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Abstract
A good deep neural network design allows for efficient training and high accuracy. The training step requires a suitable choice
of several hyper-parameters. Limited knowledge exists on how the hyper-parameters impact the training process, what is the
interplay of multiple hyper-parameters, and what is the interrelation of hyper-parameters and network topology. In this paper,
we present a structured analysis towards these goals by investigating an ensemble of training runs. We propose a visual ensemble
analysis based on hyper-parameter space visualizations, performance visualizations, and visualizing correlations of topological
structures. As a proof of concept, we apply our approach to deep convolutional neural networks.

1. Introduction

Successful training of a Neural Network (NN) for a specific ma-
chine learning task essentially comprises two steps. First, a suit-
able NN architecture has to be identified. Second, a set of hyper-
parameters for training this architecture, given the available data,
has to be found. This is an iterative process of training a specific
architecture and evaluating its performance after training with a set
of hyper-parameters. Common evaluation criteria are, among oth-
ers, the final accuracy on a previously unseen testing data set and
training time needed to achieve a certain output-quality threshold.

While the tuning of NN parameters (i.e., the weights) is done au-
tomatically using gradient-descent methods, finding correct hyper-
parameters is a computationally expensive and cumbersome task,
especially for deep NN [GSK∗17]. Despite new developments in
hyper-parameter tuning (HPT) strategies, it usually boils down to
train the given NN architecture using the hyper-parameter set pro-
posed for that architecture and to compare the performance of the
different settings [HKV18]. To reduce the effort, predictive early
stopping criteria are desired. These criteria allow for a premature
abort of a training run, if successful training is unlikely.

The impact of the hyper-parameter choices on the training pro-
cess of a NN is not fully understood yet. The main goals are to
observe (G1) how the choices affect the performance of the NN,
(G2) how multiple hyper-parameters influence each other during
the training process, and (G3) how topological structures change
their behavior when changing the hyper-parameter values.

In this paper, we propose a structured analysis towards these
goals by visually analyzing an ensemble of training runs with dif-
ferent hyper-parameter settings. We propose performance measures
for accuracy and efficiency to visually analyze their evolution dur-

ing the training process, see Sec. 4.1. Moreover, we propose cor-
relation measures of topological structures such as filters and lay-
ers to visually analyze their behavior, see Sec. 4.2. Coordinated
views of hyper-parameter space visualizations, performance visual-
izations, and correlation visualizations allow for the interactive vi-
sual analysis of the influence of hyper-parameters on the NN’s per-
formance during the training process and on the behavior of topo-
logical structures. As a proof of concept, we apply our approach
to analyzing the training hyper-parameters learning rate and mo-
mentum of deep convolutional NNs using the well-known examples
MNIST and CIFAR-10 and present respective findings, see Sec. 5.

2. Related Work

Visualization of NN training process. Designing an optimal train-
ing model is one of the most important tasks in the field of
deep learning [PHvG∗18] and wrong decisions are irreversible
[BCV13]. Recently, visual tools that support designing and debug-
ging a training model have been proposed. A recent survey provides
a good overview of the various endeavors [HKPC18]. However,
none of these approaches fully address goals (G1-G3) listed above.

Visual performance analysis. Computing accuracy or loss, re-
spectively, of a NN is a standard approach to judge the quality
of a NN. Recently, a visualization approach that displays the loss
function in the form of a landscape (using two random directions)
was proposed to discover the relationship between network struc-
ture and the loss landscape [LXT∗18]. Hyper-parameters are only
briefly discussed. We, instead, perform a structured analysis using
an ensemble.

Visual tools for topology optimization. A number of approaches
focus on the optimization of the network structure [RSLMR17,
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RFFT17], where the correlation or similarity of filter activations
is analyzed. A progressive optimization approach was proposed by
Pezzotti et al. [PHvG∗18], where they observe correlation or ac-
tivation of filters to provide a hint whether topological structures
shall be enhanced or may be reduced [PHvG∗18]. We build upon
this idea by also computing correlations between filters and even
enhance the idea to larger topological structures in the form of lay-
ers. Moreover, we analyze ensembles of training runs, not only a
single run.

Effect of hyper-parameters. Concepts for theoretical searches
for optimal hyper-parameter settings for training NN exist [BB12,
CDM15]. The authors state the issue of automatic searches for
hyper-parameters of training algorithms to prevent a predefined
structural model from being over- or under-fitted after training.
Breuel [Bre15] investigated the effect of training hyper-parameters
on accuracy and loss. We, instead, investigate the performance dur-
ing the evolution of the training process. If the quality of training
runs can be judged early on, this would reduce substantially the
computational burden.

3. Background

The current gold standard of fitting NN parameters (i.e., weights
and biases) to a specific problem is stochastic gradient descent
(SGD). Labeled data samples are propagated through the net-
work and a scalar measure of difference between ground truth and
network output, called loss, is calculated. SGD calculates partial
derivatives of the loss with respect to every parameter of the net-
work, called gradients. After each training step, the weights are
updated according to the calculated gradients. The learning rate
defines the length of those update steps. While a large learning rate
causes larger steps and might lead to quicker convergence, it can
also cause overshooting effects and hence slow down convergence
or, in the worst case, cause divergence. A further hyper-parameter,
called momentum, is used to partially overcome this problem by
calculating the average of the last update steps and weighting them
with an exponential decay. While loss is used to train the network,
accuracy is a measure often used to evaluate performance on bal-
anced data sets, as it is easier to interpret. Accuracy is calculated as
the ratio of correctly assigned labels across all classes. In general,
loss and accuracy are negatively correlated.

When classifying image data, convolutional neural networks
(CNNs) are commonly used, which exploit the fact that neighbour-
ing pixels are often highly correlated and belong to the same object.
To reduce the complexity of the model to be trained, neurons are
aggregated to filters, i.e., patches of weights, which are convolved
over the input. Every convolutional layer comprises a set of filters
of equal size, which are evaluated in parallel and extract image fea-
tures. Multiple layers can be applied consecutively to increase the
complexity of image features learned by the NN. For a given num-
ber of filters, the information contained in the output of a layer is
maximal, if the filter responses do not correlate with each other,
i.e., every filter detects a different property. To find an optimal NN,
we are hence looking for uncorrelated filters in every layer.

4. Visual Ensemble Analysis

To allow for the analysis of the influence of hyper-parameters on
the NN training process, we generate an ensemble of training runs
by sampling the hyper-parameter space. Targeting goals (G1)-(G3)
listed in Sec. 1, we developed visual analysis methods of the en-
semble addressing the influence of the hyper-parameter choices on
the NN performance (including the interplay of multiple hyper-
parameters), see Sec. 4.1, and on the behavior of topological struc-
tures, see Sec. 4.2.

4.1. Performance Analysis

The performance of a NN is judged by the quality of the output
and the efficiency of the training process. To judge the latter, we
need to investigate the evolution of quality during the training pro-
cess. While loss and accuracy judge the NN quality at a fixed point
in time during or after training, we capture the evolution by intro-
ducing three performance measures: (P1) Given a point in time,
we compute the accuracy at that time. (P2) Given a time interval,
we compute the maximum accuracy within the time interval. (P3)
Given a time interval, we compute the standard deviation from the
mean accuracy within the time interval. The latter is normalized
to range [0,1], where low standard deviation (meaning high sta-
bility) is set to high values. Thus, all three performance measures
are within the range [0,1] with high values meaning better perfor-
mance. The training times used for computing the measures can be
chosen interactively to investigate different time intervals. For ex-
ample, we can use (P2) to judge which training runs produce high
accuracy early on in the training process and we can use (P3) to
judge how stable the training process is during that time interval.

To investigate how hyper-parameters affect the performance
(Goal (G1)), we have to simultaneously visualize all hyper-
parameters and all performance measures, which leads to a multi-
dimensional data visualization task. Since our aim is to observe
correlations between the dimensions in addition to having a visual
representation that scales well with the number of dimensions, a
Parallel Coordinate Plot (PCP) is the most suitable choice. The
first axes represent the hyper-parameters, which the later axes rep-
resent the performance measures. Brushing for interactive selec-
tion allows for filtering and highlighting training runs with specific
properties like low/high performance with respect to some per-
formance measures or low/high hyper-parameter values, see Fig-
ure 1(a). Moreover, the user can restrict the considered values for
performance measures to certain intervals. The values outside the
chosen intervals are then clamped to the minimum and maximum
respectively. A common visual representation for NN performance
is to show a graph that plots loss and accuracy as a function of
the training time. It allows for observing the convergence speed of
the training process. We also support such a Loss-accuracy Graph
and link it to the PCP. Thus, only the training runs selected in the
PCP are displayed in the graph. Multiple selections using different
colors are possible, see Figure 1(c).

Goal (G2) postulated to investigate what the interplay of dif-
ferent hyper-parameters for the performance is. To provide a re-
spective overview of all pairwise hyper-parameter combinations,
we propose a hyper-parameter space visualization. Using a grid-
based sampling of the parameter space, the performance of all
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(a) (b) (c)

Figure 1: Performance analysis of MNIST data set using coordinated views: (a) PCP for analyzing correlation of hyper-parameters (axes
1-2) and performance measures (axes 3-5). Brushing on third axis is used for selecting training runs with low (red) and high accuracy (blue).
(b) Hyper-parameter space visualization via Performance Heat map allows for analyzing the interplay of hyper-parameters. PCP selections
are shown as colored dots. The brightness of the cells indicates the accumulated accuracy performances from the PCP. (c) Loss-accuracy
Graph shows evolution for selected runs (red and blue). Accuracy curves (top) are solid while loss curves (bottom) are stippled.

pairwise hyper-parameter combinations can be visualized using
a Performance Heat Map, see Figure 1(b). A selected perfor-
mance measure or the average of multiple selected performance
measures is color-coded using a luminance color map. Individual
hyper-parameter value pairs can be selected by clicking at the re-
spective cells of the heat map and are highlighted by colored dots.
Interactions with the Performance Heat Map are coordinated with
the other views (PCP and Loss-accuracy Graph). For example, the
highlighted cells in Figure 1(b) correspond to the training runs se-
lected in Figure 1(a).

4.2. Analyzing Topological Structures

As mentioned in Sec. 3, high correlations among filters in a CNN
indicate redundancy and hint to a possible reduction of a layer.
However, it has not been examined systematically yet, how hyper-
parameters influence such correlations of topological structures
(Goal (G3)).

Given a time step of training run, we can compute pairwise cor-
relations among the activation vectors of all filters of a layer using
the Pearson correlation coefficient [BCHC09]. These pairwise cor-
relations can be stored in a (symmetric) correlation matrix. Since
correlation and anti-correlation may equally reflect redundancies,
we use its magnitude. The correlation matrix can be visualized us-
ing a Filter Correlation Heat Map representation using a lumi-
nance color map, see Figures 2(b,c). To visually convey clusters
of correlated filters, we re-order the matrices using a hierarchical
clustering approach [ZKF05]. The hierarchical clustering delivers
a dendrogram that clusters filters of high correlation magnitude, but
does not impose a unique order yet. We enforce a unique order by
sorting the clusters by their size in decreasing order, which will be
of utmost importance for subsequent steps (see below).

The Filter Correlation Heat Map only reflects a single time of a
single run. To visually compare the correlations in multiple train-
ing runs and convey the evolution during the training process, we
compute the number of high correlations of each time step of each
training run and plot one graph per run in a Filter Correlation
Graph, see Figure 2(d). The number of high correlations is esti-
mated by comparing against a user-defined threshold.

Plotting the correlation graphs of all training runs leads to vi-
sual clutter. Hence, we need a means to select runs of interest. We

propose to compute pairwise similarities among different simula-
tion runs and visually encode the similarities in a similarity plot.
We propose a novel similarity measure for training runs. The
similarity is computed by interpreting the correlation matrix as a
vector and computing the Pearson correlation of the vectors. This
only works, if the vectors store corresponding structures of differ-
ent runs at the same entries. In NN, however, filters may take over
different roles in different training runs. Hence, using the order of
the filters in the layer would not work. However, when using the
order of filters based on hierarchical clustering as described above,
we have comparable structures at same locations within the vectors
and computing correlations is meaningful.

Given the correlation matrix of all training runs for a selected
point in time, we want to visualize the correlations in an Ensemble
Similarity Plot. Such similarity matrices can be used to generate
similarity plots in the form of scatterplots in a 2D embedding, see
Figure 2(a). Different embeddings exist. Since we are interested in
conveying the correlations (or similarities), the embedding should
reflect dissimilarities by distances. This is the objective function of
a Multidimensional Scaling (MDS) embedding [BG05]. Alterna-
tively, we also support t-SNE embeddings [vdMH08], which pre-
serve neighborhoods. We enhance the scatterplot by assigning to
each point a color to indicate the hyper-parameter settings of each
training run. For a 2D hyper-parameter space, we propose to use the
a∗ and b∗ channels of the CIE L∗a∗b∗ color space to map hyper-
parameter settings to colors as shown in the legend of Figure 2(a).

The Ensemble Similarity Plot provides an overview over all
training runs in the ensemble. Interesting runs can be selected inter-
actively (highlighted by increased point size) and analyzed in more
detail in the coordinated views of the Filter Correlation Graph and
the Filter Correlation Heat Map.

5. Application Scenarios

We applied our visual ensemble analysis tool in two scenarios with
CNNs using the well-known MNIST and CIFAR data sets. The
MNIST data set contains 2 convolutional layers, where the first
layer (Conv1) consists of 20 filters and the second layer (Conv2)
of 50 filters. The CIFAR-10 data set contains 3 convolutional lay-
ers with 32 (Conv1), 32 (Conv2), and 64 (Conv3) filters. As hyper-
parameters we considered learning rate and momentum. To gener-
ate training ensembles with 121 runs, the hyper-parameter space is
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Figure 2: Analyzing hyper-parameter influence on topological structures for second layer (Conv2) of MNIST data set using coordinated
views: (a) Ensemble Similarity Plot, which is the result of MDS, provides an overview over all training runs for time step 500 by applying
a 2D color map to hyper-parameter space. (b) Filter Correlation Heat Map of red selection in (a) exhibits low correlations. (c) Filter
Correlation Heat Map of cyan selection in (a) exhibits high correlations. Color in both Heat Maps indicates the absolute Pearson correlation
coefficient between two filters. (d) Filter Correlation Graph shows the evolution of correlations during training.

sampled on a 2D grid. For learning rate we used values 0.01 · 0.9i

for i = 0, . . . ,5 and 0.01 ·1.1i for i = 1, . . . ,5, while for momentum
we used values 0.9i for i = 1, . . . ,11. We computed 1,000 (MNIST)
and 4,000 (CIFAR-10) training steps for each run.

MNIST. We start the MNIST data set analysis by considering the
entire ensemble to compute performance measures and visualize
them in the PCP. Figure 1(a) represents hyper-parameters learning
rate and momentum in the first two axes and performance mea-
sures (P1)-(P3) in the last three axes. For the performance mea-
sures, we picked time step 100 for (P1) and time interval [100,600]
for (P2) and (P3). We interactively adjust the displayed accuracy
range for (P1) to [0.85,0.93] and for (P2) to [0.93,0.98], while the
displayed standard deviation is set to [1.5,3] for the full range of
observed values. We brush on the (P1) axis to select high (green)
and low values (red). We observe that there is a high correlation
in the performance measures for the selections (green lines indi-
cate high values for all measures, red lines low values). However,
we do not see a clear pattern in the hyper-parameter axes. To get a
better understanding of the distribution of performance values for
different hyper-parameter settings, we use the coordinated hyper-
parameter space view of the Performance Heat Map using (P1) and
(P2), see Figure 1(b). The selections made in the PCP are shown
as colored dots. The green dots appear in the brightest cells and the
red dots in the darkest cells. We observe that there is a clear 2D
pattern, where best performances are showing up as a bright diag-
onal stripe. Hence, we conclude that the two hyper-parameters are
strongly inter-dependent and the hyper-parameters cannot be opti-
mized separately. We also observe that there is no monotonic trend
in the heat map.Finally, we also wanted to see the evolution of the
accuracy during the training process. Figure 1(c) shows the Loss-
accuracy Graph for the selected runs.The selected runs with higher
accuracy (and lower loss) have higher accuracy (and lower loss)
throughout the training process. This is an important finding, as we
can judge the quality early on in the training process.

Next, we want to investigate how topological structures are af-
fected by the hyper-parameter choices. We choose time step 500 of
the second layer (Conv2) and generate an overview of all training
runs using the Ensemble Similarity Plot based on MDS, see Fig-
ure 2(a). We observe some green outliers to the upper left and a
cyan cluster to the lower left, but other colors seem to be rather
mixed. To understand how the training runs differ, we pick one of
the runs from the cyan cluster on the left (learning rate 0.005905,

momentum 0.313811) and one of the runs to the right (red, learn-
ing rate 0.016105, momentum 0.9). Figures 2(b) and (c) show the
corresponding Filter Correlation Heat Maps.The heat maps exhibit
stronger filter correlations for the red dot in (b). Finally, we want
to analyze whether there is a global pattern during the evolution of
the training process. We use the Filter Correlation Graph displaying
the number of filters with correlations above threshold 0.7 in Fig-
ure 2(d). We observe that, after an initial phase, the training runs
with low values in both hyper-parameters (cyan) have the largest
filter correlations, while the runs with high values in both hyper-
parameters (red) have lowest filter correlations. We also observe
that the colors in the graph mix less with increasing training times.
Hence, we conclude that the hyper-parameters, indeed, influence
the correlation of topological structures.

CIFAR-10. We perform a similarly structured analysis for the
CIFAR-10 data set to investigate whether we can make similar ob-
servations, see video and appendix. For performance analysis we
make similar observations as for the MNIST data set. One strik-
ing and surprising difference is that the high accuracy values ex-
hibit an anti-correlation to the standard deviation values. Another
surprising observation is that the observed pattern of the Perfor-
mance Heat Map is strikingly similar to the one for the MNIST
data set. When analyzing the influence of the hyper-parameters
on topological structures, we immediately see smooth color tran-
sition.When compared to MNIST, filter correlations are generally
lower for CIFAR-10, which may indicate lower redundancy. The
Filter Correlation Graph computed for threshold 0.7 shows that
the training runs colored red have low correlations after an initial
phase, while the ones colored cyan exhibit high correlations until
very late in the training process.

6. Discussion and Conclusion

In this paper, we shed light on how hyper-parameters influence the
training process by visually analyzing a training ensemble. We pro-
posed suitable visual encodings in coordinated views to address
the formulated analysis goals. The visual encodings scale to higher
numbers of hyper-parameters, performance measures, filters, and
training runs. Only the 2D color map and the parameter-space vi-
sualization assumed two hyper-parameters. With higher number of
hyper-parameters, one would use multiple Performance Heat Maps,
one for each hyper-parameter pair, to analyze pairwise correlations.
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