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Figure 1: The scatterplots in (a) and (c) visualize the dimensionality reduced representations of two distinct subspaces of a
high-dimensional dataset. The matrix visualization (b) shows the discrepancies between the distances in the two projections.
The point’s color in the projections encodes for data labels and serve as visual connection between them.

ABSTRACT
We propose Compadre, a tool for visual analysis for comparing
distances of high-dimensional (HD) data and their low-dimensional
projections. At the heart is a matrix visualization to represent the
discrepancy between distance matrices, linked side-by-side with
2D scatterplot projections of the data. Using different examples
and datasets, we illustrate how this approach fosters (1) evaluating
dimensionality reduction techniques w.r.t. how well they project
the HD data, (2) comparing them to each other side-by-side, and
(3) evaluate important data features through subspace comparison.
We also present a case study, in which we analyze IEEE VIS au-
thors from 1990 to 2018, and gain new insights on the relationships
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between coauthors, citations, and keywords. The coauthors are pro-
jected as accurately with UMAP as with t-SNE but the projections
show different insights. The structure of the citation subspace is
very different from the coauthor subspace. The keyword subspace
is noisy yet consistent among the three IEEE VIS sub-conferences.
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1 INTRODUCTION
This article addresses the problem of exploring and comparing
high-dimensional (HD) data through multiple scatterplots com-
ing from multidimensional projections, and a matrix visualizing
the similarities and differences between them. Analyzing high-
dimensional data is a core challenge in the realm of data science.
One important aspect of it is to visualize these data to discover
and understand patterns such as cluster structure or the impor-
tance of features/dimensions [10]. HD data are usually represented
as a 2D scatterplot that shows a dimensionality reduced version
of them. Popular dimensionality reduction (DR) algorithms [35]
include PCA, MDS, t-SNE, and UMAP.
There exists a plethora of work on different DR methods [2,

34, 37, 38, 46, 47, 50], and on how HD data can be visualized in
general [3, 25]. However, so far there has been little attention given
to the role of comparison tasks in HD data analysis. Yet, comparison
is a core task in the exploratory process. An analyst might for
instance want to

• (HD-2D) compare how differences between points in HD
differ from their projections in 2D,

• (2D-2D) compare different 2D DR projections to each other
• (Sub-Sub) compare subspaces with different dimensions
(also known as feature spaces) to each other.

Similarities between data points, that analysts are looking for,
are the fundamental basis for defining typical patterns in data,
like density, clusters, or outliers, whether in HD space [8] or in
2D scatterplots [39], but also DR errors such as missed or false
neighbors [35].

Spatialization techniques like DR techniques summarize pairwise
similarities of HD data as 2D proximity between points in a scat-
terplot. In contrast, matrix visualizations put the data points into
the columns and rows and encode pairwise similarities between
these points as colored cells. Both approaches have complemen-
tary strengths and weaknesses. In a scatterplot clusters appear,
for instance, as groups of points close to each other [40], while in
ordered matrix visualizations they show up as blocks along the
diagonal [21]. The choice of data features, similarity metric, type
of DR, and parameters highly impact the resulting 2D layout sum-
mary of the data [35], while for matrices, re-ordering [6, 15] and
color scale are the key factors. The main idea of our approach is to
display different facets of the HD data focused on similarities, but
also visualizing their discrepancies, and coordinating these comple-
mentary views with interactions to support the (HD-2D), (2D-2D),
and (Sub-Sub) analytic tasks mentioned above.

To illustrate this approach, we implemented Compadre, a visual
analysis tool for comparing distance matrices. In Compadre we
choose to display two scatterplot DR visualizations of the data side-
by-side, and add a matrix view of their similarities in-between (Fig-
ure 1). In a nutshell, the cells in the matrix show the discrepancies
between the pairwise distances of the left and the right scatterplots.
Blue cells of the matrix code for closer distance in the left projection
and red cells in the right one, white for no difference. Compared to
alternative choices, the matrix visualization offers several benefits:

• It fosters a different mental model and reading rules, specifi-
cally compared to a scatterplot usually associated with DR
data directly, avoiding misleading interpretations;

• It puts the emphasis on the distances (colored cells) rather
than the points;

• It introduces no error as all actual pairwise values (difference
of distances) are color-coded and displayed, although it re-
quires a good reordering algorithm to make block patterns
or outliers stand out.

We explore how these interlinked visualizations can help users to
discover patterns and understand features of the HD data in terms
of the (HD-2D), (2D-2D), and (Sub-Sub) tasks. We also illustrate the
practical relevance of our approach using a case study on analyzing
the IEEE VIS paper data from 1990 to 2018 [26]. Using our approach,
we can better understand which DR algorithms work better for this
data. We can also analyze similarities in different subspaces, such
as how coauthors compare to the keywords they use. This analysis
reveals patterns such as coauthors having a different structure
than cited authors, the latter being consistent with the VIS sub-
conferences.

In summary, we make the following main contributions:
• We propose a framework to visually compare different di-
mensional spaces and sub-spaces relying through matrix
visualizations and multidimensional projections,

• we illustrate this approach through Compadre, a visualization
prototype, and

• we conduct a case study with author data of IEEE VIS publi-
cations from 1990 to 2018.

2 BACKGROUND AND RELATEDWORK
We review related work on HD data analysis, the usage of matrix
visualization, as well as the role of comparison tasks in visualization
tools and techniques.

2.1 Visual Analysis of high-dimensional data.
Visualizing HD data is a major challenge in Visual Analytics [33].
Parallel Coordinate Plots [25] represent HD data items as polylines
crossing parallel feature axes. Another alternative is to combine
multiple scatterplots of axis-aligned 2D subspaces of HD data in a
Scatterplot Matrix (SPLOM) and its generalization to handle nom-
inal data (GPLOM) [22]. But HD latent structures like clusters or
outliers can remain hidden along those dimensions. Interactive
approaches have been proposed to discover subspaces where these
patterns lie. Beyond semi-automatic approaches like ProjectionPur-
suit [16] and GrandTour [3], iPCA [27], InterAxis [28], or Explain-
ers [17] use interactive Principal axes to let user explore the HD
space by manipulating feature axes and items in the 2D projection.
Other techniques like SIRIUS [14], IF-FI tables [49], or brushing
dimensions [48] propose to support discovery of relationships be-
tween low-dimensional clusters and HD features by using dual
coordinated scatterplot projections of instances and features. Tools
like SeekAView [29] or Clustrophile(2) [11, 13] support interactive
cluster and outlier discovery through a guided exploration of data
subspaces. All the above techniques rely on linear projections of
the data to maintain explainable relationships between 2D patterns
and HD features.

However, some latent structures can not easily be depicted through
linear projections. Nonlinear DR techniques like t-SNE [50] or
UMAP [34] have been developed to preserve some measure of
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similarity between pairs of HD items and their low-dimensional
projections. As all the structural information of HD data is encoded
into these pairwise similarities, these techniques are better able to
represent nonlinear manifold structures revealing cluster patterns
otherwise hidden by linear projections. Still, all projection tech-
niques, linear and nonlinear, are subject to distortions which impair
the analysis of HD latent structures based on 2D patterns [35].
Sleepwalk [36] addresses that issue by using two side-by-side pro-
jections of the same data linked through interactive HD similarity
coloring [4] to reveal how latent structures unfold in different views.
This coloring however is relative to a single item at a time which
requires the user to explore all items one by one. In Compadre, we
use a third view between the two projections. This matrix gives an
interactive overview quantifying all the differences and similarities
between the two projections. In doing so, it guides the user toward
interesting patterns, draws a more trustworthy picture of the HD
data, and enables the discovery of actual data traits beyond the
artefacts of the projection.

2.2 Matrix Visualization
HD data can be visualized with matrices where the rows depict
the n items, the columns them dimensions, and each cell depicts
a value, usually using a quantitative or diverging colormap. This
technique has been used since the end of the 19th century [32] and
received a lot of attention in the 20th century. The key issue to
matrix visualization is the use of a reordering algorithm, sometimes
called seriation, that selects an order for the rows and the columns
so that readable and meaningful patterns appear [7]. This is possible
because the content of the matrix is invariant to the row and column
orders.
Visual matrices can be used to visualize data tables with color-

coded values directly. They can also visualize a distance matrix
or a similarity matrix of all pairs of items of HD data or the adja-
cency matrix of a graph, in which case they are square and usually
symmetric. When the graph is directed, its adjacency matrix is not
symmetric. If the graph is bipartite, its adjacency matrix is not even
square and is equivalent to a data table [7].

In our work, we do not visualize high-dimensional data directly
but instead differences of distance matrices. When appropriately
ordered, the resulting matrix shows a visual configuration where
cohesive groups and outliers are clearly visible. The distance matrix
or similarity matrix is also the basic information that DR methods
are trying to preserve when projecting data, so distance matrix
visualization and DR visualization show different interpretations
of the same data. However, they exhibit very different artifacts.

Matrix reorderingmethods try to group similar lines and columns
together. However, the order can only arrange items in one dimen-
sion so many orders can be computed that optimize some grouping
criteria at the expense of others. Still, the final matrix visualiza-
tion shows all the data and does not suffer from overplotting if
enough pixels are available. On the other side, DR methods use
two dimensions instead of one to find an arrangement that respects
HD distances in 2D, with other trade-offs regarding quality and
artifacts: more degrees of freedom are available at the expenses of
overplotting problems and visual artifacts such as missed and false
neighbors [35].

2.3 Comparison Tasks in Visual Data Analysis
Visualization supports a variety of different tasks [1]. One very
common task that underlies many visual analysis problems is com-
parison [18, 19]. Users might be interested in comparing entire
datasets to each other, such as study data stemming from different
populations, different subsets and facets of data, or the results of
different data analysis algorithms. To visually encode for compari-
son, Gleicher et al. [19] suggest to either juxtapose visualizations,
superimpose them, or to compute values that quantify differences
directly and encode those. Each of these approaches has benefits
and drawbacks and needs to be carefully evaluated for the problem
at hand. Our work also focuses on the task of comparison, specifi-
cally of different facets of high- and low-dimensional spaces that
can be depicted as distance matrices.
Close to our work are those that seek to support comparison

tasks in high-dimensional data analysis in general and the process
of dimensionality reduction in more detail. Currently such compar-
isons are most commonly performed through metrics such as stress
or strain [24], which do not only allow to compare the quality of
DR mappings, but also to compare different 2D projections to each
other. In the latter case, usually the projection with the best metric
value is chosen.

These metrics can also be fed into a visualization tool, which then
allows to compare different projections. EmbComp [20] is a recent
approach that seeks to bridge the usage of metrics and interactive
visual analysis for analyzing different word embeddings. Another
closely related approach is DimStiller [23], which guides the user
in the process of comparing and selecting different DR algorithms.
The main idea is to leverage workflows that simplify the process
of defining and comparing different DR pipelines. Others focus
less on the analysis of DR results per se, but allow the interactive
exploration of different dimensional subspaces, such as the work
by Tatu et al. [45].
Closest to our work is VisCoDeR [12] which uses visual param-

eter space analysis [40] to compare 100s to 1000s of different DR
projections. An overview map allows to arrange these projections
by similarity and supports tasks such as analyzing the sensitiv-
ity of DR parameter settings. Instead of focusing on comparing a
large number of DR results, our main objective is to better sup-
port the piece-wise comparison of DR projections and their high-
dimensional spaces and sub-spaces. In VisCoDeR, this is supported
by a side-by-side view that juxtaposes a few selected DR results.
This view allows to inspect projections inmore detail, and the actual
comparison is done by linking and brushing selected points across
the juxtaposed projections. This approach however falls short in
terms of its locality. As comparisons can only done point-by-point,
it is not possible to get a quick overview over major differences,
nor is it possible to spot regional and global patterns. In this paper,
we show that matrix visualizations are an adequate approach to fill
this gap by directly encoding the differences between all points of
different projections and spaces.

3 GENERAL APPROACH
We now outline the general ideas behind our approach, starting
with the lens through which we view HD data for our purpose,
then we show three examples of analysis tasks that are supported
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Figure 2: Visual encoding choices for the considered analy-
sis tasks. (a) HD-2D: The HD data, or a subspace, gets pro-
jected with a DR algorithm, visualized by a scatterplot (SP),
and compared with a visualization of the discrepancy ma-
trix. (b) 2D-2D: The HD data or a subspace of it, gets pro-
jected in two different ways, each visualized as scatterplot,
and compared with a visualization of the discrepancy ma-
trix. (c) Sub-Sub: Two different subspaces of the HD data, get
projected with the same DR method, each subspace projec-
tion visualized as scatterplot, and comparedwith a visualiza-
tion of the discrepancy matrix.

with the approach, and finally we present some design alternatives
that we initially considered.

3.1 Data
The main idea behind our approach is to view HD data through the
lens of pairwise distances between points. Formally, we consider
HD data made of n items (or cases), each of them described by
anm-dimensional real vector v ∈ Rm . Therefore, HD data can be
represented as a n ×m table D where each row i is a vector vi . A
very common approach to visualize such HD data is based on the
pairwise distances between points. Formally, these distances are
defined through a distance matrix Dist(n,n) built fromD: Dist(i , j) =vi −vj

. A very common approach based on that idea is the family
of multi-dimensional scaling (MDS) techniques [30].
One benefit of the idea of pairwise distances is that it is flexi-

ble and applies equally well to subspaces, projections, and the HD
data itself. Subspaces of anm-dimensional HD dataset are simply
subsets ofm′ dimensions, withm′ < m. Projections, on the other
hand, usually do not use a subset of the original dimensions, but
are defined instead as a linear or a non-linear combination thereof.
In visualization, the most typical projections are to 2D, as it can be
directly viewed by a human. While in theory 3D projections are
also possible for visualization, they usually add more drawbacks
than benefits [41]. Projections are most commonly created by di-
mensionality reduction (DR) methods. PCA [37], for example, tries
to linearly project the data in such a way, that the variance of the
projected points is maximized. ISOMAP [46] uses a geodesic met-
ric to compute the shortest paths on a neighborhood graph of the
HD data. It then uses MDS [47] to project the data according these
geodesic distances. In doing so, ISOMAP can unfold non-linear man-
ifolds in the HD data. Again, pairwise distances are well-defined

in these low-dimensional projections and are also used by human
observers for interpreting them [42].
Another important factor is the definition of the distance itself.

The Euclidean distance is the most common definition, especially
in 2D, but others such as the cosine distance or geodesic distance
area also commonly used in HD.

Our main idea is using the pairwise differences between distance
matrices of different spaces and projections as a natural way to
compare them with each other. We call the result a discrepancy
matrix. There are many ways to measure the discrepancies be-
tween two distance matrices. To start with, we can simply measure
the discrepancy of two distances matrices by normalizing each
distance matrix by dividing each cell by its maximum value. The
normalized distance matrices of two different spaces or projections
can then be subtracted from each other. We used this approach in
the sequel, so all distances are normalized before comparison.

3.2 Analysis Tasks
A logical choice to visualize a discrepancy matrix is a matrix visu-
alization. In our matrix visualization each cell encodes the discrep-
ancy between the pairwise distances of points. We use a diverging
color ramp to encode these values, e.g. from red over white to blue.
Red means that two points are much closer in space A than in space
B. Blue means the points are closer in B than A. White means they
have a similar distance in both.
We use this visualization to support different analysis tasks see

Figure 2 for an overview over these three tasks:

(1) Analyzing DR methods (HD-2D). A very common task is an-
alyzing how well DR algorithms projects HD data to 2D space.
Projecting HD data to 2D creates distortions [35]. Those distortions
stem from the fact that the n-dimensional space usually cannot
be mapped to correct distances in 2D (crowding problem). Hence,
approximations need to be used and errors occur. Traditionally,
those discrepancies are summarized into a single number such as
stress or strain.
Using a matrix-based approach allows to get a much more fine-

grained insight into which distances were mapped correctly versus
those that were heavily distorted in the projected 2D space. Fig-
ure 3a and Figure 3b show two examples of how the matrix can be
used to understand the discrepancies between HD data and 2D pro-
jections, in this case of the well-known SWISSROLL data set [44].
The points of the SWISSROLL dataset lie on a non-linear manifold
that resemble a 3D swiss roll cake. We use this data as it is easy to
understand for illustrative purposes.
On the left of each figure, there is a 2D scatterplot projection

of the data using t-SNE (3a) and PCA (3b). PCA is a linear DR
method, so it is unable to unroll the manifold. In contrast, t-SNE, as
a non-linear DR method, can unroll the manifold if carefully param-
eterized [51]. The matrix visualization on the right of the figures
show the discrepancies between the actual HD SWISSROLL (in this
case three-dimensional) and the two 2D projections respectively.

We can see that PCA produces lots of errors called false neighbors.
This can be seen by the many blue cells in the matrix that indicate
that points in PCA get closer than in the original HD SWISSROLL
data. Two blocks 3b(ii) and 3b(iii) of blue cells appear in the matrix.
The brown, pink, and purple points get squashed together (bottom
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(a) t-SNE comparison to HD (b) PCA comparison to HD

(c) t-SNE comparison to PCA

Figure 3: SWISSROLL dataset: The matrix in (a) shows the
discrepancy of a t-SNE projection to its HD data, while (b)
shows the discrepancy of a PCA projection on the same HD
data. The manifold got unfolded by t-SNE (c) left, and ig-
nored by PCA (c) right. The discrepancy matrix quantifies
the differences between the two projections. In all cases, we
use the normalized Euclidean distance to build the discrep-
ancy matrix.

right block 3b(iii)) while green, yellow, and purple get squashed
with blue, orange, and red (middle larger block 3b(ii)). While relative
distances within and between adjacent colors are well preserved
(large white blocks along the diagonal) except for points on the roll
part tangent to the direction of the projection like cyan and green,
or brown and pink (the blue blocks reach the diagonal).

In contrast, the t-SNE matrix shows red cells at the corners (3a(i))
and blue cells along the diagonal. This is an indication that some
distances got larger (red) generating missed neighbors — on the
scatterplot view, this is the case for blue and brown points for
instance, which have been projected farther apart than their actual
HD distance while tSNE unfolded the roll. The light blue along
the diagonal indicates that the distances of pairs of adjacent points
along the manifold got slightly shorter instead.

(2) Comparing DR methods (2D-2D). We can use the very same
idea to directly compare two 2D projections to each other, after
they have been projected from HD. Figure 3c shows a direct com-
parison of the two DR techniques mentioned above, t-SNE and
PCA, again on the SWISSROLL dataset. In fact, the distance matrix
of a t-SNE projection (3a) is very different from the distances in
PCA (3b). Comparing those distance matrices can lead to interesting
insights (Figure 3c).
Looking at t-SNE and PCA ignoring the matrix and pretending

we ignore the original swiss roll latent structure, we could see
qualitative differences, t-SNE keeping points of each color well

Figure 4: MNIST handwritten digit dataset: UMAP projec-
tions of the full images (left) and of the bottom half images
subspace (right). The matrix is ordered by digits and uses
optimal leaf-ordering within each digit. 0s and 6s (a) and 4s
and 9s (b) are highlighted through interactive box selection
of the top left corner of the matrix. 0s and 6s are more sim-
ilar if we look at the bottom half of their image, the same
for 4s and 9s, hence the red blocks (a) and (b) in the matrix.
While some 4s and 9s are more different from 6s and 0s if we
only look at the bottom half of the image (one almost verti-
cal line versus half a circle) than if we look at the full image,
as distances are normalized over all pixels in each subspace
independently, hence the block of blue cells (c) in the ma-
trix.

aligned and uniformly distributed in strips across a rectangle, while
PCA shows a clear mix of blue and purple, orange and yellow, and
red and green data also arranged in strips but with a curvy pattern.
Adding the discrepancy matrix helps us quantifying these dif-

ferences for every pair of points. In particular the blueish color
along the diagonal indicates points of neighboring strips of t-SNE
are closer in t-SNE than in PCA (Figure 3c), which is explained
by the fact that the strips are aligned along the larger dimension
of the enclosing rectangle in PCA while they are orthogonal to
that direction in t-SNE (all distances being normalized). Also blue
and brown points are farther apart in t-SNE than in PCA, and all
other colors overlapping in PCA so being closer than in t-SNE,
make the red color spread out from the top right and bottom left
corners of the discrepancy matrix (3c(i)). The mixed blue and red
blocks (3c(iv)) in the matrix are explained by the left and right sides
of the PCA where the strips are shifted (3c(vi)) due to the oblique
projection of the swiss roll, so pairs of points between overlapping
and non-overlapping parts, like a green and a red point along the
same edge of the swiss roll, happen to be relatively farther apart
in PCA than in t-SNE (bluish color in the matrix), while many red
and green points in the overlapping area of PCA are not that close
to each other in t-SNE where no overlap occurs (reddish color in
the matrix).

(3) Comparing features (Sub-Sub). From a distance perspective,
comparing a 2D projection to another 2D projection is just a special
case of comparing two subspaces of dimensionsm andm′ to each
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other. Again, we argue that a matrix visualization can add interest-
ing insights in that case. Also note that the dimensionality of the
two subspaces does not need to be the same.
To illustrate this idea, we use an easy to understand example

based on the well-knownMNIST dataset [31]. MNIST is a collection
of handwritten digit images of 28×28 pixels. The dimensions in the
MNIST data are the pixels, a dimensional subspace would thus be
a subset of pixels. For illustrative purposes, we thus cut the upper
half of the digit images, keeping their lower half to form a 14 × 28
pixels image, flattened into a 392-dimensional vector.

We use Compadre to compare the two subspaces (full and bottom
half images) using UMAP for the projections of the digits. We dis-
play all digits as small images at their UMAP location (Figure 4).Op-
timal leaf-ordering is applied to the matrix, first class-wise on the
average column and row of each class, then on all columns and
rows within each class separately so to preserve the class structure.

We select digits 6, 0, 4, and 9, which appear at the top left corner,
with a box selection, which greys-out the other cells of the matrix
and the other digits in the projection.

Considering the full images (left), 0s and 6s differ only by some
extra line feature, as well as 4s and 9s. Therefore, those digits have
rather small differences in pixel values, compared to say 1s and 8s
for instance. Viewed in the lower half subspace (right), the 0s and 6s
are even more similar, as well as the 4s and 9s, which explains the
red cells in the matrix. The blue cells between some 4s and the 0s
and 6s can be explained by the fact that looking only at the bottom
half of the image (half space), some 4s and 9s have only one vertical
bar, strongly different from the half circles of 0s and 6s, while the
difference, hence the distance on UMAP projections, is smaller if
we also consider the pixels of the upper half (full space).

3.3 Visual Encoding
Before settling on matrix visualizations for showing discrepan-
cies, we considered other visual encoding approaches, specifically
Shepard-like diagrams and 2D projections.

3.3.1 Shepard-like Diagram. Shepard diagrams are a common ap-
proach to compare HD distances to the 2D distances in a projec-
tion [43]. We speculated that this approach might also work more
generally for more arbitrary discrepancies between two sets. A
Shepard diagram is a 2-dimensional plot, in which the HD distance
of a pair of point gets encoded on the y-axis, and the respective 2D
distance on x-axis. The diagram then shows the n ×n discrepancies
between the two sets of distances encoded implicitly as the distance
to the diagonal of the diagram.
Showing all n × n discrepancies in a coordinate system quickly

gets impracticable though. We thus aggregated all distances from
one point to all other points in each space as the sum of squared
distances. In that way, we reduced the number of points to draw
in the diagram to n, instead of n × n. We not only tried to visualize
discrepancies between HD and 2D in that way, we also used it for
comparison 2D to 2D (Figure 5a). Therefore, we called it Shepard-
like diagram.
Aggregating the discrepancies makes the Shepard-like diagram

difficult to read. For example in the two projections shown in Fig-
ure 4, the relation between 0s and 6s, and 4s and 9s, is not visible
in the Shepard-like diagram in Figure 5a.

(a) Shepard-like diagram of aggre-
gated discrepancies. Each image is
located on each axis at the sum of
its squared distances to all other im-
ages in the subspace corresponding
to this axis.

(b) t-SNE projection of discrepan-
cies. Close points are pairswhich are
equally close or equally far away in
both UMAP projections of Figure 4.

Figure 5: Alternative visual encoding of the discrepancies of
the projections in Figure 4, digits are highlighted the same
way. None of these plots reveal the patterns we discovered
there.

3.3.2 DR Projection of Discrepancies. A discrepancy matrix could
also be simply fed to a distance-based DR algorithm to get a dis-
crepancy projection as a scatterplot. DR algorithms such as MDS
or t-SNE (used for Figure 5b) allow to input distance matrices in-
stead of the raw data for projection. The DR algorithm then tries
to maintain those distances in the projection.
Points with low discrepancy between the two scatterplot pro-

jections, should be projected nearby in the discrepancy plot, while
pairs of points close in one projection and far in the other one,
should be projected far apart (see Figure 5b).

As the discrepancy matrix is n ×n, only n points are displayed in
the discrepancy plot. However, it will suffer from missed and false
neighbors projection artifacts [35], making this view not trustwor-
thy. Also, as it uses the same visual idioms as the two projections to
be originally compared, it is prone to miss-interpretation. Even if
there were no projection artifacts, clusters of points in the discrep-
ancy plot are not necessarily clusters of data. Indeed, points from
two distant clusters represented in the same way in both projec-
tions have all their pairwise distances equally represented, so they
would appear as a single cluster in the discrepancy plot. Looking
at Figure 5b, we cannot easily draw the same conclusion as for the
matrix view.

3.3.3 Matrix Visualization. From a technical point of view the
advantage of the matrix visualization is that each distance needs
just one pixel to deliver the information of the discrepancy. With
an appropriate ordering of the matrix, local (on the diagonal) and
global (on the outer parts of the matrix visualization) patterns can
be revealed by the viewer (Figure 4). However, the size of the matrix
is the square of the number of data, hence it poses scalability issues
that need to be handled for large datasets.
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4 COMPADRE
To further illustrate these ideas, we implemented a visual analytics
tool called Compadre1.

4.1 Workflow
Compadre follows a top-to-bottom workflow consisting of multiple
sections, which is common for interactive webpages now.
Top section: After loading a dataset, the top-most section lets

users create DR projections and define subspaces. There, users can
select among different implemented DR algorithms (UMAP, t-SNE,
TRIMAP, MDS, ISOMAP, PCA, LLE, and LTSA), parameterize them,
select a distance metric, and set seed values.

We support multi-threading for concurrently computing projec-
tions, and cache them for continuing analysis sessions. A projection
listshows all cached projections.
Projections: Projections can be created on the full dataset or on

defined subspaces. Each created projection then gets its own section
below the top section. At the heart of each projection section is a 2D
projection as scatterplot and the discrepancy matrix between the
2D projection and the HD or subspace data as matrix, supporting
the HD-2D task (Figure 3a and 3b).

Pairwise comparisons: At the bottom is a dedicated section, which
allows pairwise comparisons between the previously computed
projections and subspace. This section supports the 2D-2D and the
Sub-Sub tasks.

4.2 Interactions
The visualization sections come with a set of interactive features,
such as options for reordering the matrix and different point rep-
resentations. Reordering a matrix in Compadre is possible with
optimal leaf-ordering or spectral reordering, either globally or lo-
cally within and between classes. This supports the analysis of
patterns at different scales. Examples of customizing data point rep-
resentations includes thumbnail for image datasets, such as MNIST,
or parallel coordinate glyphs for datasets with few dimensions.
Colorization of data points can be single hue, categorical if the

dataset has labels, or by a continuous colormap to link different
views together visually. All scatterplots and matrices show a tooltip
when hovering over a point providing the respective name and label.
A lasso or rectangle selection allows to select and view multiple
items at once. Both selections support linking and brushing, that
is selections are also propagated to all other views, helping to
understand correlations between them.

4.3 Implementation
We implemented Compadre in JavaScript with the use of vue.js. The
library reorder.js [15] is used to reorder matrices. For the visual-
izations, we use d3.js [9]. The implementation can be found here
https://github.com/saehm/compadre.

5 CASE STUDY: VIS PUBLICATION DATA
The VISPUBDATA dataset, provided by default in Compadre and
used in this case study, stems from the original Vis Publication
dataset (VisPub) [26]. The original dataset is organized by articles

1https://renecutura.eu/compadre

whereas the VISPUBDATA dataset is organized by authors. We
generated it by extracting all the authors that occur more than
twice, all the distinct keywords of the original dataset that occur
more than twice, and all the cited authors from the dataset when
they are cited more than 80 times. Other articles are filtered out, in
addition to those with no abstract or keywords. In this extracted
data, we construct a vector for each entry (author) with one row
per coauthor, one row per keyword, and one row per cited author.
Each of these rows contains the count of occurrences of the related
coauthor or keyword or cited author.
This process led to an HD dataset with 578 authors and 1490

(sparse) dimensions, which are divided in three subspaces. The first
611 dimensions define the coauthor network, the next 498 dimen-
sions define the keyword subspace, and the last 381 dimensions
define the citation network. The articles of the original VisPub
dataset have been published in one of the child conferences of the
IEEE VIS Conference: SciVis, InfoVis, VAST, or Vis; we also label
the authors by the child conference where the author published
most.

With Compadre, we are interested in investigating the differences
between these three subspaces, as they may bring some insights
into the VIS community.

Figure 6:When loading theVISPUBDATAdataset and visual-
izing it with UMAP, thematrix reveals, in blue, authors who
are closer in the projection than in HD. These are core au-
thors, because UMAP brings closer heavily clustered points.
Hovering over the matrix reveals the identity of these au-
thors, here Pierre Dragicevic (c, d) who has been among the
most prolific InfoVis authors in the last decade. The same
pattern exists for SciVis and VAST (a, b).

Figure 6 shows an overview of the community taking into ac-
count the whole vectors projected using UMAP. The matrix shows
the discrepancies between the HD and the 2D distances (HD-2D),
the blue area are shorter distances in 2D than in HD and the red
ones are longer. The points are colored according to the conference:
dark blue for Vis, orange for VAST, red for SciVis, and cyan for
InfoVis, and the same colors appear in the border of the matrix
associated with the author of the row (respectively column). Here,
the matrix has been reordered by conference using the optimal
leaf-ordering algorithm [5], that seems to very effectively bring
together the most prolific authors on the right side. Many patterns
are immediately visible from the matrix, like the authors overlap-
ping many conferences. SciVis at the top is very similar to Vis in
red below, witnessing that the visualization conference started with

https://github.com/saehm/compadre
https://renecutura.eu/compadre
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Figure 7: Using only the coauthor subspace removes the
noise added by the other two subspaces and should reveal vi-
sual clusters using appropriate projections. We see that the
UMAP projection varies significantly from the t-SNE projec-
tion; the matrix shows three clusters regarding the distance
discrepancies: bright on the top left (a) and on the bottom
right (c), and blue in the middle (b), blue points are closer in
the UMAP projection than in the t-SNE projection.

Figure 8: Comparing the coauthor (left) and keyword (right)
subspaces using UMAP. The blue area on the diagonal (a) re-
veals a tight cluster of coauthors that work on volume visu-
alization.

Figure 9: Comparing citations (left) with coauthors (right),
we could expect the shapes to be similar if authors heavily
cite their own articles. This is not the case, since the two pro-
jections have a very different shape, but the citationnetwork
is more spread than the coauthor network, while still show-
ing a clear separation between the InfoVis/VAST papers (top
left) and Vis/SciVis papers (bottom right). (a) shows a tight
cluster of 75 authors that cite themselves frequently.

scientific visualization and split later. We also see the high overlap
between VAST and InfoVis: the patterns are very similar in the two
bands.

When hovering over the prolific authors, their projected points
are highlighted in the UMAP projection. It is also insightful to
see that whereas the matrix packs them all in the same area, the
projection mostly spreads them all around the scatterplot.

Yet, the projection is not revealing clusters or visual patterns
clearly, and knowing that keywords are typically used in a noisy
fashion by authors, we wonder if the coauthor subspace is cleaner
than the joint subspaces.

Figure 7 compares two 2D projections of the coauthors subspace
using UMAP and t-SNE (2D-2D). The overall shapes are different
but the information is similar since most of the clusters are depicted,
either as lines for UMAP or as groups in t-SNE. UMAP seems to
push points away more than t-SNE. UMAP shows spikes radiating
from the center. Each spike ends with the prolific authors revealed
as in the first view, but is much more visible now. Authors who
collaborate with multiple communities around the center of the
projections are better outlined with t-SNE (a). The discrepancy
matrix shows this tendency regarding the distances except for the
(b) area that is more clumpy (more red in the matrix) in t-SNE. For
understanding communities, t-SNE seems more appropriate than
UMAP, which reveals strong coauthor ties with its spikes.

Figure 8 shows the comparison between the coauthor (left) and
the keyword (right) subspaces projected with UMAP (Sub-Sub).
The keyword projection is more noisy and not well aligned with
coauthors, indicating that the visualization topics exist indepen-
dently to authors. Using our lasso tool, we can explore clusters of
related authors on the left, and see the keywords they use high-
lighted on the right. The blue areas on the matrix diagonal reveal
groups of authors and keywords that are consistent. In our dataset,
volume rendering and volume visualization are consistent with a
dozen of researchers who seem specialized. We cannot find other
areas that are as consistent.

Figure 9 shows the citation subspace (left) compared to the coau-
thor subspace (right) (Sub-Sub). They are different in shape, the
citation projection does not reveal social ties between the authors,
but mostly scientific ties. The matrix does not show strong patterns
on its diagonal, except at the center where about 75 authors have
roughly similar distances in the two projections. This group con-
tains the core InfoVis/VAST authors, who cite each other frequently.

6 CONCLUSION
With the advent of data science the analysis of high-dimensional
data has become invaluable. In this work, we discussed how visual-
izing discrepancy matrices between different spaces and projections
can foster insights into patterns in HD data and help validate them.
We illustrated the value of our approach with a basic set of

distance and similarity definitions. Future work needs to investigate
more complex definitions and setups, and might investigate them in
longitudinal or controlled experiments with users. So far, we have
focused on the pairwise comparison of distance matrices. A natural
extension would be to use our approach to compare or summarize
differences between multiple spaces or projections.
To conclude, we argue that matrix visualizations should be an

important component of the data scientists toolbox, allowing for an
easy-to-understand yet rich way to inspect discrepancy matrices.
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