstics-like measures rely on a statistical definition of patterns, another re-
cent trend of measures has looked into modelling human perception directly. Such measures can,
e.g., predict how humans perceive correlations [108] or cluster patterns [1, 10, 113] in scatterplots.
These works primarily relate to compactness and separation properties. Our work relates to this
line of work in that we also base our PMs on human strategies. However, our measures focus on
instance selection strategies.

2.3 Explainers

Instance selection strategies and underlying properties have an inherent relation to the character-
istics of the data and models involved in the labeling process. In the following, we review how
explainers focused on these characteristics fit into the terrain of explainable AI (xAI).

2.3.1 The ML Perspective. In ML, explanations, interpretations, and transparency are essential
as AI-assisted decision systems are increasingly finding their way into the everyday lives of many
people. While some models, such as decision trees are rather self-explaining, complex models
such as random forests [28] and deep neural networks [87] hardly allow a direct interpretation of
their behavior. The spectrum of xAI approaches is rich and heterogeneous, as can be seen in recent
ML-based surveys and taxonomies [2, 8]. An important differentiation of xAI methods is into data-

and model-driven explanations. Data-driven approaches focus on the analysis of data, distributions,
and the extraction of interpretable features [35]. Model-specific methods aim at either explaining
individual decisions (local methods) or entire models (global methods), e.g., by using surrogate

models [147]. In contrast to focusing on either data or model explanation, our PM-based explainer
needs to support both. Another differentiation is between self-explaining methods that learn to
generate an explanation during model training [61] and post hoc approaches that can be applied
directly to previously trained models [40, 74, 116]. With our emphasis on the interactive labeling
process, requirements to our xAI tool includes aspects of both post hoc and self-explaining meth-
ods. Furthermore, our approach enables perturbation-based interpretability [31], which enables
interaction in the explainability process to verify how the model responds to changes.

2.3.2 The VA Perspective. We narrow the scope to VA-based xAI methods with a particular focus
on types of analyses related to our approach. We use PMs to unveil the characteristics of underlying
ML models for the data labeling process to facilitate model explanation. Similarly to our approach,
measures have been used to visually assess the separability of clustering [114], per-instance uncer-
tainty of classifiers [107], or the characteristics of dimensionality reduction techniques [101]. Other
explainers focus on the complexity of ML architectures [65] and their underlying dataflows [142],
the hidden state dynamics of neural networks [127], or characteristics of classifiers such as decision
boundaries [51, 90], internal tree structures [134], or performances [5, 6]. Just like our explainer,
some model explanation approaches focus on the visual comparison of multiple models and model
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characteristics [4, 44, 79]. We share the idea to visually search for agreement and disagreement
patterns across models. The use of xAI in the labeling process to identify characteristics of data
and models has not been covered in previous work, although the rationale for doing so is provided
by earlier observation and explanation approaches for instance selection strategies using VA tech-
niques [18, 115]. The previous short paper [19] that we extend here is the first prototype to do
xAI for the labelling process. Accompanied with the labeling process is the observation of the
learning process of the ML model itself. Examples for the visual assessment of the model learning
process include approaches for the identification of stable layers for in-depth investigation [103],
the assessment of class confusions over time [62], and works studying the involvement of users
to steer model building during training [128]. A final aspect refers to what-if-analysis, following
the idea to explain characteristics by effects that have been caused by some pre-defined stimulus.
Together with What-If Tool [140] and the Prospector tool [81], we share the idea to let users edit
data points using a visual interface to experiment with hypothetical model conditions. While the
related works focus on the manipulation of features of individual data instances, our focus is the
direct manipulation of data points (in scatterplots) [19].

3 PROPERTIES AND PROPERTY MEASURES

This section describes properties and defines PMs. The introduction of properties is useful as it
helps us to abstract from concrete instance selection strategies introduced in the ML and VA do-
main and to organize them systematically. While from the ML perspective, properties abstract
certain instance selection strategies to query useful instances in the active learning process, from
the VA perspective properties help to describe different user selection strategies and criteria for
(visual) quality assessment. PMs represent concrete formalizations of properties and can directly
be used to build instance selection strategies in ML and user selection strategies in VA.

3.1 Properties

We have identified 15 individual properties that are common to most strategies and quality evalu-
ation measures in ML and VA. The identification of this set of 15 properties is the culmination of
a long-term research effort documented by a series of publications that build on each other [18–
20, 24]. These previous efforts included both computational experiments and user studies, and
preliminary efforts to organize selection strategies into categories. The iterative methodology that
we used to consolidate the insights from our previous work into these 15 properties is summarized
in Figure 3: We combine multiple rounds of intensive literature review with multiple rounds of vi-
sual analysis using the explainer that we developed. The literature review included the analysis
of existing surveys on AL strategies [54, 100, 117, 133, 137] and work on user selection strate-
gies [20, 24, 115] to identify underlying data and model properties that are common to different
strategies. The explainer incorporates implementations of many instance selection strategies from
AL and many user selection strategies observed in use by humans.

A property is a measurable characteristic either of the data itself, or of a ML model output once
it has been applied to data. The identified properties cover the combined space of both ML and
VA approaches to instance selection strategies. Table 1 summarizes these properties, providing
descriptions and examples of their use in the literature. The differentiation of ML and VA litera-
ture indicates the relevance of properties in the two domains and also reveals that some appear
predominantly in only one of those fields.

We now relate these properties to influential survey works and taxonomies. With the Com-

pactness, Centrality, Variation, and Border properties, we explicitly consider four characteristics of
groupings. A grouping refers to as an assignment of instances to groups like, e.g., the results of clus-
tering or classification techniques. To assess these four grouping-based properties, we make use of
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Table 1. The 15 Properties We Identify as Central to Instance Selection Strategies, with Brief Description
and the Breakdown of Related Work Pertaining to Each in Both the ML and VA Literatures

Properties Description ML Ref VA Ref
Compactness Compactness of a group of instances [45, 49, 58, 69] [1, 17, 113]
Centrality Proximity of an instance to a centroid, representative,

or center of gravity.
[27, 39, 58, 99,
139]

[20, 24, 34]

Border Proximity of an instance to the outbound of a group,
e.g., a cluster or class border.

[20, 24, 124]

Variation Degree to which a group of instances varies.
Assessed with measures of variance, diameter, error
or loss functions for classifier internals, or diversity
for distributions of class votes.

[54, 66, 71, 77,
85, 98, 122,
123, 125, 139]

[1, 10, 73,
113]

Separation Separability of a group of instances from other
groups. Can be at the granularity of instances or
groups.

[45, 49, 58, 69,
110, 114, 139]

[10, 17, 106,
114]

Collision Degree to which a group collides with other groups.
Measures use the overlap of (fuzzy) clusters,
confusion of class distributions, or crosscut of
modeled topics.

[12, 26, 126] [114, 124]

Agreement Agreement of predictions or assignments made by a
model for a set of (related/nearby) instances.

[55, 71, 77, 85,
125]

Disagreement Disagreement of predictions or assignments made by
a model for a set of (related/nearby) instances

[55, 71, 77, 85,
92, 121, 125]

Uncertainty Exploitation of uncertainty information, e.g.,
provided with probabilistic classifiers or assessed by
distances to decision boundaries.

[118, 118, 119,
132, 143]

[115]

Relevance Exploitation of certainty or confidence information
to select instances that are likely to be relevant. Also
used to confirm or reinforce class information
structures.

[11, 57, 135–
137]

[17, 20, 115]

Size Amount/count of instances within a group. [146] [114]
Imbalance Comparison of an observed distribution of labeled

instances across classes with an expected distribution
of labeled instances. Used to identify and mitigate
imbalance of class label distributions.

[13, 70, 100,
145, 146]

Coverage Distribution of a set of instances across the entire
space. Used to select a diverse set of instances across
the high-dimensional feature space.

[54, 73] [20, 22, 24]

Outlierness Focus on instances that with abnormal or even
unique characteristics. Assessed by outlier/anomaly
detection models or inverted density estimations.

[29, 32, 76, 97,
105, 141]

[20, 24, 113]

Density Identification of dense regions of a dataset. [94, 129, 141] [20, 24]

a rich body of measures and metrics that has been presented to support ML tasks [58, 66, 69]. How-
ever, AL taxonomies consider clustering rather coarsely as one type of data-driven [54, 118] strate-
gies. In contrast, HC strategies can be mapped to these four properties more explicitly. According
to the observational study by Bernard et al. and the replication study by Chegini et al. [20, 34],
users apply grouping-based properties explicitly when labeling cluster patterns (centroids first,
cluster borders first) or class patterns (class borders refinement and class distribution minimization).
Finally, Benato et al. [17] observed a HC strategy where users focus on compact groups first for
label propagation in semi-supervised ML.
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The two opposed properties Separation and Collision support the characterization of between-
group relations (clustering results, classification results, etc.). While in ML a variety of measures for
these properties are provided [12, 26, 58, 126], AL strategies based on group separation or collision
are rare. Research in VA underlines the Separation and Collision properties in two ways: First, the
emphasis on visual quality measures for cluster and class separation measures [10, 114] shows the
relevance for the HC perspective. Second, given the observed class intersection minimization [20]
HC strategy and the user tendency to focus on mixed groups [17], users explicitly focus on separa-
tion and collision characteristics, which indicates the need for local class separation and local class

diversity assessment to support the labeling process [24].
The two opposed properties Agreement and Disagreement directly build upon query-by-

committee AL strategies [54, 100, 118]. In general, we use these properties to characterize the
divergence [71, 77, 85, 125] of a set of model outputs (ensemble) or similar sets of outputs.

With Uncertainty and the Relevance property, we account for two frequently applied strategies in
AL: uncertainty sampling and relevance-based sampling [54, 100, 118]. Seifert and Granitzer focused
on HC strategies [115] based on uncertainty, supported with a visual interface that emphasizes
uncertain class assignments.

Size is a universal property that can be applied to any set of instances. As such, it nicely com-
plements other data characteristics in both AL and HC contexts.

The Imbalance property is inspired by AL strategies that aim at balancing the distribution of
labels among classes [13, 70, 100, 145, 146]. However, HC strategies have not yet been formalized.

Coverage addresses unexplored regions in the feature or data space, a characteristic that is rel-
evant for AL and HC. In AL, coverage strategies [22] are considered beneficial in early stages of
the labeling process [54]. Similarly, HC strategies also employ the so-called spatial balancing [24]
principle (users focus on various data regions early).

Outlierness is a property that is opposed to most other data-centered properties. While having
a strong background in ML [3], AL strategies often aim at avoiding outliers, especially in early
phases of the labeling process [118]. In HC, users seem to apply at least two strategies related to
outlierness: outliers first and class outlier labeling [20].

Density concludes our list of primary properties. In AL, density-based instance selection strate-
gies (density weighting, density-based sampling) are defined in most taxonomies [54, 100, 118].
Similarly, HC strategies include the frequently applied dense areas first [20] strategy, which seems
to be very effective in early labeling iterations [24].

3.2 Property Measures

3.2.1 Definition of Property Measures. A PM quantifies a property in a systematic way. For
every instance of a given dataset the PM assigns a number to it.

PMs capture properties of instance selection strategies; conversely, PMs can be combined to
form strategies. These basic properties can be calculated from multivariate datasets directly (e.g.,
density), as well as from the output of ML models (e.g., class separation). PMs can be applied to the
output of a broad spectrum of ML models. Figure 2 provides an overview of principal classes of ML
techniques and describes the interaction between PMs and models in the ML domain. PMs receive
instances as input and calculate a numerical score for any instance as output. A typical dataflow
of PMs is shown in Figure 4: Both the data instances and the output of an ML model serve as
input to a PM, so characteristics of both may be reflected in the PM output. The output scores for
any instance can be used for downstream applications. For the selection of instances to be labeled
next, ranking of PM output scores helps to prioritize instances according to the corresponding
property. Normalization of PM output scores, as indicated by the purple arrow in Figure 4, may be
necessary when combining PMs together within instance selection strategies. A concrete example
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Fig. 4. Interaction of PMs with datasets and ML models. PMs measure a specific property given the input
of data (blue), ML model output (yellow), or both. The output of a PM (purple) can be used for downstream
analyses.

of PMs are centrality-based PMs, which assign individual centrality values to any instance using
distance metrics measuring the centrality of instances within a grouping such as the output of a
cluster or classifier.

3.2.2 Property Measures as Functions. In the following, we provide a more formal definition of
PMs, considered as functions. A dataset X is a set of instances x that are high-dimensional feature
vectors; that is, each instance is represented using an n-dimensional real vector x ∈ Rn . Our goal
is to define a set of functions that assign a real valuev to any possible instance x , even to instances
that are not contained in the original dataset. These functions are supposed to describe arbitrary
characteristics (that is, measures) for instances, usually in relation to other instances of the dataset.
A model M is (optionally) applied on X, and its output can be used by the measure function to
calculate the output for an instance. In the most generic form, such a measure function f can be
described as

f : Rn → R

f (X ,x ,M (X ,x )) �→ v .

4 A TAXONOMY OF PROPERTY MEASURES

We present a taxonomy of PMs that defines the design space in terms of four orthogonal dimen-
sions: Model Output, Instance Relations, Measure Functionality, and Measure Valence. We can order
these with respect to the flow of data through the PM into three stages, as shown in Figure 5:
PM input, PM internal, and PM output. The input stage consists of the Model Output dimension
(yellow), which incorporates everything that is provided upstream of a PM and is used as-is by
it. The PM-internal stage encompasses the relations between data instances considered as feature
vectors in a high-dimensional space (blue), and the Measure Functionality dimension (green) that
integrates calculations about the Model Output and data Instance Relations. The output stage in-
corporates the Measure Valence dimension that concludes the processing of individual PM scores
for downstream usage (purple). A typical downstream application would be to use the output PM
score for the selection of instances in an AL system. We now we describe these four dimensions
in detail, in this dataflow order.

4.1 Model Output

The design decision in the input stage of the dataflow through a PM is to determine what type
of ML Model Output is used. The standard hierarchical taxonomy of models used in the ML
domain, shown in Figure 2 (upper left) [48], is a useful way to reason about the intended purpose
and usage context of a model, starting the fundamental split into unsupervised and supervised
ML. In the unsupervised case the models are used for clustering and binning to group instances
together, density and retrieval to identify similar instances, or outlier and anomaly detection to
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Fig. 5. The four orthogonal dimensions of the PM taxonomy, ordered according to three stages of dataflow.
The input stage pertains to the Model Output dimension that contains four sub-categories, the internal stage
has both the Instance Relations dimension with four sub-categories and the Measure Functionality dimension
with many sub-categories, and the output stage covers the Measure Valence with two sub-categories.

find unusual instances. In the supervised case the models are used for classification with discrete
data, or regression with continuous case.

At the highest level, a shared characteristic of all of these models is that they produce output,
which in turn is the input to a PM. We analyzed the kinds of output produced by these models
in terms of syntactic characteristics, leading us to propose four Model Output sub-categories that
cross-cut the standard hierarchy:

• None: The simplest case handles PMs that do not exploit any ML model output. These PMs
can be calculated solely with data-centered measure functionality. Representative properties
are assessments of density and coverage, which can be calculated by solely using pairwise
distances.
• Group Assignments: Instances are grouped into crisp subsets through approaches such as

classification, clustering, binning, or user selection. The syntax of the ML model output is a
categorical attribute indicating which group is assigned to an instance. These assignments
are also referred to as votes in classification. Properties at play in this category include size,
compactness, variation, separation, confusion, agreement, or disagreement.
• Probability Distributions: Instances are grouped into soft assignments for example from

probabilistic classifiers or fuzzy clusterings. The syntax of the ML model output for an in-
stance is not just a single item, but rather an entire array of numerical values (probabilities),
one for each group. Probabilities are required by PMs that support properties such as uncer-

tainty or relevance.
• Numbers/Scores: A quantitative value is expressed as a single number for every instance,

as for example provided with outlier analysis algorithms or regression models.

Our formalism encompasses singleton models as well as ensemble models, in a unified way. For
example, the PM implementations we use in the explainer include seven classifiers and an eighth
ensemble classifier that incorporates all seven of them.

4.2 Instance Relations

The Instance Relations dimension is the first PM-internal stage (cf. Figure 5). The dimension
describes the structural relationships between one instance and other instances in the high-
dimensional feature vector space, as used in the PM. We subdivide this dimension into four
categories, as shown in Figure 6, according to what information the PM exploits:

• Instance Only: only the information that is provided with the focus instance
• Instance Neighbors: information stemming from the focus instance and from instances in

its local spatial region
• Instance Within-Group: the information of instances within a pre-defined group
• Instance Between-Group: the information across multiple pre-defined groups of instances
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Fig. 6. Instance Relations of PMs (blue dimension). This structural dimension describes which types of data
relations PMs use. Every PM corresponds to one of four categories: instance only, instance neighbors, in-
stance within-group, and instance between-group (left to right).

This dimension requires that information is provided to the PM about multiple instances in ad-
dition to the specific focus instance, except for the degenerate instance-only category. The last two
categories also require information about pre-defined groups, which arises within ML models only
from certain types. These models are exactly the ones found within the Group Assignments and
Probability Distributions categories of the Model Output dimension, so there is an interplay that
crosscuts between these two dimensions. Groups could also be created in an HC setting through
interactive user selections. The information about all of the relevant interests is passed on to the
next dataflow stage, the Measure Functionality dimension, to perform computations such as pair-
wise similarity measures or distance metrics between the instance feature vectors.

4.3 Measure Functionality

The Measure Functionality dimension is the second PM-internal dimension, describing how in-
formation that pertains to both the Model Output and Instance Relations dimensions is combined
according to the syntactic structure defined by the sub-categories of each.

In contrast to the low-cardinality categorization of the other dimensions, this dimension has a
large number of categories. These fall into two high-level sets, unary aggregator functions that
compute a single number, and pairwise measure functions where the computation encompasses
two instances. Frequently used functions are listed below:

• Unary (Aggregation) Functions: Rn → R
—Statistical Aggregation: uses statistics (such as min, max, median) to extract single numbers

from a set of numbers
— Probability Aggregation: uses measures (such as entropy [122], output margin [143], confi-

dence [118], GiniIndex [56]) to extract single numbers from a set of probabilities
— Distance Aggregation: uses measures and metrics (such as Dunn-like index [49], Silhouette

index [110], diameter) to extract a number from a set of distances
— Integer Aggregation: uses measures (such as cardinality, difference, count) to extract an

integer number from a set of integers
— Diversity Aggregation: uses measures (such as Simpsons diversity index [123]) to extract a

number from a set of integers
• Binary (Measure) Functions: Rn × Rn → R

— Distance Measure: using distance metrics (such as the Euclidean distance metric or the
cosine similarity) to receive a distance between two instances

— Divergence Measure: using divergence measures (such as Jensen-Shannon [71], Kullback-
Leibler [85], or Kolmogorov-Smirnov [77, 125]) to receive a divergence/disagreement be-
tween two instances
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Fig. 7. Three types of examples showing how PMs use the information that pertains to Model Output and
Instance Relations.

Figure 7 shows three types of examples to demonstrate how unary and binary functions are used
by PMs. The first type (1) calculates instance relations (e.g., pairwise distances between instances).
The relations can then be used to apply unary aggregation functions such as distance aggregations
or statistical aggregation. Properties that can directly be addressed in this way are, e.g., density,
coverage, our outlierness.

The second type of examples (2) only aggregates the model output to receive an output value
for any instance. Prominent properties are (a) uncertainty, supported by PMs using probability
aggregations such as output margin [143], entropy [135], or confidence [118] measures to condense
probability distributions or (b) outlierness supported by PMs using scores provided with outlier
analysis algorithms [3].

The third type of examples (3) incorporates both distance information from instance relations as
well as a model output. This is the most complex type of input information that has to be conveyed
and by the measure functionality. One solution to cope with this complexity is using distance
information from adjacent instances as a weighting criterion for the distillation of the model output.
A straight-forward approach would be to take the output of close neighbors stronger into account
than the output of more distant instances. Examples include weighting the (e.g., Kullback Leibler)
divergence measure results of related instances, or weighting the (Simpsons) diversity of class
assignments (votes) of instance neighbors.

Even if framed by the semantics of the property and the syntax of the given input, PM implemen-
tations may still rely on various internal functionalities. Especially for the third type of approach,
the Measure Functionality of a PM may combine different functions, metrics, or heuristics to ag-
gregate/condense the input information down to a single numerical value.

4.4 Measure Valence

The dimension of Measure Valence determines the polarity of a PM, i.e., if the ordered values of a PM
output are interpreted from low to high or from high to low, i.e., which is considered better, larger
or smaller numbers? In practice, the valence of measures is often determined by the downstream
task at hand. To have full control over the polarity, we explicitly define the Measure Valence as the
fourth dimension of the design space.

There are numerous properties that can be considered from diametrical perspectives. For exam-
ple, the agreement property is the opposite of disagreement. Another example is the prominent AL
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strategy smallest output margin [118] based on the uncertainty property. In contrast, selecting the
instance with the largest output margin picks the most certain instance, shifting the focus to the
relevance property.

Having this dimension explicitly within the taxonomy allows a simpler structure for the Measure

Functionality dimension, so that no duplication is required. The Measure Valence dimension can
also be used in a way similar to normalization, for example to flip a PM to produce a range from 0
to 1 instead of from 1 to 0. With the Measure Valence dimension, we increase the generative power
of our taxonomy, as it doubles the PM design space.

4.5 Mapping Properties across Taxonomy Dimensions

We consider the crosscut between the two central dimensions of the taxonomy, Model Output and
Instance Relations, to show how properties distribute across those two dimensions of the design
space.

First, we assess the distribution of properties into the 4 × 4 grid formed by the subcategories
of each of those two discrete dimensions. Figure 8 shows the distribution of all 15 properties
(Table 1) using numbers (1–15 ) to link between the legend at the lower left and occurrences in
the 4× 4 grid (center, green). The analysis of the PM distribution reveals several insights. First, the
descriptive power of the taxonomy lies in the fact that different grid cells have noticeably different
set of properties associated with them, so our proposal does not simply mirror the structure
suggested in previous work. Second, not every cell of the grid is populated with properties. These
gaps show the generative power of our taxonomy: They suggest possible locations for novel yet
unexplored properties. Third, we observe that the properties distribute well into individual cells,
rows or columns in the design space, e.g., the pure data-driven properties 14 and 15 appear only
on the first column while property 1 is typically in the third row (within group comparison).
This kind of distribution of properties across the design space shows that the dimensions have
been chosen in a reasonable way. The outlierness property (15) is the only one located at two
non-adjacent cells. We explain this fact by noting that outlierness can be implemented in two
ways: using an outlier ML model (top right) or by exploiting instance relations (left). Fourth,
classical AL properties based on uncertainty (9) and relevance (10) only populate a small fraction
of the design space (3 of 16 cells). Alternative properties based on other data and model charac-
teristics exist, which may compliment the strengths of classical AL properties. Fifth, the instance
between-group properties separation (5), collision (6), and imbalance (12) clearly separate from
remaining properties. One reason for this separation is the different working practice of between-
group PMs compared to other PMs. Finally, even if no model output is provided, four different
instance neighbors-based properties (size, coverage, outlierness, density) can be implemented.
This purely data-centered approach complements the rationales of many model-centric AL
strategies.

Next, we assess the property distribution using the tree visualization in the explainer (T7). We
construct a hierarchy using the Model Output dimension first, followed by the Instance Relations

dimension, and then the PM properties for a third layer. The resulting tree, shown in Figure 9,
shows a structured overview of the mapping from PMs to properties. One visually salient feature
is that PMs assigned within same sub-trees are highly similar, whereas PMs in different sub-trees
vary considerably in most cases. Another is that properties are not equally distributed across the
space defined by the two primary levels of the hierarchy (the Model Output and Instance Relations

dimensions of the taxonomy). We see that multiple properties fall within with the same combina-
tion of categories of the two dimensions. In particular, the combination Group Assignments and
Instance Within-Group contains six of our 15 primary properties.
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Fig. 8. Design space for PMs using the four orthogonal dimensions to characterize PMs. Following the
dataflow, the Model Output dimension (yellow) defines the input of the PM. As such, the Model Output

is the anchor to the ML domain. Crosscutting Model Output with Instance Relations (blue) is particularly
well suited to discriminate properties structurally, i.e., in a grid-based arrangement. Measure Functionality

(green) and Measure Valence (purple) form the remaining two dimensions of the design space, completing
the dataflow.

4.6 Functional Decomposition of Property Measures

4.6.1 Decomposition into Atomic Functions. Guided by the dimensions of the taxonomy, we
decomposed PMs into a set of eight atomic functions that simplify implementation. These eight
functions suffice to implement all of the PMs used in the explainer.

The functions are described here conceptually, primarily differentiated according to what data
types they operate on instances, sets of instances, numbers, or sets of numbers. Therefore, many
of these functions can be applied to the results of other functions, so they can be composed into a
cascade. Table 2 provides an overview of the eight functions, including a brief description.

4.6.2 PM Creation Using the Decomposition. Given the decomposition into atomic functions,
different PMs can be assembled by composing these functions. We propose the use of compact
signatures to compactly describe the computation of PMs [96]. Signatures enable to quickly grasp
the computational composition of a PM and enable their structural comparison. We show the
composition of PMs addressing the properties (1) uncertainty (with a least significant confidence
PM), (2) density (using lowest median neighbor distances), (3) compactness (identifying the low-
est cluster diameter), (4) disagreement (of a classifier ensemble assessed with the Jensen-Shannon
divergence), and (5) coverage (using highest minimum neighbor distances to already labeled in-
stances). We briefly describe how the decomposition to 8 atomic functions can be used to create
these PMs. Figure 10 provides details for the five composition examples, aligns the five implemen-
tations with the characteristics of the design space, and shows the five PMs in the explainer. It can
be seen that the characteristics of the implemented PMs distribute differently across the design
space.
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Fig. 9. Tree visualization of the explainer used to distribute the 15 properties of 605 implemented PMs across
the Model Output and the Instance Relations dimension. Most implementations use group assignments or
probability distributions of upstream ML models. The highest cardinality of properties in one crosscut of the
two dimensions is six for GroupAssignment versus InstanceWithinGroup.

Uncertainty: Least Significant Confidence: Input is a classifier that reports class probabilities
for a given instance. The PM estimates the uncertainty of these predictions by computing the
maximum (i.e., if there is no outstanding probability (confidence), the class prediction comes with
a high uncertainty). Using the atomic functions, the classifier represents a soft Assignment L, re-
turning class probabilities. An Aggregation A is used to compute the (maximum). Finally, with the
max-min Normalization N , instances with least confidences will yield highest PM output values,
leading to the functional signature PM (x ) : L → A→ N .

Density: Lowest Median of Neighbor Distances. To calculate a density property, we calculate
the lowest median distances of instance neighbors. A first step is the retrieval of a subset in the
vicinity of an instance using a Selection R. A Pairwise Measure D is applied to estimate the distance
between the current instance and all its neighbors. A statistical Aggregation function A returns
the median of the pairwise distances. The max-min Normalization N provides density results by
inverting the value domain of the PM outputs. The functional signature of this distance-based PM
is PM (x ) : S → D∗ → A → N . The ∗ indicates that function D is applied several times in the
computation, i.e., for each instance in the selection S .

Compactness: Lowest Group Diameter. One way to asses the compactness of a group of in-
stances is applying statistics on pairwise distances. Given a Partitioning P and a Pairwise Measure D
(distance metric), the distances can be calculated. A statistical Aggregation function A (maximum)
applied on the pairwise distances provides the diameter of the group The max-min Normalization

N leads to compactness results by inverting the value domain. The functional signature of this
compactness-based PM is as follows: PM (x ) : P → D∗ → N
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Table 2. Decomposition of PMs into a Set of Eight Atomic Functions That Simplify PM Implementations

Function Description

Partitioning P Maps instances of a given set to non-empty, disjoint subsets of that given
set. Examples are clusterers, classifiers, binning functions, or alterna-
tively interactions of users such as lasso selections.

Hard Assignment M Receives an instance, and returns a categorical identifier representing a
certain group the given instance belongs to. In our context, this identifier
may indicate a grouping that was created with a partitioning function.

Soft Assignment L Receives an instance, and returns a probability distribution representing
the likelihood of the instance to belong to one of k groups (e.g., classes or
clusters). Soft assignment functions use algorithms such as probabilistic
classifiers or fuzzy clusterers

Scoring S Receives an instance, and computes a single numerical result. The scor-
ing function may know (or be trained on) a data context X. Two classes
of ML models that implement such a function are regression models and
outlier analysis algorithms.

Selection R Takes an instance and a set of instances, and returns a subset of the given
set. Examples include retrieval operations revealing nearest neighbors or
instances within an epsilon range.

Pairwise Measure D Bi-function applied to two sets of numbers that computes a single nu-
merical result. This function can be a distance metric, but can also be
correlation-, diversity-, or divergence measure.

Aggregation A Applied to a set of elements, returns an element of the same type. This
may be applied to a set of instances, e.g., to receive the centroid of a group
of instances. An aggregation can also be used to condense a set of real
numbers using statistics (e.g., min, max, mean, median).

Normalization N Performs a re-scaling of numbers. When the range for the normaliza-
tion is known, a normalization can re-scale a number to the 0-1 range.
More general forms of normalization functions compute the minimum
and maximum range internally, requiring sequence of numbers as input.

Disagreement: Highest Divergence of a Probabilistic Classifier Ensemble. The disagreement of
classifier ensembles is an important criterion of the selection of instances. The PM uses the soft
Assignment L of multiple probabilistic classifiers (L∗) and applies a Pairwise Measure D (Jensen-
Shannon Divergence) and a statistical Aggregation functionA (mean) to compute the disagreement.
A min-max Normalization N completes the functional signature of this disagreement-based PM:
PM (x ) : L∗ → D∗ → A→ N

Coverage: Highest Minimum Neighbor Distance. Especially in early iterations of the labeling
process, it is relevant to achieve an equal spread of the training data. The PM does not require
a model output but retrieves a subset in the vicinity of an instance using a Selection R. The PM
is special in that only instances of the training data are retrieved. By this means, it is possible to
allocate new regions in the space that have not been labeled yet. A Pairwise Measure D (distance
metric) reveals distances to training data, a statistical Aggregation functionA returns the minimum
distance of the instance to the training data. An obligatory min-max Normalization N completes
the functional signature of this coverage-based PM PM (x ) : S → D∗ → A→ N .
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Fig. 10. Characterization and functional decomposition walkthrough for five sample PMs using the taxon-
omy (cf. Section 4) and the atomic functions (cf. Section 4.6). For replicability, this information is provided
for all 605 PMs in a supplemental materials table. (1) An uncertainty-based PM uses the probabilistic output
of a Naïve Bayes classifier. The measure functionality calculates the confidence (highest probability), and
the max-min normalization valence assigns highest values to lowest confidences. Bright colors in the ex-
plainer for least significant confidences indicate classifier decision boundaries. (2) A density-based PM uses
instance neighbors (nearest neighbor distances) and calculates the median neighbor distances. Valence (max-
min) inverts the value domain of PM outputs, so bright regions in the explainer show lowest values. (3) A
compactness-based PM uses the model output of a hierarchical clustering. Using the instance-within group
functionality, the measure functionality of the PM calculates the maximum of all pairwise distances (diame-
ter). Valence (max-min) inverts the PM outputs, revealing most compact groupings. (4) The disagreement of
a classifier is calculated using the probabilistic outputs of a classifier ensemble, applying the Jensen-Shannon
divergence measure to assess the disagreement across the ensemble committee. Bright explainer colors show
uncertainty, namely ensemble disagreement. (5) A PM based on data coverage identifies instances in the un-
labeled data that are far away from training set instances. No model output is required, nearest neighbor
distances to the training data are calculated, and the minimum distance is taken. The instance with the
highest minimum neighbor distance is most relevant, having the largest distance to the training set.

4.7 Implementations

For our analyses, we implemented 605 PMs in total, Figure 1 provides an overview. To ease the
implementation of PMs, we introduced and defined PMs formally in Section 3.2 and drew a con-
nection of PMs to their functional characteristic with pre-defined inputs and a numerical output.
In addition, in Section 4.6.1, we presented the functional decomposition of PMs into eight atomic
functions that allow the implementation of all PMs used in the explainer. In Section 4.6.2, we
demonstrated the applicability of the functional decomposition using five PMs with different char-
acteristics as examples.

In the following, we briefly outline the classes of ML models and model algorithms we used
for our PM implementations, before we provide details about the 605 concrete PM implementa-
tions. Details about the functional decomposition and the combinatorics provided with the design
space for PM implementations based on individual ML models are provided in the supplemental
materials.

4.7.1 ML Model Implementations. The Model Output dimension of the taxonomy opens the
design space for principal classes of ML models used in the ML domain. The syntax of the Model
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Fig. 11. Distribution of PM implementations across the Model Output and Instance Relations dimensions
(yellow and blue). Left: Fifty-six PM implementations can be created with a single classifier. At a glance, seven
types of measure functionalities (green) are used to compose these 56 implementations. Center: Seventeen
PMs are composed by a single clustering algorithm. Right: Currently an outlier algorithm forms a single PM.

Table 3. Algorithms for Classification, Clustering, and Outlier Detection
Used for the Implementation of PMs

Classifier Algorithms Clustering Algorithms Outlier Algorithms

NaiveBayes [48] AffinityPropagation [52] AngleBasedOutlierDetection [82]
KStar [37] Canopy [95] DistanceBasedOutlierAnalysis [76]
BayesNet [53] ExpectationMaximization [46] DynamicWindowOutlierFactor [97]
RandomForest [28] FarthestFirst [63] KNNOutlierAnalysis [105]
MultilayerPerceptron [67] SimpleKMeans [7] LocalIsolationCoefficient [144]
SVM [38] XMeans [102] LocalOutlierFactor [29]
SimpleLogistic [86] HierarchicalClustering

(CompleteLinkage)
[139]

HierarchicalClustering
(SingleLinkage)

[139]

HierarchicalClustering
(AverageLinkage)

[139]

Output categories (Group Assignments, Probability Distributions, and Scores), determines which ML
models can be used. In the following, we briefly list the concrete ML algorithms we used to imple-
ment and instantiate the 605 PMs in Table 3. The selection of involved algorithms does not claim to
be exhaustive. Rather it was our goal to use multiple models for either category. Criteria have been
the heterogeneity of ML models to see different effects by using PMs, as well as their popularity
and relevance in the ML domain to provide an intuitive access to the models and their internals.

We used the three classes of ML models to compose 605 PMs. Details about PM implementations
and about how we used the combinatorics of the dimensions of the design space are descried in the
supplemental materials. Figure 11 gives a brief overview of the distribution of PM implementations
across the Model Output (yellow) and Instance Relations dimensions (blue) for PMs based on a single
classifier (left), a single clustering algorithm (center), and a single outlier algorithm (right). In the
supplemental materials, we describe the distribution of PMs across the design space in detail.

4.7.2 PM Implementations. Figure 10 walks through only 5 PMs. In service of replicability, we
provide full details about all 605 implemented PMs with a table in the supplemental materials that
exactly characterizes every PM implementation according to the four dimensions of the design
space and the associated property. In the table, there is one row for each 605 implementation and
the four dimensions of the design space form the columns. In addition, the property of every PM
implementation forms a fifth column. As an example, the smallest margin [143] AL strategy is
created with a PM that uses (1) probability distributions as Model Output, (2) instance only as
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Fig. 12. Prototype for the interactive explainer of data characteristics and ML models using PMs. The PM
Gallery View (left) provides an overview of the outputs of all implemented PMs. Currently, one PM is se-
lected (red rectangle). Details of the selected PM can be analyzed in the PM Details View (center), selection
interaction indicated with red dashed lines. Users can activate the data space coloring mode or the instance
coloring mode, or both using the analysis controls panel (upper right). Other controls allow steering training
and testing data, as well as classifier selection and training. The PM Tree (lower right) enables structuring
PMs according to hierarchies or taxonomies and can be used as an alternative way to select PMs. In this
example, a Demo Dataset was used (cf. Section 6.1).

Instance Relations, (3) margin as Measure Functionality, and (4) smallest as Measure Valence. Its
entry in the supplemental table is ProbabilityDistributions[MultilayerPerceptron classifier], In-
stanceOnly[none], Smallest, Margin. This table provides developers with an exact recipe to repli-
cate the 605 PM implementations in their programming language of choice.

5 AN EXPLAINER FOR PROPERTY MEASURES USING VISUAL ANALYTICS

We built a visual explainer tool, referred to as the explainer below, to support the analysis of PMs.
We first describe the eight analysis tasks for PMs in Section 5.1, and then describe the three main
views of the explainer in the remainder of this section. We then demonstrate the use of the ex-
plainer to conduct visual qualitative data analysis through these tasks in Section 6. Our choice
to take a visual analytics approach was motivated by the iterative and incremental nature of HC
and AL, where the interplay between humans and ML models takes place within a feedback loop.
Moreover, the explainer was crucial in refining the PM taxonomy. The explainer is the result of
an iterative design, refinement, and extension process. The preliminary version, presented in the
workshop short paper that we extend [19], included only a prototype for the PM Detail View.

Figure 12 shows an overview of the explainer. The main views are the PM Details View (center),
the PM Gallery View (left), the PM Tree View (lower right), as well as an Analysis Controls View

(upper right). In the following, we present the design of each main view in terms of both visual
encoding and interaction designs.

5.1 Tasks for Analyzing Property Measures

We develop the formalisms of properties and PMs as a means, toward the end of articulating a
design space of instance selection strategies that encompasses both ML and VA approaches in a
unified way. The final taxonomy that we propose in Section 4 is the result of extensive analysis
built around these PMs. We now present a set of eight tasks that comprise that PM analysis process.
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Table 4. Systematic Characterization of Tasks, Each of Which Would Benefit from
Visual Explanation Support

Task Description PM # PM groups # Model # Data # Time #

T1 Analyze data characteristics in detail 1 1 1 1 1
T2 Compare across models 1 1 n 1 1
T3 Manipulate data for what-if analysis 1 1 1 n 1
T4 Change over time while labeling 1 1 1 i i
T5 Compare few PMs in detail m 1 1 1 1
T6 Compare few PMs over time m 1 1 1 i
T7 Overview across all PMs all 1 1 1 1
T8 Compare subgroups of PMs all n 1 1 1

These eight tasks were identified through the same iterative methodology that we used to develop
the properties, PMs, and the taxonomy itself: the combination of intensive literature review and
the use of the explainer for visual analysis. Just as the explainer and the taxonomy were each used
to refine the other, the analysis tasks themselves were refined in conjunction with the development
of the explainer that supported them.

PMs provide a means to analyze instance selection strategies systematically and with precision,
taking into account the characteristics of the input dataset and of the output of the ML model tied
to a PM. The labelling process also has a temporal nature when considered as an incremental series
of steps, where each assignment of a new label to an instance constitutes a timestep.

We describe the analysis tasks based on five principal aspects:

• Data#: the number of datasets involved
• Model#: the number of ML models
• Time#: the number of timesteps considered
• PM#: the number of PMs used to fulfil the task
• PM group#: the number of PM sets used to fulfil the task

Table 4 presents the eight tasks in terms of these five aspects. Every task (T1–T8) corresponds to
a different type of information need we observed in the iterative process of analyzing PMs. Every
information need addressed a unique combination of singles/multiples of (1) PMs, (2) PM groups,
(3) ML models, (4) datasets, and (5) timesteps. T1 focuses on the detailed analysis of data charac-
teristics in the most constrained scope: a single PM, ML model, dataset, and timestep. It can unveil
properties about the data such as Density or Outlierness. T2 pertains to comparing n different ML
models to each other in detail, in the context of the same PM and data, again for a single timestep.
T3 involves directly changing the data instances, for example to assess the sensitivity of the ML
model to these changes; we consider each of n changes to be a mutation of the data, in contrast
to the other tasks where the data itself stays fixed. Variants of changing data are adding unla-
beled instances, or modifying instances. T4 supports the analysis of the iterative labeling process
over time, where one unlabeled instance is changed to a labeled instance at each of i timesteps
(iterations). We also consider this task to involve changes of the data. T5 extends the scope from
inspecting the results from one PM to comparing between m PMs, with all other aspects held
fixed. T6 pertains to comparing both across PMs and across timesteps, analogously to T4. T7 is the
overview task with the scope of analysis across all available PMs, to understand their similarities
and differences broadly. Finally, T8 supports comparison between designated groups of PMs, for
example subgroups that correspond to a proposed taxonomy, to check whether it is aligned with
visually apparent characteristics of PMs. This task may take place when seeking evidence that a
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Fig. 13. Visual encodings used in the explainer.

taxonomy under consideration is valid, or to discover local regions of the PM design space suitable
for preservation in a new version of a taxonomy.

5.2 PM Details View

The central view of the explainer is the PM Detail View, showing characteristics of data and model
at a high level of detail for a single PM. We use scatterplots to represent instances in two dimen-
sions (2D). Multidimensional data is mapped to the scatterplot using dimensionality reduction
techniques, where the selection of the dimensionality reduction technique is a user parameter. De-
fault techniques in our approach are PCA [72] as a linear as well as non-metric MDS [83] and
t-SNE [91] as non-linear dimensionality reduction variants.

5.2.1 Visual Representation of Data. Every visual mark in the scatterplot corresponds to one
instance of the dataset (see Figure 13). We use shape to encode class information and color to
encode PM values. The dataset used for illustration purposes in this article contains four classes,
shown with four types of shapes (rectangle, square, triangle, and diamond). Although in other
systems it is common to use color for class labels, in our case we use the color channel to show PM
values. Labeled instances are a special case, because there are no PM values for them, since they
already have labels assigned, and are colored black. Accordingly, a black diamond shape represents
one instance of class “diamond” of the labeled training set. In contrast, unlabeled instances are the
data subset that is of particular interest in instance selection and labeling tasks. For this purpose,
PMs are always applied to unlabeled instances x to assess their relevance to be labeled next. We
use the unipolar colormap by Tominski et al. [131] to map the continuous numerical scores of
PM outputs to colors. By default, dark colors represent low PM output values; the colormap can
be inverted with a control parameter. The figures in this article use the default design, so bright
instances are most relevant (high PM output).

The explainer has a control for operating in ground-truth mode, where ground truth label in-
formation (the shapes) is shown even for unlabeled instances. This capability is useful for obser-
vational studies and ground-truth experiments, in particular for the analysis of instance selection
strategies over time as in tasks T4 and T6. The figures in this article use ground-truth mode, show-
ing the true label information as shapes also for unlabeled (colored) instances.

5.2.2 Coloring Modes. The Details View has two modes of color coding, Instance Space Coloring

and Data Space Coloring.
The Instance Coloring mode is well suited for tasks T1, focusing on data characteristics in detail

for a single PM and model, and tasks T4 and T6, showing changes over time as data instances are
labelled. We directly color the data points with respect to their PM values [18, 19]. This approach
is possible for 2D datasets (e.g., for PM validation) and for multivariate data in combination with
dimensionality reduction. The examples in Figure 14(a) show how the Instance Coloring mode can
be used to assess important data characteristics such as dense regions or outliers. It provides a very
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Fig. 14. The Details View has two modes of color coding, Instance Space Coloring and Data Space Coloring.
In the four examples Demo Datasets have been used (cf. Section 6.1).

detailed understanding for the behavior of individual instances, but requires substantial screen
space for the view. We demonstrate the analysis using the instance coloring mode in Section 6.2,
using Figure 17 as an example.

In Data Space Coloring mode, the explainer computes the PM across the entire visual (output)
space; that is, every pixel is considered a virtual instance and for which the PM is applied. The
result is a (quasi) continuous spectrum of PM values over the entire space, which we can easily
map to background colors, similar to techniques for the visualization of classifier decision bound-
aries [90]. If the identical normalization is used, then Data Space Coloring and Instance Coloring
yield identical colors. Data Space Coloring is particularly well suited for tasks involving many PMs
(T7 and T8), because it works well at small scales, and also supports many of other tasks including
comparing ML models (T2), what-if analysis of changing instance locations (T3), and comparing
PMs (T5).

Data Space Coloring is currently supported for all 2D datasets (instances mapped to pixels), and
for multivariate data with linear dimensionality reduction (PCA). It would be straightforward to
support any nonlinear dimensionality reduction techniques using methods that provide an inverse
mapping for any projection [51, 109]. The Data Space Coloring mode is used in Figure 14(b) to
explain model structures such as decision boundaries of a classifier (Naïve Bayes) or cluster regions
(kMeans), supporting T2.

5.2.3 Interaction Design. The Detail view enables different types of analyses (T1–T4), some of
which further benefit from additional user-interaction support.

For T2 (compare across models), we support switching the ML model that is used for a single
PM. A particularly relevant example for AL-based instance selection is the assessment of differ-
ences and commonalities between classifiers. The Analysis Controls View provides a control for
the algorithm selection to switch classifiers, as an example for the selection of concrete algorithms
from a set of algorithms of a ML model class. We demonstrate the comparative visual analysis of
different models in Section 6.3, using Figure 18 as an example.

For T3 (manipulate data for what-if-analysis), we provide two alternative interaction designs.
First, the explainer allows users to trigger hypothetical data manipulations and then observe the
model changes that would result from such changes. To do so, users can edit data directly by
interactively dragging instances, which triggers an instant recalculation of all models and PMs
allowing users to immediately assess the effects caused by these data changes. Just like the Data
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Fig. 15. PM Gallery View providing an overview of PMs. The gallery reveals the various properties that
data and models can have. Six PMs have been selected showing an interesting characteristic. The detailed
analysis shows that an underlying Naïve Bayes classifier produced this output. The six PMs reveal either the
uncertainty or the relevance property for instance selection and thus show inverse appearance.

Space Coloring mode, this interaction is suitable for both 2D and multivariate datasets. The drag-
and-drop interaction works for multivariate data in combination with dimensionality reduction
techniques, however only those that exhibit an inverse mapping so that the user’s changes in
2D can be mapped back to the multi-dimensional space [51]. We demonstrate the analysis using
data manipulation in Section 6.4, using Figure 19 as an example. The second interaction design
supports adding new unlabeled data to facilitate yet another type of what-if-analysis. A right-
click automatically adds an unlabeled data point, and the ground truth label information of the
new instance can be pre-defined in the Analysis Controls View. Similarly to data manipulation, this
interaction supports the identification and explanation of model responses to data changes.

For T4 (change over time), users can interactively select instances from the unlabeled candidate
set and assign them to the labeled training set. In the ground-truth mode where the labels (shapes)
of unlabeled data are shown, a single click on an instance selects and labels a focus instance auto-
matically. The increase of the training set automatically triggers re-training involved ML models
(see Section 4.7 for an overview of model implementations). In addition, the explainer shows the
output of refreshed PMs based on the updated model results automatically. We demonstrate the
analysis of change over time in Section 6.5, using Figure 20 as an example. Although the explainer
was primarily created in support of the research goal of studying the characteristics of instance
selection strategies, this capability for interactive feedback also has utility for carrying out labeling
in practice.

5.3 PM Gallery View

The PM Gallery View on the left in Figure 12 enables users to analyze all available PM implemen-
tations at a glance (605 PMs in our case). Small icons, one for every PM, provide a full overview
of all PMs and thus ease the assessment of similarities among PMs (T7). The interface design ap-
plies a small-multiples concept to show all PMs side-by-side in a grid. Every PM is represented as
a rectangular icon of equal size showing a small version of the interface used for the PM Details

View (cf. Section 5.2). The Data Space Coloring mode is the default, because it is well suited to
reveal model characteristics (cf. Figure 14(b)) and scales well to small screen spaces. The order of
PMs within the grid is adjustable. PMs can be sorted based on the name of PMs, or pre-defined
structural characteristics such as dimensions of taxonomies (cf. Section 4). Figure 15 demonstrates
the abilities of the gallery to provide an overview of all PMs and as a starting point for the analysis
of PMs in detail. In our analyses in Section 6.8, we demonstrate how we used the gallery shown
in Figure 23 to gain an overview of all our PM implementations.

5.3.1 Interaction Design. There are several ways to interact with the PM Gallery View: Mouse-
over functionality shows a tool-tip to highlight metadata about PMs such as name, description,
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Fig. 16. PM Tree View used to show three groupings of PM subsets according to their properties at the top
level and more detailed PM functionality at lower levels. Left: Density-based PMs differ by their statistical
aggregation functionality. Middle: Probability-based PMs based on different divergence measures. Right:
Grouping assignment PMs differ by the compactness and separation measures used.

or performance results (if the explainer is coupled with an evaluation process). The details button
enlarges every PM icon and displays available metadata on top of each PM as a second semi-
transparent layer. Users can select PMs of interest, either single PMs (the global selection model
will trigger a refresh in the PM Details View) or multiple PMs, for example to foster the visual
comparison of PM subsets (T5), which may also be analyzed throughout a labeling process (T6).
To support comparing a few PMs in detail (T5), the selected subset can be displayed in a PM Gallery

View showing PM icons at larger size with the details on. Example analyses based on T5 and T6
are demonstrated in the Sections 6.6 and 6.7 using the Figures 21 and 22. Selected PMs are always
highlighted with a red bold outline. Example uses of the gallery include Figure 12 where a single
PM was selected and Figure 23 in Section 6.8 (T7), where six similar PMs have been selected and
analyzed in detail.

5.4 PM Tree View

With the PM Tree View shown at the lower right in Figure 12, we have designed a visualization
that is capable of representing hierarchical partitions of PMs where individual PMs are shown
at the leaf level. The tree visualization supports gaining an overview of PMs according to some
designated hierarchical structure (T7), and supports the visual comparison of subgroups of PMs.
An example of an overview task using the tree view is shown in Section 6.8. An obvious use case
was the sub-division of PMs according to selected dimensions of our taxonomy (T8), as a means
for insight generation, taxonomy validation, and refinement. In particular, the tree view helped to
validate dimensions of our taxonomy in terms of its descriptive power; that is, their ability to accu-
rately demarcate a meaningful set of existing PMs. We note that the dimensions of our taxonomy
provided in Section 4 are orthogonal, so the taxonomy does not have an inherent tree structure.
However, the selection and prioritization of individual dimensions within a hierarchy supports
taxonomy construction and comparison, by investigating whether different top-level partitions
impose visible structure in the tree view. The flexibility to select and re-order dimensions provides
a dynamic and context-specific way to compare between designated subgroups of PMs, and their
alignment with the taxonomy (T8). In summary, the tree is able to depict relations between PMs
and external categorizations, such as the dimensions of our taxonomy.

5.4.1 Visualization and Interaction Design. To ease the readability of textual PM descriptions
the PM Tree View is laid out horizontally. PMs of the same category are aligned side-by-side as
a row of icons, similar to a line of PMs in the PM Gallery View. The icons in each row are also
vertically aligned to facilitate comparison between lines. Sub-trees can be interactively expanded
and collapsed to show the desired level of local substructure. Selections of single PMs, multiple
PMs, or all PMs in sub-trees are supported, each triggering the global PM selection action just as
in the details and gallery views. Figure 16 shows how sub-structures revealed by tree interaction
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can be analyzed in detail. The examples also give an indication for the assessment of PM subgroups
with the taxonomy alignment, which is demonstrated in Section 6.9 using Figure 26.

6 QUALITATIVE VISUAL DATA ANALYSIS

We provide insight into the various types of analyses we conducted throughout the iterative pro-
cess of elaborating properties and PM characteristics, and designing the taxonomy. In the fol-
lowing, we demonstrate examples showing how we used the explainer to perform analysis tasks
T1–T8 (cf. Section 5.1). In addition to the in-depth analysis and comparison of PMs, the tasks can
support the better understanding of the data and the trained ML models, as well as the behavior of
HC-based and AL-based instance selection strategies. While large parts of our analyses were con-
ducted in a formative manner, our focus in this section is to put PM implementations into action,
to validate properties, PM characteristics, and the taxonomy summatively.

6.1 Datasets

We now describe the datasets used in our visual analysis process and in this section. We created
synthetic data that was targeted to support different types of analyses.

For all examples of summative analyses shown in this article, we fixed two data synthesis pa-
rameters, whereas other synthesis parameters remained flexible. We fixed the number of classes to
four. With four classes, we explicitly address data labeling tasks that go beyond simple binary clas-
sification (like cats and dogs). Also, in the PM Details View these four classes will still be visually
discernible with the shape encoding (cf. Section 5.2). The second fixed data synthesis parameter
regards the dimensionality of the datasets, which is always two. This enables us to code the data
exactly in the way as they are shown in the explainer. Thus, we explicitly de-emphasize the analy-
sis of effects stemming from dimensionality reduction mapping errors. The two dataset synthesis
parameters that vary across different analysis are the distribution of instances of the same class
versus the distribution of classes of different classes, following the idea to have control over the
separation of classes [21].

With this setup, we characterize two types of datasets that have been used to demonstrate every
PM analysis task:

• Default Datasets: with 400 instances, equally balanced instances per class (100 per class),
various degrees of class intersections between any pair of classes.
• Demo Datasets: with 100 instances, equally balanced instances per class (25 per class), var-

ious degrees of class intersections between any pair of classes. Mainly used when intensive
user interaction and/or data manipulation was applied (T2, T3, and T4).

6.2 T1—Analyze Data Characteristics in Detail

Figure 17 shows explainer output illustrating how PMs can unveil important data characteristics.
Figure 17(a) shows the loaded dataset before any PM is applied. What can be assessed is the dis-
tribution of four classes (shapes), which are partially intersecting. We use a first PM to assess the
density characteristics of the dataset. The PM is based on instance neighbor distances and calcu-
lates the average (statistical aggregation). In Figure 17(b), it can be seen that four dense regions in
the dataset stand out. These regions match the class distribution of the data quite well. Figure 17(c)
uses an outlierness PM, where the outlier-based ML model [76] output provides outlier scores that
are directly be used by the PM where every instance is either assessed as an outlier or not. We then
turn the analysis toward cluster characteristics of the dataset and thus bring another unsupervised
ML model class into play. The PM in Figure 17(d) shows the centrality of instances according to
the centroid distances of a XMeans clustering. The XMeans clustering has created two groups, as
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Fig. 17. Instance Coloring mode for the detailed analysis of data characteristics (T1) using a Default Dataset.
(a) Blank dataset visualized in the explainer. The distribution of data and four classes (shapes) can be ana-
lyzed. (b) A density PM is selected, revealing four dense regions. These regions match well with the distri-
bution of the four classes. (c) A PM based on outlierness uses a outlier analysis model with a binary output,
assigning instances either to outliers or not. (d) A centrality PM highlights instances near to the center of two
clusters calculated by a XMeans clustering model. (e) A border PM emphasizes instances at cluster borders
of a hierarchical clustering.

Fig. 18. Data Space Coloring mode used for the visual comparison of the probabilistic output of classifiers
with an Entropy-based uncertainty PM (T2). In the scenario we assess the relation of the PM to six different
classifiers (from left to right: BayesNet, KStar, Multilayer Perceptron, Naïve Bayes, Random Forest, Simple
Logistic). The PM reveals regions in the data space where classifiers are unsure; in this case, the decision
boundaries. The visualization helps to understand the investigated property of the PM and unveils interesting
intrinsic properties of the classifiers. A Demo Dataset is used.

the PM values point toward two major regions in the dataset. The number of two groups, how-
ever, is opposed to the four classes of the dataset. While this discrepancy raises questions as to
whether the clustering was able to reflect the semantics depicted with the class labels, it seems
that XMeans did not define the two clusters arbitrarily: Each cluster contains two classes almost
exactly. Still, the example gives an indication that ML often comes with challenges related to the
choice of model parameters. In fact, the explainer enabled us to identify these characteristics about
data (and models) in detail. As a final step, we take the borders of a clustering into account. The
PM in Figure 17(e) uses a hierarchical average link clustering and calculates the centroid distances
to assess border characteristics. The clustering result formed four clusters, and highlighted border
instances, respectively. It can be observed that the size of the four clusters differs considerably: In
contrast to a huge cluster in the lower part are three rather small clusters at the top. One may infer
that the hierarchical clustering is sensitive to outliers, which would explain the very small cluster
at the upper left. The analysis of data characteristics also showed the influence on ML models
on the assessment of such characteristics. In particular, we observed that diverse clustering and
classification algorithms can compute considerably different model outputs.

6.3 T2—Compare across Different Models

We now use the explainer for a detailed visual comparison of different ML models using the same
PM and dataset. This usage scenario is motivated by the assumption that the output of classifiers
may differ considerably, leading to different results of PMs.
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Fig. 19. What-if-analysis to better understand the interplay of PM and model (T3) for an uncertainty-based
PM using Entropy, applied with a Naïve Bayes classifier: moving a single data instance of a Demo Dataset
(drag-and-drop highlighted with a red arrow) causes a considerable change of the decision boundaries of the
classifier. Similar effects can be observed for other combinations of PMs and ML models as well.

Using the control panel in the explainer (cf. Figure 12), users can select between different classi-
fiers. In our scenario, we iterate over six classifiers (BayesNet, KStar, Multilayer Perceptron, Naïve
Bayes, Random Forest, and Simple Logistic), the resulting PM Detail View is shown in Figure 18.
With the Data Space Coloring mode, the visual comparison helps to unveil considerable differ-
ences between classifiers. Given that the same uncertainty PM was used for the explanation of the
classifiers’ outputs, we affirm that the choice of classification model has a considerable effect on the
PM output, a characteristics that also plays an important role for many existing instance selection
strategies [118].

6.4 T3—Manipulate Data for What-If-Analysis

Figure 19 illustrates how Data Space Coloring in combination with a PM (Entropy in this case)
can be used to visualize and explain classifier internals such as the decision boundaries. Data
manipulation is used to show how the classifier reacts to changes in the data. In the example a
single sample is moved from the right border to the upper left, causing a considerable change of
the decision boundaries. Note that this approach is classifier-agnostic and can be used to visualize
classification boundaries of arbitrary classifiers.

6.5 T4—Change over Time While Labeling

Figure 20 demonstrates the iterations 1–4 of an interactive labeling process for a single PM. It can be
seen that every change in the training data has a considerable effect on the output of the PM. In this
example, the PM highlights the least significant confidence of a probabilistic classifier, indicating
that the predictions of the classifier change substantially during the first iterations. The Instance
Coloring Mode is chosen to highlight instances that would be selected next (brightest colors). In
iteration 1 the instances highlighted by the PM are rather arbitrary. The reason is simple: the PM
relies on the output of the probabilistic classifier that was trained with only a single instance (black,
diamond class). With the selection of a second instance after iteration 2, the situation is different:
The classifier partitions the dataset into diamonds and triangles, and the uncertainty-based PM
reveals a clear axis of uncertainty in between (highlighted with a dashed line), which indicates
the decision boundary of the classifier. The selection of a third instance (circle) again changes the
classifier prediction considerably: Now three class structures are visible. After having selected a
fourth instance (square), all four classes have been labeled exactly once. Again, the result of the
classifier has changed considerably.

6.6 T5—Compare Few PMs in Detail

The explainer provides different ways to identify interesting subsets of PMs (cf. Section 5). We now
compare a subset of a few PMs in detail. This analysis was motivated by the fact that for a single
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Fig. 20. Analysis of a data labeling process (T4, iterations 1–4), gray arrows mark the instances labeled per
iteration for a Demo Dataset; labeled instances were added to the training set, successively. A least signifi-
cant confidence PM is observed, emphasizing instances close to the decision boundaries of a classifier. The
decision boundaries are highlighted by dashed, bright lines. The observation of the labeling process reveals
the significant change of the model across the iterations, explained by changing PM scores.

Fig. 21. Visual comparison of some PMs in detail (T5). All PMs aim for the same property, use the same
Instance Relations implementation, but differ in their measure functionality (statistical aggregation): from
left to right kurtosis, max, mean, median, min, skewness, sum are used by the PMs. Kurtosis and skewness
differ considerably from the remaining PMs. At the top of every PM visualization, context information can be
displayed on demand, like PM descriptions or the characterization by the dimensions of the PM taxonomy.

property (density) for the same instance neighbors strategy (kNN) and the same measure valence
“high is good” (min-max normalization), two of the seven PMs appear to be very different, as it
can be seen in Figure 21. The explanation was provided with the PM Gallery, showing enlarged
visualizations of the PM output as well as textual descriptions of the PMs. The PMs differ in their
measurement functionality, i.e., in the way statistical aggregation is applied to condense the nearest
neighbor distances to a single number. From left to right, the PMs use (1) kurtosis, (2) max, (3) mean,
(4) median, (5) min, (6) skewness, and (7) sum. The detailed analysis reveals that (1) kurtosis and
(6) skewness look considerably different compared to the remaining five statistical aggregations.
The example reveals that variations in the implementations of a single dimension of the design
space can have a considerable impact on the PM output (here: Measure Functionality).

6.7 T6—Compare Few PMs over Time

Two aspects add to the complexity of T6. On the one hand, we aim at observing a labeling process
over time. On the other hand, this observation focuses on the comparison of several PMs. We
choose a grid-based layout for the visual comparison of PMs over time. The changes of PMs across
the labeling process are visualized from left to right, whereas the output of different PMs can be
compared vertically (multiple lines). Figure 22 shows the result of such a labeling process. In this
scenario, we have decided that a single labeling process was performed, and, in every iteration, all
PMs show the same state (within every column all PMs work with the same unlabeled dataset and
training set). The decisive benefit of this approach is the ability to compare both aspects temporal

developments and PM differences across a unified labeling process.
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Fig. 22. Observation of four different PMs (one per row) within a unified labeling process (left to right
columns) (T6) for a Default Dataset. Iterations 1, 2, 3, 4, 10, 15, and 20 are shown. Row 1: PM based on
density, showing smallest nearest neighbor distances for iterations. Row 2: PM based on coverage, showing
distances of unlabeled data to the training set. Row 3: PM based on relevance, showing the lowest entropy
of class predictions for iterations. Row 4: PM based on uncertainty, showing least significant confidences.
While density information (row 1) is very useful in early labeling iterations [24, 118], the density PM re-
mains constant over time. The reason is simple: the density is calculated on both unlabeled and labeled data,
thus there is no change throughout the labeling process. In contrast, the PM based on coverage (row 2) is
sensitive to the distribution of training data, and highlights unlabeled instances farthest away from training
data. The PM based on relevance (row 3) confirms already existing class structures and highlights instances
near already labeled regions. In contrast, the PM based on uncertainty (row 4) highlights regions where an
underlying classifier is most uncertain.

6.8 T7—Overview across All PMs

Figure 23 demonstrates how we used the PM Gallery View of the explainer to gain an overview
of the 605 PM implementations we are currently using. The gallery shows the considerable differ-
ences of the PM outputs. Another pattern that can be observed frequently is the complete inversion
of PM outputs (colors appear to be inverse), which can be explained by the Measure Valence dimen-
sion when applied in either way “high is good” and “low is good.” An interesting subgroup of six
PMs is selected (red bold outlines) showing PMs that are particularly similar: all PMs belong to
the uncertainty property (details described in the figure caption). A drill-down from the analysis
of all PMs to this subgroup of PMs is shown in Figure 25 where the PM Tree View is used (detailed
analysis in the caption). The tree representation clearly underlines that it can be used to validate
the alignment of PM sub-groups with dimensions of the taxonomy.

The PM Tree View is the second interface that allows gaining an overview of the 605 PM imple-
mentations. Using Figure 24 as an example, we structure all PM implementations by the property
they quantify. At a glance, it can be identified that many PM implementations within properties
are similar, whereas PMs between properties behave differently. This also builds a baseline for
downstream analyses like T8, the comparison between designated subgroups of PMs.
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Fig. 23. PM Gallery View providing an overview of PMs (T7) (lower half is truncated). The grid-based inter-
face shows icons of PMs using the Data Space Coloring mode. In the example, 6 PMs are selected that are
very similar. Analysis of the selected subset reveals that all PMs use the probabilistic output of the same clas-
sifier (Multilayer Perceptron). All PMs address the same property (uncertainty), used in AL for uncertainty
sampling strategies. However, The implementations of the six PMs differ. The aggregation functionalities
are Entropy, least significant confidence, and the Gini index. The three PMs in the higher row are instance
neighbor-based, i.e., they also take the information from neighbors into account. As a result, the PM output
is more smooth and robust compared to the output of the three PMs based instance-only implementations.

Fig. 24. Overview of PMs we implemented for the visual analytics explainer tool. PMs reveal data or model
output characteristics and can, e.g., be used to support data labeling tasks. Small icons show the output of
every PM, all calculated for the same dataset. The explainer reveals the variety of different characteristics,
which at a coarsest level can be subdivided into 15 primary properties. The tree visualization of the explainer
is used to align PM implementations to the properties they explain.

Fig. 25. PM Tree View expanded to the local substructures uncertainty and size. We re-identify the six PMs
from Figure 23 that have previously been selected. Now, it is evident that these particularly similar PM out-
puts all belong to the same property (uncertainty). Similarly, the differentiation between instance neighbors
and instance only can easily be assessed using the view. These analyses help to validate PM implementa-
tions, as well as the validation of the descriptive power of the taxonomy. To give another example for the
taxonomy validity, all PMs within the uncertainty property are fairly similar, but differ considerably to the
group of PMs aligned with the size property.

6.9 T8—Compare between Designated Subgroups of PMs

In line with the findings we had in the overview task (T7) previously, we further focus on
the smaller subgroups of PMs. Of particular interest are commonalities and differences of PM
subgroups. As an ultimate goal, we use T8 to validate the taxonomy by aligning subgroups of PMs
with the taxonomy. For that purpose, we use the PM Tree View of the explainer (cf. Section 5.4)
to analyze the sub-division of PMs into groups according to the taxonomy.
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Fig. 26. Left: Tree visualization used for the visual comparison of designated subgroups of PMs of the colli-

sion property (T8). Right: Detailed analysis of a selected PM. Overall, the tree reveals that eight subgroups
in the design space contain implementations for the collision property. The PMs in the upper part of the
tree use a probabilistic classifier output and assess collisions between groups. The two subgroups below use
the groupings of clustering algorithms to facilitate between-group assessment. At the bottom, four similar
PM subgroups stand out, following yet another approach: The group assignments of classifiers are used in
combination with instance neighbor comparisons, to identify local collisions of class predictions for this De-
fault Dataset. The selected PM (largest vote cardinality) highlights the region in the dataset where neighbor
instances have different class assignments. In the PM Detail View at the right, two regions with bright colors
stand out: here, neighboring instances are classified most differently, with particularly severe class collisions.

One example case is the detailed analysis of one property together with all PM implementa-
tions supporting this property. We decide to focus on the collision property, as it contains the
largest number of PM implementations (cf. Figure 24). While Figures 8 and 9 show the alignment
of properties with the design space, we use the explainer to align all PMs of the collision property
with designated subgroups. Figure 26 shows how the PMs align across the subgroups.

7 DISCUSSION

Our iterative refinement process achieved a characterization of PMs and the PM taxonomy using
the explainer that was co-developed with them. We now discuss additional insights that arose from
that formative design process and our summative analysis of them, discuss aspects that we did not
formalize explicitly or add to the taxonomy, and outline ideas for future work.

7.1 Role of Datasets

The design space for PMs has no restrictions or limitations with respect to the dimensionality
of the applied dataset. However, the visual explainer uses a 2D representation of data, which re-
quires dimensionality reduction for multivariate data. While using multiple dimensionality reduc-
tion techniques visualized side-by-side may help mitigating problems stemming from a singleton
algorithm building upon a single optimization criterion, one overarching question remains: Can
the error introduced by dimensionality reduction be quantified for visual-interactive labeling
tasks? Such an assessment would help to make visual-interactive labeling interfaces more effective.

7.2 Role of ML Models

The analyses about the explanation of different classifier characteristics (cf. T2 in Section 6.3) re-
vealed that the internal structures of classifiers differ considerably. Thereby PMs played an impor-
tant role as they showed to be a useful means to reveal internal classifier characteristics (e.g., areas
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of confidence and decision boundaries). Overall, there is a dependency between the selection of
PMs, ML models and the achieved output performance, which is worth a further investigation.

Interesting research questions are

• Which PMs are most promising in combination with which ML model?
• Is it possible to infer good model choices, given the idea to implement a PM for some prop-

erty?
• Which role can visualization play to support appropriate model choices?

7.3 Potential Extensions beyond Model Outputs to Models

In the construction of the taxonomy and the design space, we have tried to focus on commonali-
ties between the different domains and perspectives rather than on domain-specific aspects. This
perspective has led us to some model-related abstractions. One limitation of our approach is that
PMs use the model output as an abstraction, which does not allow access to any internal informa-
tion from an ML models. However, some AL strategies require more internal information from the
classifier. Variants of AL-based uncertainty sampling strategies are one example, often measuring
the distance of the instance in feature space from the closest class boundary. Besides, error reduc-

tion schemes [117] are the class of AL strategies that particularly make use of classifier internals.
These strategies try to select instances that either would change the model most during training
(expected model change) or that would reduce the expected generalization error of the model more
(expected error reduction) [117]. A second limitation is the focus on the output on one particular
type of model output per PM. While we support using ensembles of the same model class, the
taxonomy currently does not envisage to take model outputs from different model classes, such
as results from a classification and a regression model. If such complexity is needed, then the
definition of PMs and the constraints in the design space could be adapted.

To cope with limitations for model-centric AL strategies, we outline four possible extensions
that may be characterized, abstracted, and integrated into the taxonomy. An obvious approach
would be to extend the Model Output dimension of our taxonomy through a PM-Model Interplay

dimension, that is able to cope with the following.

• Model data: providing additional (specific) information about ML model characteristics,
such as decision boundaries.
• Model usage: providing access to trained ML models to allow PMs gaining specific and

model-internal information
• Model training: allowing PMs to modify or re-train ML models, e.g., to assess expected

error changes
• Multi models: allowing PMs to access more than one type of model class.

7.4 Applications beyond Data Labeling

We have created the PM taxonomy with a focus on data labeling tasks, but the definition of PMs
as well as the design space allows the usage of PMs for other applications. It would be conceivable
to compare PMs with quality metrics as they exist in the visualization community, for example
to assess cluster separability [114]. Both approaches have in common that output values are pro-
vided for single instances. An interesting difference is the application of PMs in early states of
data science workflows (data, model), while quality metrics in the visualization community pri-
marily assess late stages, such as the visual space after the view transformation in a visualization
pipeline [36].

Another application context is provided with eye tracking technology and the wealth of
existing eye tracking data. Similarly to our qualitative visual data analyses in Section 6, the visual
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comparison of these patterns with the output of different PMs is feasible, possibly leading to
meaningful relations.

Finally, it would be interesting to have a stronger focus on regression model rather than classi-
fication models. The classification-based focus is due to the the categorical data labeling task. The
analysis of PMs for quantitative supervised ML tasks is a natural area for future work.

7.5 Combination of Property Measures

The formalization of PMs, the taxonomy and the explainer is a stepping stone toward the synthesis
of instance selection strategies with better performance than existing strategies. The foundation
provided in this article will support strategy synthesis based on carefully chosen combinations
of PMs. Given the insights gained with our analyses (cf. Section 6), it must also be assumed that
such combinations of meaningful properties may even need to change during the labeling process
that would mean a paradigm change, given that existing instance selection strategies do not change
their “ingredients” during a labeling process. We hope that the synthesis of such instance selection
strategies will be the subject of fruitful future work.

7.6 Role of Dimensionality Reduction

We use dimensionality reduction as a standard approach to map multivariate data into 2D, i.e.,
into the visual space represented with scatterplots. While dimensionality reduction is not the core
focus of this work, we still want to highlight two discussion points. First, dimensionality reduction
always introduces errors when multivariate data is mapped into 2D and there is a huge space
of possibilities to quantify these errors [50] at different granularities (dataset-global or instance-
based) and in the way how errors are conveyed to the user (visually or non-visually). Depending
on the scope, adding visual quality assessment for dimensionality reduction techniques can be a
useful extension of the explainer. Second, our Data Space Coloring mode (cf. Section 5.2) requires
an inverse projection from the visual space back into the original data space. Again, we recall
that we do support Data Space Coloring for 2D datasets and for multivariate datasets with linear
dimensionality reduction techniques like PCA, but do not yet support non-linear techniques for
this mode. Solutions to inverse projections for also non-linear dimensionality reduction techniques
have been presented recently [51, 109] and may be added to the explainer in future.

7.7 Interaction Scalability

The explainer provides user interaction to support data manipulation and what-if-analyses. While
these types of analyses have proven to be quite useful especially for T3 (cf. Section 6.4), they have
limitations regarding scalability. Especially the drag-and-drop interaction of instances in the visual
space is computationally expensive. The motion of instances requires an inverse mapping from the
visual space to the data space as well as the recalculation of ML models attached to the focused
PM. In most cases when we conducted what-if-analyses, we used Demo Datasets, as opposed to
large datasets that are not real-time capable.

8 CONCLUSION

We presented, formalized, and characterized the idea of a PM as the lowest-level building block
to synthesize instance selection strategies. PMs receive an instance as input and provide a char-
acteristics about the involved data or the output of a machine learning model, or both. Instance
selection strategies, commonly used in the data labeling process in machine learning and in visual
analytics, can now be characterized by their properties as their common level of description
and be quantified with PMs. With our PM taxonony, we have defined a design space for PMs
with the descriptive power to differentiate between PMs and the generative power to reveal

ACM Transactions on Interactive Intelligent Systems, Vol. 11, No. 3-4, Article 20. Publication date: August 2021.



A Taxonomy of PM to Unify Active Learning and Human-centered Approaches 20:37

designs for novel PMs. The process of defining and characterizing PMs and the PM taxonomy
was accompanied by the development of a VA explainer tool that was useful to assess data and
model characteristics revealed by PMs, gain insight into the interactive data labeling process,
and validate decisions made regarding PM implementation and taxonomy design. For summative
validation purposes, we presented a series of qualitative visual data analyses along eight carefully
designed analysis tasks. With the proposal of PMs, the PM taxonomy, and the explainer using
PMs, we have made one step further toward the creation of novel instance selection strategies
that may exploit the full power of data and model properties.
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