
L
at

e-
B

re
ak

in
g

/D
em

o
Se

ss
io

n
E

xt
en

de
d

A
bs

tr
ac

t,
IS

M
IR

20
22

C
on

fe
re

nc
e

A WEB-BASED MIDI CONTROLLER FOR MUSIC LIVE CODING

Frank Heyen Dilara Aygün Michael Sedlmair
VISUS, University of Stuttgart, Germany

frank.heyen@visus.uni-stuttgart.de, michael.sedlmair@visus.uni-stuttgart.de

ABSTRACT

We contribute an interactive visual frontend to live coding
environments, which allows live coders and performers to
influence the behavior of their code more quickly and ef-
ficiently. Users can trigger actions and change parameters
via instruments, buttons, and sliders, instead of only inside
the code. For instance, toggling a loop or controlling a fad-
ing effect through mouse or touch interaction on a screen is
faster than editing code. While this kind of control has al-
ready been possible with hardware MIDI devices, we pro-
vide a more accessible, easy-to-use, and customizable al-
ternative that only requires a web browser. With examples,
we show how users perform live-coded music faster and
more easily with our design compared to using pure code.

1. INTRODUCTION

Several tools support programming education playfully [1–
4], including Sonic Pi [2,3], an environment for music live
coding [5] primarily aimed at schools. Instead of imple-
menting mathematical functions and other common exer-
cises, Sonic Pi allows exploring code with the more joyful
and motivating task of creating music. Live coding allows
to immediately see – or rather hear – the results of changes.
However, some musical features are tricky to implement
or perform through code, making live coding more lavish
than it could be and distracting from more interesting tasks.
For example, Sonic Pi’s low-level code interface hinders
children in creative composition [4], motivating us to aug-
ment it with higher-level controls. We therefore add an in-
teractive visual frontend, allowing to implement and con-
trol tricky musical features more easily. For instance, tog-
gling tracks currently requires finding corresponding lines
of code and commenting them out, which might take too
long and lead to mistakes such as confusing lines. A com-
plex example would be a fading effect: It is hard to quickly
perform such an effect or spontaneously change the fad-
ing curve. Interactive controls simplify performing above
tasks, allowing to focus on creativity and learning rather
than implementation. Sonic Pi can be controlled through
MIDI [6] hardware such as keyboards and controller pads.

© F. Heyen, D. Aygün, and M. Sedlmair. Licensed under
a Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: F. Heyen, D. Aygün, and M. Sedlmair, “A Web-Based
MIDI Controller for Music Live Coding”, in Extended Abstracts for the
Late-Breaking Demo Session of the 23rd Int. Society for Music Informa-
tion Retrieval Conf., Bengaluru, India, 2022.

However, these lack accessibility, as many users or schools
cannot or do not want to purchase them or might have lim-
ited funding and storage – a class of 30 students, each with
a MIDI controller would not be sustainable [7]. In con-
trast, our approach requires no additional hardware, only
a computer running Sonic Pi and a web browser, making
our interface accessible for all who already have access to
Sonic Pi. Combining live coding and visual control could
lower the learning curve in programming and music edu-
cation or for just having fun by experimenting with new
music interfaces. As we target students and live perform-
ers, we keep our design simple and familiar by restricting
the complexity of features. Therefore, our Sonic Pi Con-
troller is simpler and more user-friendly than other music
interfaces, such as digital audio workstations. In summary,
we contribute a simple and user-friendly interactive visual
user interface to support users in live coding. We also pro-
vide our source code, a web app, and code examples 1 .

2. RELATED WORK

Sonic Pi [2, 3] is a live coding environment originally de-
signed for programming lessons at schools. Collaborative
instruments [8] can be played by multiple people at once
or enable musicians with different coding experiences to
collaborate and manipulate the others output [9]. Web-
based instruments [10,11] allow users to make music, live-
code in collaboration [12], or design new instruments [13].
There is research on using web-based instruments for ed-
ucation, such as EarSketch [14] for teaching coding and
producing music through a sound browser with recommen-
dations. Another example is a virtual 3D environment [15]
with realistic instrument feedback that helps learn scien-
tific and mathematical principles. The web-based gibber-
wocky [16] live-coding system is similar to our work, but
focuses more on features than learnability. Work in the
domain of augmented reality explored visually extending
hardware MIDI controllers [17], similar to our interface.

3. DESIGN

Our boilerplate code reacts to incoming messages by di-
rectly playing notes or samples for instruments, or updat-
ing Boolean and floating point variables for buttons and
sliders. Live coders can access these variables inside con-
ditionals or effect parameters – or in any other way they
like, for example to control custom functions. For imple-

1 github.com/visvar/sonic-pi-controller

https://github.com/visvar/sonic-pi-controller


Figure 1. Our design allows live coders to perform certain actions through a visual interface to influence the behavior of
code without edits. Commands are transmitted over MIDI from a web app to Sonic Pi.

mentation and live demo, see our supplemental material 1 .
Users may want to spontaneously trigger samples or syn-
thesized melodies while their code still plays in the back-
ground, for example when improvising over a drum loop.
With code, they have to write down all notes and press play.
The temporal disconnect between writing and hearing gets
in the way of improvising, resembling composing rather
than playing. We implemented two example instruments,
a piano keyboard and a drum kit, which are played through
clicks or taps when using a touch screen. Users can also
play the drum with the computer keyboard. With buttons,
we allow toggling between different sounds and loops, for
example a bass loop or low pass filter. In code, this means
searching and commenting the loop’s lines, while our fron-
tend allows toggling by simply pressing a button. We stay
close to familiar hardware button matrices [18] and imi-
tate the illumination that shows whether a state is active
through opacity. The buttons’ color and label can be cus-
tomized according to their functionality. In code, each but-
ton’s state is synced to a Boolean variable, toggled between
true and false by clicking the button. Many effects al-
low fine-grained control through parameters, but changing
these quickly and precisely during a performance is hard
and limited by typing speed. With live coding, a performer
can achieve a fading effect by constantly changing a value
over time or implementing fading in code, which is hard 2 .
Our sliders allow to change any discrete or continuous val-
ues, such as volume or effect parameters interactively. For
instance, changing a track’s gain or a filter’s threshold re-
quires rapidly updating parameters for a smooth transition.
Sliders can be labelled and their ranges adjusted by choos-
ing minimum, maximum, and step values. Interacting with
sliders changes integer or float variables which can be ac-
cessed in any part of the code. The above tasks are only
examples, but artists might find further tasks that could

2 See in-thread.sonic-pi.net/t/fading-live-loop-in-out/2464

be supported by custom code or extensions. In our im-
plementation, we chose MIDI for communication over al-
ternatives 3 , as it is a commonly used, open, and flexible
standard. Users can replace or complement our approach
by other MIDI controllers at any time, or replace Sonic
Pi with other environments, avoiding a lock-in. Moreover,
MIDI allows for a web app that users can access without
requiring a setup or technical experience. We implemented
our frontend as a React app, requiring a browser that im-
plements the Web MIDI API.

4. DISCUSSION

Some limitations affect different features of our approach:
Latency and Sonic Pi’s scheduling cause lags between in-
teraction and effect, which is fine for buttons and sliders,
but requires users to adapt their timing when improvising.
This limitation applies to all hardware or software MIDI
inputs. Compared to hardware, our approach lacks hap-
tics: blindly turning knobs is not possible. Instead, our
design is free and more adaptable, making it viable for edu-
cation and novices, while experienced long-term users can
switch to or additionally use hardware any time, as there is
no lock-in. We show states of buttons and sliders, but no
feedback for what happens after commands, which could
be interesting future work, such as a piano roll of all played
notes that provides an overview of what is happening. A
more advanced feature would be a visual representation of
envelopes that users adjust by dragging. While creating
music through code is great for experimenting and learn-
ing, those features would help users see their performance.

5. ACKNOWLEDGEMENTS

This work was funded by the Cyber Valley Research Fund.

3 For example sonic-pi-tool (github.com/lpil/sonic-pi-tool) and sonic-
pi-cli (github.com/Widdershin/sonic-pi-cli)

https://in-thread.sonic-pi.net/t/fading-live-loop-in-out/2464
https://reactjs.org/
https://webaudio.github.io/web-midi-api/
https://github.com/lpil/sonic-pi-tool/
https://github.com/Widdershin/sonic-pi-cli/


6. REFERENCES

[1] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and
E. Eastmond, “The Scratch programming language and
environment,” ACM Transactions on Computing Edu-
cation (TOCE), vol. 10, no. 4, pp. 1–15, 2010.

[2] S. Aaron, “Sonic Pi – performance in education,
technology and art,” International Journal of Perfor-
mance Arts and Digital Media (IJPADM), vol. 12,
no. 2, pp. 171–178, 2016. [Online]. Available:
https://doi.org/10.1080/14794713.2016.1227593

[3] S. Aaron, A. F. Blackwell, and P. Burnard, “The devel-
opment of Sonic Pi and its use in educational partner-
ships: Co-creating pedagogies for learning computer
programming,” Journal of Music, Technology & Edu-
cation (JMTE), vol. 9, no. 1, pp. 75–94, 2016.

[4] C. Ford, N. Bryan-Kinns, and C. Nash,
“Creativity in children’s digital music compo-
sition,” in International Conference on New
Interfaces for Musical Expression (NIME), 4
2021, https://nime.pubpub.org/pub/ker5w948. [On-
line]. Available: https://nime.pubpub.org/pub/
ker5w948

[5] N. Collins, A. McLean, J. Rohrhuber, and A. Ward,
“Live coding in laptop performance,” Organised
Sound, vol. 8, no. 3, pp. 321–330, 2003.

[6] R. A. Moog, “MIDI: Musical instrument digital inter-
face,” Journal of the Audio Engineering Society (AES),
vol. 34, no. 5, pp. 394–404, 1986.

[7] R. Masu, A. P. Melbye, J. Sullivan, and A. R. Jense-
nius, “NIME and the environment: Toward a more sus-
tainable NIME practice,” in International Conference
on New Interfaces for Musical Expression (NIME), 4
2021, https://nime.pubpub.org/pub/4bbl5lod. [Online].
Available: https://nime.pubpub.org/pub/4bbl5lod

[8] S. W. Lee and G. Essl, “Live coding the mobile mu-
sic instrument.” in International Conference on New
Interfaces for Musical Expression (NIME), 2013, pp.
493–498.

[9] A. Sarwate, R. Rose, J. ARMITAGE, J. Freeman
et al., “Performance systems for live coders and
non-coders,” 2018. [Online]. Available: http://www.
nime.org/proceedings/2018/nime2018_paper0082.pdf

[10] C. Roberts, G. Wakefield, and M. Wright, “The
web browser as synthesizer and interface,” in
International Conference on New Interfaces for
Musical Expression (NIME), 2013, pp. 313–318. [On-
line]. Available: https://www.nime.org/2013/program/
papers/day2/paper6/282/282_Paper.pdf

[11] L. Wyse and S. Subramanian, “The viability of the web
browser as a computer music platform,” Computer Mu-
sic Journal (CMJ), vol. 37, no. 4, pp. 10–23, 2013.

[12] C. McKinney, “Quick live coding collaboration
in the web browser,” in International Con-
ference on New Interfaces for Musical Ex-
pression (NIME), B. Caramiaux, K. Tahiroglu,
R. Fiebrink, and A. Tanaka, Eds. nime.org,
2014, pp. 379–382. [Online]. Available: http:
//www.nime.org/proceedings/2014/nime2014_519.pdf

[13] C. Roberts, G. Wakefield, M. Wright, and J. Kuchera-
Morin, “Designing musical instruments for the
browser,” Computer Music Journal (CMJ), vol. 39,
no. 1, pp. 27–40, 2015.

[14] J. Smith, M. Jacob, J. Freeman, B. Magerko, and
T. Mcklin, “Combining collaborative and content fil-
tering in a recommendation system for a web-based
DAW,” in Proc. of the International Web Audio Con-
ference (WAC), 2019.

[15] K. Kritsis, A. Gkiokas, C. A. Acosta et al., “A
web-based 3D environment for gestural interaction
with virtual music instruments as a STEAM edu-
cation tool,” in International Conference on New
Interfaces for Musical Expression (NIME), 2018, pp.
348–349. [Online]. Available: https://www.nime.org/
proceedings/2018/nime2018_paper0075.pdf

[16] C. Roberts and G. Wakefield, “Gibberwocky: new live-
coding instruments for musical performance.” in Inter-
national Conference on New Interfaces for Musical Ex-
pression (NIME), 2017, pp. 121–126.

[17] A. Jones and F. Berthaut, “ControllAR: Appropriation
of visual feedback on control surfaces,” in Proceedings
of the ACM International Conference on Interactive
Surfaces and Spaces (ISS). ACM, 2016, pp. 465–468.

[18] B. Rossmy and A. Wiethoff, “Musical grid interfaces:
Past, present, and future directions,” in International
Conference on New Interfaces for Musical Expression
(NIME), 4 2021, https://nime.pubpub.org/pub/grid-
past-present-future. [Online]. Available: https://nime.
pubpub.org/pub/grid-past-present-future

https://doi.org/10.1080/14794713.2016.1227593
https://nime.pubpub.org/pub/ker5w948
https://nime.pubpub.org/pub/ker5w948
https://nime.pubpub.org/pub/4bbl5lod
http://www.nime.org/proceedings/2018/nime2018_paper0082.pdf
http://www.nime.org/proceedings/2018/nime2018_paper0082.pdf
https://www.nime.org/2013/program/papers/day2/paper6/282/282_Paper.pdf
https://www.nime.org/2013/program/papers/day2/paper6/282/282_Paper.pdf
http://www.nime.org/proceedings/2014/nime2014_519.pdf
http://www.nime.org/proceedings/2014/nime2014_519.pdf
https://www.nime.org/proceedings/2018/nime2018_paper0075.pdf
https://www.nime.org/proceedings/2018/nime2018_paper0075.pdf
https://nime.pubpub.org/pub/grid-past-present-future
https://nime.pubpub.org/pub/grid-past-present-future

