
ClaVis: An Interactive Visual Comparison System for Classifiers
Frank Heyen

VISUS, University of Stuttgart
Stuttgart, BW, Germany

frank.heyen@visus.uni-stuttgart.de

Tanja Munz
VISUS, University of Stuttgart

Stuttgart, BW, Germany
tanja.munz@visus.uni-stuttgart.de

Michael Neumann
IMS, University of Stuttgart
Stuttgart, BW, Germany

michael.neumann@ims.uni-
stuttgart.de

Daniel Ortega
IMS, University of Stuttgart
Stuttgart, BW, Germany

daniel.ortega@ims.uni-stuttgart.de

Ngoc Thang Vu
IMS, University of Stuttgart
Stuttgart, BW, Germany

thangvu@ims.uni-stuttgart.de

Daniel Weiskopf
VISUS, University of Stuttgart

Stuttgart, BW, Germany
daniel.weiskopf@visus.uni-

stuttgart.de

Michael Sedlmair
VISUS, University of Stuttgart

Stuttgart, BW, Germany
michael.sedlmair@visus.uni-

stuttgart.de

ABSTRACT
We propose ClaVis, a visual analytics system for comparative anal-
ysis of classification models. ClaVis allows users to visually com-
pare the performance and behavior of tens to hundreds of clas-
sifiers trained with different hyperparameter configurations. Our
approach is plugin-based and classifier-agnostic and allows users
to add their own datasets and classifier implementations. It pro-
vides multiple visualizations, including a multivariate ranking, a
similarity map, a scatterplot that reveals correlations between pa-
rameters and scores, and a training history chart. We demonstrate
the effectivity of our approach in multiple case studies for training
classification models in the domain of natural language processing.

CCS CONCEPTS
• Human-centered computing → Visual analytics; Informa-
tion visualization; •Computingmethodologies→Machine learn-
ing.

KEYWORDS
Visualization, visual analytics, classifier comparison, machine learn-
ing.
ACM Reference Format:
Frank Heyen, Tanja Munz, Michael Neumann, Daniel Ortega, Ngoc Thang
Vu, Daniel Weiskopf, and Michael Sedlmair. 2020. ClaVis: An Interactive
Visual Comparison System for Classifiers. In International Conference on
Advanced Visual Interfaces (AVI ’20), September 28-October 2, 2020, Salerno,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
AVI ’20, September 28-October 2, 2020, Salerno, Italy
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7535-1/20/09. . . $15.00
https://doi.org/10.1145/3399715.3399814

Italy. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3399715.
3399814

1 INTRODUCTION
Machine learning has gained much attention over the last few
years. It reaches out into almost all areas of science, technology,
and society and has become the state of the art in research areas
such as computer vision and natural language processing.

Building and understanding machine learning and especially
deep learning models has remained a major challenge though. One
promising approach leverages interactive visualization that allows
machine learning developers to better understand the different
facets in the development process [11, 29].

In this work, we focus on the challenge of comparing different
classification models and hyperparameterizations thereof, although
our approach could be extended to other domains, such as regres-
sion or sequence-to-sequence transformation. We use the word
hyperparameter to encompass every parameter that influences the
structure or training of a classifier, including data preprocessing
options, neural network architecture, and learning rate.

Classification is a task with many important applications, such
as autonomous driving [13, 25] and medical diagnosis [43]. How-
ever, finding the best classifier strategy, architecture [18, 21], and
parameters for a given problem is a nontrivial task. Developers
have to consider how to preprocess the dataset and which features
to extract from it and then carefully choose the kind of classifier
and appropriate values for its hyperparameters. They often do
this through trial-and-error, by manually or automatically training
multiple models with different parameter configurations and then
comparing scores such as accuracy or precision and recall. In many
cases a good prediction is not enough, and the classifier has to
also fulfill other requirements or constraints such as low time and
resource costs for training and prediction.

The analysis of all those scores is tedious and limits the devel-
oper’s insight. For example, it might be hard to quickly grasp trends

https://doi.org/10.1145/3399715.3399814
https://doi.org/10.1145/3399715.3399814
https://doi.org/10.1145/3399715.3399814

AVI ’20, September 28-October 2, 2020, Salerno, Italy Frank Heyen, et al.

Figure 1: Screenshot of ClaVis with a ranking of classifiers (A) and a scatterplot showing characteristic quantities (B). A sidebar
(C) displays details of the currently highlighted classifier. In this example, we are interested in how size and optimizer choices
affect the performance of Multilayer Perceptrons (MLPs). With coloring by optimizer, the ranking reveals that the Adam
optimizer (orange) outperforms SGD (green) in accuracy and training time. In the scatterplot, we choose layer sizes and test
accuracy as X and Y axes and encode training time as area. We see that MLPs trained using Adam are higher up (better) and
smaller (trained faster).

or trade-off relations, where one classifier is better in one score
but worse in another, by only looking at numbers. There is also
no insight into how different hyperparameter values contribute to
the result, or why certain values do not produce a well-performing
classifier. Related work mostly focuses on visualizing the inner
workings of classifiers, to better understand them, and does not
help developers make an informed parameter choice by providing
a visual way to inspect the influence of different parameterizations.

To mitigate these problems, we propose to leverage visual param-
eter space analysis [34] for classifier comparison. We first sample
different classifier parameterizations and train a model for each
and then provide developers with interactive visualizations to give
them an overview of these models (usually in the range of tens
to hundreds of models). This allows them to better understand
similarities, groupings, and patterns such as correlation between
parameter values and performance scores. Our visual parameter
space analysis approach is model-agnostic and thereby able to sup-
port arbitrary classification algorithms instead of being limited to,
for example, convolutional neural networks or decision trees.

In this work, we make the following contributions: We compile
a set of high-level tasks that are common in classifier design and
propose design considerations to address these tasks. Based on our
considerations, we implement an interactive visualization system
called ClaVis that instantiates the idea of visual parameter space
analysis for classifier comparison. ClaVis provides support for both
the sampling and analysis process. It was developed by a team of

three visualization experts and three machine learning experts in an
iterative design process inspired by design study methodology [35]
and the nested model framework [26, 28].

We evaluate ClaVis with multiple case studies using real datasets
and classifiers from the domain of natural language processing.
The results show that our approach effectively supports important
tasks such as finding good classifiers, detecting problems in their
prediction or training behavior, and analyzing the influence of
hyperparameters on the prediction behavior.

In our supplementary material1, we provide the full source code
of ClaVis and a video that shows how users interact with it.

2 RELATEDWORK
We review related work on classifier analysis, parameter analysis,
and user-guided model selection.

2.1 Classifier Analysis
Most existing approaches for classifier analysis focus on single
classifiers or support the comparison of only a few at once.

TensorBoard, a part of TensorFlow [1], displays a node-link di-
agram of a model’s structure [42]. It also allows users to analyze
training logs of classifiers by displaying metric line charts for all
epochs to reveal already during the training if and how well the

1https://github.com/fheyen/ClaVis/

https://github.com/fheyen/ClaVis/

ClaVis AVI ’20, September 28-October 2, 2020, Salerno, Italy

classifier learns. We implemented an aggregated version of his-
tory line charts to facilitate analyzing and comparing the training
behavior of multiple classifiers or groups of them.

Some previous work supports the creation or analysis of sin-
gle classifiers. With EnsembleMatrix [38], users can interactively
combine classifiers via ensemble learning and see their confusion
matrices alongside the matrix of the result. RuleMatrix [27] helps
analysts better understand the behavior of a classifier by treating it
as a black box and approximating its prediction behavior with a rule
list, which is easier to explain and visualize.ModelTracker [4] shows
the predictions of a binary classifier as colored squares that are
positioned by probability to reveal the distribution of probabilities
and errors. An approach to inter-active learning [16] includes the
visualization of weak classifiers to help understand and improve
combined classifier performance. While these approaches allow the
user to create and analyze single classifiers, they are not suited for
the comparison of multiple classifiers.

Certain approaches only allow comparing a few classifiers or
do not work for a high number of classes. Squares [31] supports
the analysis and comparison of arbitrary multi-class classifiers. It
shows the distribution of a classifier’s predicted probabilities in one
binned chart per class, indicating the confidence of predictions. The
visualization can display further details by drawing small squares
for all data samples and coloring them by their correct class. Clas-
silist [19] shows the distribution of predicted probabilities for each
class separately and all classes combined. It can compare multiple
classifiers by showing juxtaposed visualizations for each of them,
but does not scale to more than a few classifiers. Alsallakh et al. [3]
use a confusion wheel to visualize the entries of one binary confu-
sion matrix per class. Each class has its own sector where it shows
the entries of that matrix as stacked bars for different probability
bins. All sectors are connected by curves that encode the class
confusion in their width. The visualization may also be used to
compare two classifiers by showing what they have in common
and where one is better than the other, but cannot compare many
classifiers at once. Our work goes beyond these existing approaches
by offering a model-agnostic analysis framework for comparing up
to several hundreds of classifiers and their parameterizations.

2.2 Parameter Space Analysis
The main idea of visual parameter space analysis is sampling differ-
ent inputs, computing the respective outputs, and using visual ana-
lytics to understand the relation between both [34]. This approach
is generic and fits well to analyzing machine learning models.

On the TensorFlow Playground website [37], users can build and
train small neural networks. It visualizes the decision boundaries
and weights for all neurons and is useful for learning and teaching
about the general concept of neural networks and the importance
of hyperparameters and feature selection. However, it does not
scale to larger and more complex types of networks and does not
support strategies other than neural networks, such as Support-
vector Machines (SVMs) or tree-based classifiers.

To compare classifier behavior, Japkowicz et al. [2, 17] perform
a projection of classification results via dimensionality reduction
(DR). They do this by flattening confusion matrices or other scores
into vectors that are then projected to a two-dimensional subspace.

We extend this approach to the predicted class probabilities that
contain more information on the classifier’s behavior. Their work
also inspired us to include the optimal classifier as a reference
that shows the location of an ideal prediction in the projection.
This allows us to visually compare classifiers to each other and the
optimum in a way that is more informative than a simple ranking.

VisCoDeR [11] shows the different behaviors of DR algorithms
and how they distort the original distances between data points.
Juxtaposed scatterplots display the result of each algorithm for
comparison. In a meta visualization, VisCoDeR compares the in-
fluence of DR algorithm and parameter choices by projecting the
dimensionality-reduced data of all algorithms from a space of pro-
jections down to a two-dimensional image. This is similar to our
similarity map visualization, where we project the scores or predic-
tions of multiple classifiers in order to show similarities.

2.3 User-Guided Model Selection
Automated Machine Learning (AutoML) systems [5, 7, 18, 20, 39],
simplify the search for appropriate hyperparameter values via au-
tomatic sampling of the parameter space. This process can be made
more efficient by incorporating user knowledge about a dataset or
problem. Gil et al. [14] propose a human-guided machine learning
approach, where users interactively collaborate with an AutoML
system, and compile user tasks and requirements for this approach.
Users distrust AutoML and tend to use as many resources for hy-
perparameter search as they can, making the process less efficient.
ATMSeer [41] addresses this by allowing users to compare models
on three levels of detail and modify the search space in real time
according to their findings. In the ranking visualization, it is not
possible to compare different properties. The focus is on comparing
different models, and a compact overview for one specific classifier
is not available.

In addition to pipeline creation and model selection, Santos et
al. [33] also support the user in augmenting a dataset by searching
for matching data online and incorporating it. While they include
a ranking that can be sorted according to different metrics, the
values are only displayed as numbers. Our ranking visualization
provides a visual comparison between values. Their approach for
comparison is also limited to comparing one model to all others
and does not allow users to compare different sets of models that
are, for example, grouped by classification algorithm.

Cashman et al. [10] propose an exploratory model analysis work-
flow that guides the user from the exploration of the dataset and
possible problem types through model generation to model explo-
ration and selection. They focus on supporting the user in producing
good models rather than gaining insights. Only a simple ranking
and confusion matrices are available for classifier comparison, no
further comparative visualizations.

In contrast to our work, the above model selection approaches
do not allow expert users to implement their own classifiers, but
instead use AutoML libraries that are often limited to certain algo-
rithms. Developers cannot simply incorporate their existing clas-
sifiers’ code in order to compare them or use them as a baseline.
None of these approaches provides insight into the training history.
They support multiple machine learning tasks and are not specifi-
cally designed for classifier comparison, so some of them do not

AVI ’20, September 28-October 2, 2020, Salerno, Italy Frank Heyen, et al.

include typical visualizations such as confusion matrices. As our
approach currently focuses on classification, we provide confusion
matrices for single and multiple classifiers. Our filtering is more
flexible, making it easier to select interesting subsets of models for
the analysis, for example by filtering on scores and hyperparame-
ters. In addition to scores that measure the quality of predictions,
we support an analysis of the required resources that are reflected
in the time that classifiers need for training and prediction.

3 PROBLEM CHARACTERIZATION
Developing well-performing classifiers is a nontrivial task, since
there are many possible hyperparameter choices and the influence
of parameter values or combinations thereof is unclear. During
multiple meetings and a pre-study with machine learning students,
our team of visualization and machine learning experts found these
high-level tasks to be important for classifier design and analysis:

T-optimal. Finding good classifiers by choosing appropriate
hyperparameters

T-sensitivity. Understanding parameter influences on scores
T-similarity. Comparing classifiers’ prediction behaviors to

each other and to an optimum
T-training. Understanding how hyperparameters influence the

training behavior
T-confusion. Detecting class-specific errors and difficulties
T-separability. Analyzing the dataset for class overlaps and

outliers

To support every type of classifier and since models can be huge,
we focus on analyzing and visualizing the following data:

D-parameters. The chosen hyperparameter values, including
data preprocessing options and the classifier algorithm and
architecture

D-predictions. The resulting predictions for training and test
set, i.e. the predicted class labels and class probabilities for
all samples

D-scores. The classifiers’ scores such as accuracy, training time,
and confusion matrix for both training and test set

D-history. The training history for classifiers that are trained
in iterations or epochs, such as neural networks

D-dataset. The data samples with their features and class labels

4 DESIGN
In this section, we will first provide an overview of the workflow
and then explain how we address each of the tasks from Section 3.

4.1 General Overview
The high-level steps of the user workflow in classifier development
are (1) choosing hyperparameters and training multiple classifiers,
(2) analyzing the resulting data such as scores and predictions, (3)
if the result is not satisfactory, repeat from (1) and make use of the
newly gained insight to improve or extend the search space. Our
approach reflects those steps and consists of two parts: a training
framework and a visual analytics frontend.

The detailed workflow consists of the following steps: (1) The
developers implement plugins for their datasets and classifiers.
(2) They then create a batch job that contains all hyperparameter
configurations they want to train. (3) Our training system loads and
preprocesses the data and samples models from the hyperparameter
space. (4) After all models have been trained, the developers analyze
the resulting data in our interactive visual analytics frontend.

Our plugin system is based on Python to allow developers to
reuse existing code and to have access to commonmachine learning
libraries. This system brings a lot of freedom: Different network
structures for example can be either represented in separate plugins
or controlled via hyperparameters, depending on the developer’s
choice. Together with our implementation, we also provide a set of
various example datasets and classifiers, that allow you to quickly
try out our system or to get a baseline on new datasets.

ClaVis’ frontend consists of multiple coordinated views that
allow for different perspectives on the classification models, in-
cluding a ranking that helps to find the best classifier in regard
to different scores, a scatterplot that shows correlations between
hyperparameters and scores, a similarity map where classifiers with
similar predictions are clustered together, and a history line chart
that helps to spot problems such as overfitting.

We support general interaction techniques like filtering, sorting,
grouping, zooming, and panning. For example, classifiers can be
filtered by manual selection, by hyperparameter values, or by se-
lecting the top 𝑛 classifiers after sorting by an attribute. Users can
change color schemes to compensate for color blindness or bright
environments. The supplementary material for this paper contains
a video that shows these features in more detail.

We now explain how ClaVis supports the different tasks listed
in Section 3 through its visual encodings and interactions. To keep
things simple, we use small example datasets for illustration. Use
cases with large-scale real data will be covered in the next section.

4.2 T-optimal: Finding Well-Performing
Classifiers

A common strategy for building a classifier is training multiple
models and then selecting the one with the best accuracy, 𝐹1 score,
or similar. Other factors, such as the time required for training and
prediction, which has an impact on resource needs and response
time, might also be relevant and force the developer to make com-
promises. It is therefore helpful to visualize multiple scores at once,
while ordering classifiers by one score at a time, to show how much
better or worse one is compared to the others. Rankings are an
intuitive way to represent items ordered by some attribute, and bar
charts are commonly used to compare them. LineUp [22] combines
those visualizations into a multivariate ranking.

Our ranking view (Figure 1A) is inspired by LineUp and shows
which classifiers are good in which regards, by allowing the user
to sort or group them by hyperparameter values or scores. Single
score rankings allow users to find good classifiers regarding that
score; a line connects each classifier’s bars in all rankings.

ClaVis AVI ’20, September 28-October 2, 2020, Salerno, Italy

Figure 2: The correlation matrix (cut, see also Figure 1) pro-
vides an overview of hyperparameter and score relation-
ships by encoding correlation as red (negative), green (posi-
tive), and yellow (no correlation). Each row represents a hy-
perparameter and the columns correspond to training accu-
racy, test accuracy, training time, and test time (left to right).
In this case, we see that the chosen poolingmethod has a sig-
nificant impact on the test accuracy (red square).

4.3 T-sensitivity: Analyzing the Influence of
Hyperparameters on Scores

Hyperparameters influence the training of amodel in complexways,
as multiple parameters have to be tuned together and work well
only when correctly combined. Classifier developers need to un-
derstand the influence and stability of parameters in order to know
what parameter causes a problem and to be able to choose appro-
priate values. The correlation between two variables is commonly
analyzed in a scatterplot.

We provide a scatterplot view that encodes classifiers as points.
The axes correspond to hyperparameters or scores; the latter can
also be encoded by the area or color of the points (Figure 1B). This
reveals interesting patterns, such as a positive correlation between
a parameter and a score until a certain optimum and then a plateau
or negative correlation when the parameter’s value increases fur-
ther. When using two scores as axes, the scatterplot can indicate
overfitting by revealing classifiers with high training scores but
low test scores. Next to the scatterplot, we display a correlation
matrix to provide an overview of all possible combinations of hy-
perparameters and scores (Figures 1 and 2).

4.4 T-similarity: Analyzing the Prediction
Behavior

Performance scores, such as accuracy, can be misleading in several
ways. One classifier might be better than others in accuracy even
when its predicted class probabilities are not very confident, since
only the most probable class is predicted each time. This might
lead to the developer choosing a classifier with low confidence,
that could perform poorly in production. Classifiers that are more
similar to the correct predictions should be considered to be better
than those that are not. Closeness and clusters of similar items are
usually visualized by distance matrices or scatterplots.

We implemented and evaluated a color-coded distance matrix
in a pre-study, but did not find it effective for the analysis. In-
stead, ClaVis provides a similarity map that displays classifiers as
dots in a scatterplot. Users can see how similar classifiers are in
both their predicted class labels and the raw class probabilities

Figure 3: Our similarity map shows that classifiers with sim-
ilar predictions have a similar performance. Green indicates
high, magenta low test accuracy. Classifiers are near others
with similar accuracy. Good classifiers are also closer to the
correct predictions (Optimal) and farther away from thema-
jority class baseline (Naive). The classifiers shown here and
in Figure 4 are trained on the IRIS dataset [12].

Figure 4: From the classifiers shown in Figure 3, we keep
the MLPs and color them by their optimizer (blue: Adam,
orange: Stochastic Gradient Descent (SGD)). Classifiers with
the same optimizer are generally closer to each other than
to those with different ones. This is the only parameter that
clearly clusters them in this experiment, indicating a strong
influence of optimizers on predictions.

by visually analyzing how close they are to each other. We com-
pute the scatterplot’s layout by concatenating the predictions into
vectors, as Japkowicz et al. did [2, 17], and projecting them to a
two-dimensional image via dimensionality reduction techniques
such as PCA [30], MDS [40], t-SNE [23], or UMAP [24], depending
on the user’s choice. Figures 3 and 4 show that similar classifiers
are indeed closer to each other and well-performing ones are gen-
erally closer to the optimal classifier, which serves as a reference
by always returning the correct predictions.

AVI ’20, September 28-October 2, 2020, Salerno, Italy Frank Heyen, et al.

Figure 5: To facilitate the comparison between groups of
classifiers in the history view, we provide the option to only
show the mean and confidence interval of each group’s his-
tories (right) instead of all histories at once (left).

4.5 T-training: Analyzing the Training
Behavior

Some classifier types, such as neural networks, are trained itera-
tively in several epochs. After each epoch, scores such as loss and
accuracy are computed on the training set and a separate validation
set. These scores are helpful to see how fast and how steady the
performance of a classifier increases, if it does increase at all, or if it
plateaus or drops after some number of epochs. When developers
only consider the final score, they might miss problems such as
under- or overfitting, which they could possibly avoid by adjusting
hyperparameters or using early stopping instead of abandoning
a certain parameterization entirely. Temporal data is usually dis-
played in line charts, as it is done in TensorBoard [1] which allows
for the live-analysis of model training progress.

We provide a similar interface, so users that are familiar with
TensorBoard can use it without the need to learn a new system.
Since our approach needs to display many histories at once, we
add coloring by hyperparameters and scores and an aggregated
representation where groups of classifiers are shown as mean and
confidence interval (Figure 5).

This view was helpful during the development process, when we
tested our implementation and a neural network performed worse
than expected. Its history showed that one model with this network
had low scores at the beginning but then quickly arrived at a high
accuracy. Apparently, others were stopped in their training before
they could do the same. Increasing the early stopping patience
indeed solved this problem.

4.6 T-confusion: Detecting Class-Specific
Errors

In most datasets, some classes are easier to separate than others.
Confusion matrices are commonly used to show which classes are
confused with which and how often.

We display confusionmatrices for each classifier and also provide
an average confusion matrix for a selection of multiple classifiers.
Values are color-coded and shown relative to the class size or as
absolute sample counts (Figure 6).

4.7 T-separability: Analyzing the Dataset
Some of the problems that confusion matrices indicate might be
caused by properties of the dataset. One example are different

Figure 6: The confusion matrix shows how a classifier la-
beled the samples of each class. Numbers below the matrix
show the size of each class. We support different modes: On
the left, all values are colored and the correct predictions
(diagonal) dominate the view. In the middle, only errors are
colored to make them easier to distinguish. On the right, all
numbers are shown in percent of the class size for matrix
cells or dataset size for class sizes.

Figure 7: The dataset view reveals outliers and class overlap
in a subset of the MNIST dataset [6] using t-SNE [23]. This
figure shows how highlighting supports this task.

numbers of samples per class, which can lead to biased classifiers.
Classes with a lot of overlap are hard to separate and outliers are
often hard to classify.

To reveal such patterns, we include a dimensionality reduction
scatterplot of the data, with samples colored by their class label.
Additionally, a bar chart visualizes the class sizes and a table shows
relative and absolute sample counts. Interactive highlighting of all
samples from a class helps find possibly problematic samples in the
scatterplot (Figure 7).

5 CASE STUDIES
In this section, we demonstrate how ClaVis can effectively support
classifier developers in their work. We do this in multiple case

ClaVis AVI ’20, September 28-October 2, 2020, Salerno, Italy

Figure 8: After choosing the axes and applying jitter to the
pooling dimension, the scatterplot view clearly shows that
max pooling leads to a better accuracy than average pooling
in most of the classifiers.

studies with different real world, natural language processing (NLP)
datasets from the machine learning experts in our team.

First, we analyze models trained for dialog act classification on
the datasets Meeting Recording Dialog Act Corpus (MRDA) [36] and
Switchboard Dialog Act Corpus (SWDA) [15]. To avoid focusing on
only one kind of NLP problem, we also study the speech corpora
IEMOCAP [8] and CREMA-D [9] for emotion recognition.

5.1 MRDA and SWDA
We trained convolutional neural networks (CNNs) with different
options for pooling, dropout, number of filters, and kernel size.
Although the datasets have different structures (5 classes in MRDA
and 42 in SWDA), the results were similar. We therefore only show
images for the MRDA dataset.

The most salient difference we saw was between max pooling
and average pooling. In the scatterplot view, the correlation matrix
showed that there was probably an impact of the pooling method
on scores (Figure 2). When clicking on the corresponding square to
select pooling method and test accuracy as axes, we observed that
max pooling was clearly better in most cases (Figure 8). We then
swapped accuracy for training time and found that CNNs with max
pooling were also training faster.

In the similarity map, we saw two clearly separated clusters for
classifiers that used average pooling and max pooling, respectively.
This means that the pooling method has a strong influence on the
predicted probabilities.

Furthermore, the history view for the MRDA dataset showed a
strange training behavior for classifiers with average pooling, where
the validation accuracy sometimes decreased substantially for a
single epoch and then improved again (Figure 9). This was not the
case for max pooling, which was easy to spot by coloring the lines
by pooling method. Stopping the training at one of these epochs
would lead to a significantly worse test accuracy than stopping one

Figure 9: Classifiers show different training behaviors de-
pending on pooling method. Here, all classifiers’ training
histories are shown together. Dashed lines represent train-
ing and solid lines validation accuracy. Average pooling (or-
ange) sometimes leads to a drop in validation accuracy for
single epochs. Classifiers trained with max pooling (blue)
learn faster and more stable.

Figure 10: The ranking view can group classifiers by hyper-
parameter values and then show mean or median values or
the best classifier for each group. In this case it shows the
mean accuracies and times for different C values in SVMs.
We can see that a value of 1 leads to good results in both
accuracy and time.

epoch later. Without the history view, we would not have known
about this difference in stability between pooling methods.

After deciding against using average pooling, we filtered out the
respective classifiers and looked for further differences. Although
these were not as pronounced, the ranking, scatterplot, and history
views all revealed, for example, that in most cases a dropout ratio
of 0.5 performed better than a ratio of 0.7. With these new insights,
we could now refine our search space and train more models using
the hyperparameters that worked well and then analyze them for
further insights.

AVI ’20, September 28-October 2, 2020, Salerno, Italy Frank Heyen, et al.

5.2 IEMOCAP
For the IEMOCAP dataset, we trained MLPs and SVMs and eval-
uated them via five-fold cross validation. We first looked at the
ranking and grouped the results by fold number, to see if the classi-
fiers have similar mean test accuracies on all folds. Since this was
the case, we assumed that the folds where chosen fairly.

Next, we wanted to know which value works best for the C
hyperparameter of SVMs. We therefore grouped them by this pa-
rameter in the ranking and saw that on average a value of 1 works
fine for both accuracy and training time (Figure 10).

For the MLPs, we wanted to know if the cross validation folds
have an influence on the training behavior. When grouping by fold,
we found that the classifiers that were tested on fold 1 (i.e. trained
on all other folds) were trained for almost twice as many epochs
than those that were tested on fold 3.

5.3 CREMA-D
For the CREMA-D dataset, we looked at the dataset view to see
which classes are easier to separate than others. To do this, we high-
lighted each class and looked for overlaps. The classes angry and
sad seemed to be easier to separate than the rest. This confirmed
prior experience and was also visible in the confusion matrices.
Furthermore, we saw that the data looked rather scattered instead
of clustered by classes, regardless of which dimensionality reduc-
tion we tried (PCA, UMAP, and t-SNE). This fact inspired one of
the domain experts in our team to reflect on his feature selection,
thinking about ways to make the features more informative in order
to improve class separability.

6 CONCLUSION
We empirically compile a set of high-level tasks that are common
in classifier design, complementing previous goal characterizations
for visualization-assisted machine learning [32]. To address these
tasks, we present a system named ClaVis, that helps users easily
train tens to hundreds of different classifiers, visually compare
them, find appropriate hyperparameters, and better understand hy-
perparameters and their effects. Our case studies demonstrate that
ClaVis is an effective support for various tasks related to classifier
engineering and analysis. As with all work, our approach comes
with a specific focus and several limitations, which we discuss in
the following.

Contrary to some related work [10, 14, 33, 41], we focus on a
flexible solution for classifier developers that are tech-savvy and
want to implement their own code. This focus comes at the cost
of guidance and usability. We include plugins for many classifier
algorithms and various datasets to allow for a quick start and to
provide baselines. Own plugins can be shared with colleagues or
students for reproducible results. While it may take some time to
learn all features of ClaVis, we are confident that it will cover most
use cases and that it can be extended for even more.

At the same time, we are optimistic that – with some additional
usability engineering – the approach can also be useful for other
target audiences. For instance, we conducted an initial study with
students, in which we wanted to understand the approach’s value
for learning and education (details in our supplementary material).
We presented ClaVis in a machine learning class to 16 students and

collected qualitative feedback regarding their subjective judgments
on utility, usability, and understandability. They generally agreed
that an approach like ClaVis is helpful for studying and better un-
derstanding the machine learning models they were taught in class,
as it gives them an easy way to experiment and play around with
different datasets and hyperparameters. The students also pointed
out how we could improve ClaVis in the future, for example with
more guidance on how to use our visualizations effectively, an ex-
tension to analyze behavior on multi-machine clusters, and adding
visualizations for domain-specific data such as word embeddings.
We leave a broader, quantitative usability study for future work.

There are limitations in terms of the perceptual scalability of
our visualizations and the computational effort required to produce
them. Multiple factors may impact the performance of our system,
namely the number of classifiers and the size of the predictions,
which is proportional to the number of classes and samples in the
dataset. We tested our visualizations with more than a thousand
classifiers shown at once. While it was still usable performance-
wise, some views such as the ranking cannot present that amount
of information and still be readable. We address this limitation by
providing ways to sort, filter, and group classifiers, which allow
the user to focus on interesting subsets and reduce the amount
of visual clutter. Some views, for example the similarity map and
the scatterplot, can still reveal coarser patterns while showing the
complete data. The size of the predictions impacts the time and
memory required to produce the projections for the similarity map.
To avoid long waiting times, we compute the projections in the
background while the user can already examine all other views.
With a larger number of classes, confusion matrices become hard
to read. We still found them to show useful patterns with hundreds
of classes or more. In our dataset view, we use colors to encode the
class of each sample. Since humans are unable to easily distinguish
more than a few colors, we found it hard to detect patterns such as
class overlaps, although highlighting a class helps.

Currently, our implementation is limited to classification. Views
such as the ranking, scatterplot, similarity map, and history can
be easily adapted to other problems, while parts such as the confu-
sion matrices can be replaced by problem-specific visualizations.
Thereby, ClaVis could be extended to other machine learning do-
mains such as regression or sequence-to-sequence transformation.
In principle, our approach could support any comparison problem
for which scores can be produced. Adding an interactive selec-
tion of multiple groups of classifiers would allow users to analyze
them in juxtaposed views or see visually encoded differences. We
could further extend our confusion matrices, for example to display
the samples that are misclassified or classified differently by two
classifiers on demand.

ACKNOWLEDGMENTS
Funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – Project-ID 251654672 – TRR 161 (A08) and
under Germany’s Excellence Strategy – EXC-2075 – 390740016.

ClaVis AVI ’20, September 28-October 2, 2020, Salerno, Italy

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, et al. 2016. TensorFlow: A System for

large-scale machine learning. In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI). USENIX Association, 265–283.

[2] Rocio Alaiz-Rodríguez, Nathalie Japkowicz, and Peter Tischer. 2008. Visualizing
classifier performance on different domains. In 2008 20th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI), Vol. 2. IEEE, 3–10. https:
//doi.org/10.1109/ICTAI.2008.21

[3] Bilal Alsallakh, Allan Hanbury, Helwig Hauser, Silvia Miksch, and Andreas
Rauber. 2014. Visual methods for analyzing probabilistic classification data.
IEEE Transactions on Visualization and Computer Graphics (TVCG) 20, 12 (2014),
1703–1712.

[4] Saleema Amershi, Max Chickering, Steven M Drucker, Bongshin Lee, Patrice
Simard, and Jina Suh. 2015. Modeltracker: Redesigning performance analysis
tools for machine learning. In Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems (CHI). ACM, 337–346.

[5] James Bergstra, Dan Yamins, and David D Cox. 2013. Hyperopt: A python
library for optimizing the hyperparameters of machine learning algorithms. In
Proceedings of the 12th Python in Science Conference (ScyPy). 13–20.

[6] Léon Bottou, Corinna Cortes, John S Denker, et al. 1994. Comparison of classifier
methods: a case study in handwritten digit recognition. In Proceedings of the 12th
IAPR International Conference on Pattern Recognition (ICPR), Vol. 3 - Conference C:
Signal Processing. IEEE, 77–82. https://doi.org/10.1109/ICPR.1994.576879

[7] Brent Komer, James Bergstra, and Chris Eliasmith. 2014. Hyperopt-Sklearn:
Automatic hyperparameter configuration for Scikit-Learn. In Proceedings of the
13th Python in Science Conference (ScyPy), Stéfan van der Walt and James Bergstra
(Eds.). 32–37. https://doi.org/10.25080/Majora-14bd3278-006

[8] Carlos Busso, Murtaza Bulut, Chi-Chun Lee, Abe Kazemzadeh, Emily Mower,
Samuel Kim, Jeannette N Chang, Sungbok Lee, and Shrikanth S Narayanan. 2008.
IEMOCAP: Interactive emotional dyadic motion capture database. Language
Resources and Evaluation 42, 4 (2008), 335–359.

[9] Houwei Cao, David G Cooper, Michael K Keutmann, Ruben C Gur, Ani Nenkova,
and Ragini Verma. 2014. CREMA-D: Crowd-sourced emotional multimodal actors
dataset. IEEE Transactions on Affective Computing (TAC) 5, 4 (2014), 377–390.

[10] Dylan Cashman, Shah Rukh Humayoun, Florian Heimerl, et al. 2019. A User-
based Visual Analytics Workflow for Exploratory Model Analysis. Computer
Graphics Forum (CGF) 38, 3 (2019), 185–199. https://doi.org/10.1111/cgf.13681

[11] Rene Cutura, Stefan Holzer, Michaël Aupetit, and Michael Sedlmair. 2018. Vis-
CoDeR: A tool for visually comparing dimensionality reduction algorithms. In
Proceedings of European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning (ESANN).

[12] Ronald A Fisher. 1936. The use of multiple measurements in taxonomic problems.
Annals of Eugenics 7, 2 (1936), 179–188.

[13] Hongbo Gao, Bo Cheng, et al. 2018. Object classification using CNN-based fusion
of vision and LIDAR in autonomous vehicle environment. IEEE Transactions on
Industrial Informatics (TII) 14, 9 (2018), 4224–4231.

[14] Yolanda Gil, James Honaker, Shikhar Gupta, et al. 2019. Towards human-guided
machine learning. In Proceedings of the 24th International Conference on Intelligent
User Interfaces (IUI) (IUI ’19). ACM, 614–624. https://doi.org/10.1145/3301275.
3302324

[15] John J Godfrey, Edward C Holliman, and Jane McDaniel. 1992. SWITCHBOARD:
Telephone speech corpus for research and development. In Proceedings of the
1992 IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), Vol. 1. IEEE, 517–520.

[16] Benjamin Höferlin, Rudolf Netzel, Markus Höferlin, Daniel Weiskopf, and Gun-
ther Heidemann. 2012. Inter-active learning of ad-hoc classifiers for video visual
analytics. In 2012 IEEE Conference on Visual Analytics Science and Technology
(VAST). 23–32. https://doi.org/10.1109/VAST.2012.6400492

[17] Nathalie Japkowicz, Pritika Sanghi, and Peter Tischer. 2008. A projection-based
framework for classifier performance evaluation. InMachine Learning and Knowl-
edge Discovery in Databases (KDD), Walter Daelemans, Bart Goethals, and Katha-
rina Morik (Eds.). Springer, 548–563.

[18] Haifeng Jin, Qingquan Song, and Xia Hu. 2019. Auto-Keras: An efficient neural
architecture search system. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD) (KDD ’19). ACM,
1946–1956. https://doi.org/10.1145/3292500.3330648

[19] Medha Katehara, Emma Beauxis-Aussalet, and Bilal Alsallakh. 2017. Predic-
tion scores as a window into classifier behavior. In NIPS 2017 Symposium on
Interpretable Machine Learning. NIPS. https://arxiv.org/pdf/1711.06795.pdf

[20] Lars Kotthoff, Chris Thornton, Holger H Hoos, Frank Hutter, and Kevin Leyton-
Brown. 2017. Auto-WEKA 2.0: Automatic model selection and hyperparameter
optimization in WEKA. The Journal of Machine Learning Research (JMLR) 18, 1
(2017), 826–830.

[21] David Laredo, Yulin Qin, Oliver Schütze, and Jian-Qiao Sun. 2019. Automatic
model selection for neural networks. arXiv preprint arXiv:1905.06010 (2019).
https://arxiv.org/pdf/1905.06010.pdf

[22] Alexander Lex, Samuel Gratzl, Nils Gehlenborg, Hanspeter Pfister, and Marc
Streit. 2013. LineUp: Visual analysis of multi-attribute rankings. IEEE Transactions
on Visualization and Computer Graphics (TVCG) 19, 12 (2013), 2277–2286. https:
//doi.org/10.1109/TVCG.2013.173

[23] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of Machine Learning Research (JMLR) 9, Nov (2008), 2579–2605.

[24] LelandMcInnes, John Healy, Nathaniel Saul, and Lukas Grossberger. 2018. UMAP:
Uniform manifold approximation and projection. The Journal of Open Source
Software (JOSS) 3, 29 (2018), 861.

[25] Gledson Melotti, Cristiano Premebida, Nuno MM da S Goncalves, Urbano JC
Nunes, and Diego R Faria. 2018. Multimodal CNN pedestrian classification: A
study on combining LIDAR and camera data. In 2018 21st International Conference
on Intelligent Transportation Systems (ITSC). IEEE, 3138–3143.

[26] Miriah Meyer, Michael Sedlmair, and Tamara Munzner. 2012. The four-level
nested model revisited: Blocks and guidelines. In Proceedings of the 2012 BELIV
Workshop: Beyond Time and Errors-Novel Evaluation Methods for Visualization.
ACM, 11.

[27] Yao Ming, Huamin Qu, and Enrico Bertini. 2018. RuleMatrix: Visualizing and
understanding classifiers with rules. IEEE Transactions on Visualization and
Computer Graphics (TVCG) 25, 1 (2018), 342–352.

[28] Tamara Munzner. 2009. A nested model for visualization design and validation.
IEEE Transactions on Visualization and Computer Graphics (TVCG) 15, 6 (2009),
921–928.

[29] Thomas Mühlbacher and Harald Piringer. 2013. A partition-based framework
for building and validating regression models. IEEE Transactions on Visualization
and Computer Graphics (TVCG) 19, 12 (2013), 1962–1971. https://doi.org/10.1109/
TVCG.2013.125

[30] Karl Pearson. 1901. LIII. On lines and planes of closest fit to systems of points in
space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science 2, 11 (1901), 559–572.

[31] Donghao Ren, Saleema Amershi, Bongshin Lee, Jina Suh, and Jason D Williams.
2016. Squares: Supporting interactive performance analysis for multiclass clas-
sifiers. IEEE Transactions on Visualization and Computer Graphics (TVCG) 23, 1
(2016), 61–70.

[32] Dominik Sacha, Matthias Kraus, Daniel A Keim, and Min Chen. 2019. VIS4ML:
An ontology for visual analytics assisted machine learning. IEEE Transactions on
Visualization and Computer Graphics (TVCG) 25, 1 (2019), 385–395.

[33] Aécio Santos, Sonia Castelo, Cristian Felix, et al. 2019. Visus: An interactive sys-
tem for automatic machine learning model building and curation. In Proceedings
of the Workshop on Human-In-the-Loop Data Analytics (HILDA) (HILDA’19). ACM,
Article 6. https://doi.org/10.1145/3328519.3329134

[34] Michael Sedlmair, Christoph Heinzl, Stefan Bruckner, Harald Piringer, and
Torsten Möller. 2014. Visual parameter space analysis: A conceptual frame-
work. IEEE Transactions on Visualization and Computer Graphics (TVCG) 20, 12
(2014), 2161–2170.

[35] Michael Sedlmair, Mariah Meyer, and Tamara Munzner. 2012. Design study
methodology: Reflections from the trenches and the stacks. IEEE Transactions on
Visualization and Computer Graphics (TVCG) 18, 12 (2012), 2431–2440. https:
//doi.org/10.1109/TVCG.2012.213

[36] Elizabeth Shriberg, Raj Dhillon, Sonali Bhagat, Jeremy Ang, and Hannah Carvey.
2004. The ICSI meeting recorder dialog act (MRDA) corpus. In Proceedings of the
5th SIGdial Workshop on Discourse and Dialogue at HLT-NAACL 2004. 97–100.

[37] Daniel Smilkov, Shan Carter, D Sculley, Fernanda B Viégas, and Martin Watten-
berg. 2017. Direct-manipulation visualization of deep networks. arXiv preprint
arXiv:1708.03788 (2017). https://arxiv.org/pdf/1708.03788.pdf

[38] Justin Talbot, Bongshin Lee, Ashish Kapoor, and Desney S Tan. 2009. Ensem-
bleMatrix: Interactive visualization to support machine learning with multiple
classifiers. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI). ACM, 1283–1292.

[39] Chris Thornton, Frank Hutter, et al. 2013. Auto-WEKA: Combined selection and
hyperparameter optimization of classification algorithms. In Proceedings of the
19th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD). ACM, 847–855. https://doi.org/10.1145/2487575.2487629

[40] Warren S Torgerson. 1952. Multidimensional scaling: I. Theory and method.
Psychometrika 17, 4 (1952), 401–419.

[41] Qianwen Wang, Yao Ming, Zhihua Jin, Qiaomu Shen, Dongyu Liu, Micah J.
Smith, Kalyan Veeramachaneni, and Huamin Qu. 2019. ATMSeer: Increasing
transparency and controllability in automated machine learning. In Proceedings
of the 2019 Conference on Human Factors in Computing Systems (CHI) (CHI ’19).
ACM, Article 681. https://doi.org/10.1145/3290605.3300911

[42] Kanit Wongsuphasawat, Daniel Smilkov, James Wexler, Jimbo Wilson, Dandelion
Mane, Doug Fritz, Dilip Krishnan, Fernanda B Viégas, and Martin Wattenberg.
2017. Visualizing dataflow graphs of deep learning models in tensorflow. IEEE
Transactions on Visualization and Computer Graphics (TVCG) 24, 1 (2017), 1–12.

[43] Cheng Xue, Qi Dou, Xueying Shi, Hao Chen, and Pheng-Ann Heng. 2019. Robust
Learning at Noisy Labeled Medical Images: Applied to Skin Lesion Classification.
In 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI). IEEE,
1280–1283. https://doi.org/10.1109/ISBI.2019.8759203

https://doi.org/10.1109/ICTAI.2008.21
https://doi.org/10.1109/ICTAI.2008.21
https://doi.org/10.1109/ICPR.1994.576879
https://doi.org/10.25080/Majora-14bd3278-006
https://doi.org/10.1111/cgf.13681
https://doi.org/10.1145/3301275.3302324
https://doi.org/10.1145/3301275.3302324
https://doi.org/10.1109/VAST.2012.6400492
https://doi.org/10.1145/3292500.3330648
https://arxiv.org/pdf/1711.06795.pdf
https://arxiv.org/pdf/1905.06010.pdf
https://doi.org/10.1109/TVCG.2013.173
https://doi.org/10.1109/TVCG.2013.173
https://doi.org/10.1109/TVCG.2013.125
https://doi.org/10.1109/TVCG.2013.125
https://doi.org/10.1145/3328519.3329134
https://doi.org/10.1109/TVCG.2012.213
https://doi.org/10.1109/TVCG.2012.213
https://arxiv.org/pdf/1708.03788.pdf
https://doi.org/10.1145/2487575.2487629
https://doi.org/10.1145/3290605.3300911
https://doi.org/10.1109/ISBI.2019.8759203

	Abstract
	1 Introduction
	2 Related Work
	2.1 Classifier Analysis
	2.2 Parameter Space Analysis
	2.3 User-Guided Model Selection

	3 Problem Characterization
	4 Design
	4.1 General Overview
	4.2 T-optimal: Finding Well-Performing Classifiers
	4.3 T-sensitivity: Analyzing the Influence of Hyperparameters on Scores
	4.4 T-similarity: Analyzing the Prediction Behavior
	4.5 T-training: Analyzing the Training Behavior
	4.6 T-confusion: Detecting Class-Specific Errors
	4.7 T-separability: Analyzing the Dataset

	5 Case Studies
	5.1 MRDA and SWDA
	5.2 IEMOCAP
	5.3 CREMA-D

	6 Conclusion
	Acknowledgments
	References

