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Abstract: Immersive Analytics is concerned with the sys-
tematic examination of the benefits and challenges of us-
ing immersive environments for data analysis, and the
development of corresponding designs that improve the
quality and efficiency of the analysis process. While im-
mersive technologies are now broadly available, practical
solutions haven’t received broad acceptance in real-world
applications outside of several core areas, and proper
guidelines on the design of such solutions are still un-
der development. Both fundamental research and appli-
cations bring together topics and questions from several
fields, and open a wide range of directions regarding un-
derlying theory, evidence from user studies, and practi-
cal solutions tailored towards the requirements of appli-
cation areas. We give an overview on the concepts, topics,
research questions, and challenges.

Keywords: Immersive Analytics, Human-Computer Inter-
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1 Introduction

Technological advances in recent years have resulted in
wide availability of high-quality display hardware such as
3D-capable display walls, holographic displays and vir-
tual (VR) and augmented reality (AR) head-mounted dis-
plays (HMDs). Such devices provide affordances that dif-
fer from a standard desktop setting, e. g. regarding physi-
cal immersion, stereoscopic 3D (S3D), field of view/regard,
user tracking, hand-held controllers, and in generalmulti-
modal interaction. They can be used to create immersive
environments (IE) for data analysis and communication
that go beyond the capabilities of classical desktop set-
tings. At the same time, software frameworks and in cases
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such as VRHMDs also full software eco-systems have been
developed around such hardware, lowering the threshold
to prototype and develop immersive visualisations as well
as to integrate automated analysis solutions.

Thus, the current situation is the ideal foundation to
investigate the potential of such environments for data
exploration and analysis. Well-designed IE approaches
might greatly improve current data analysis capabilities,
and have been commended for use in a variety of appli-
cation areas [16, 20, 52, 61, 65]. However, the combination
of visualisation, interaction, and device and environment
characteristics such as S3D, movement tracking, display
size, and multi-modal interaction constitutes a large de-
sign space.

Sometimes proposed to provide limitless workspace,
immersion of the analyst in the data, improvement of the
engagement and support of the mental state of flow dur-
ing the task, as well as interaction without barriers, all
these potential benefits come with limits and potential
drawbacks. In addition, depending on the IE design, they
may come with additional effort for the analyst to exploit
them, such as occlusion-handling, coordination of physi-
cal movement, spatial organisation of data, precise inter-
action [12], and more complex navigation [76].

The research direction of Immersive Analytics (IA) is
concerned with the systematic examination of the bene-
fits and challenges of the use of IE for data analysis, and
the development of corresponding suitable IA designs that
improve the quality and efficiency of the analysis pro-
cess. Dwyer et al. define IA to be ‘the use of engaging, em-
bodied analysis tools to support data understanding and
decision making’ [27]. They see engagement and immer-
sion at the heart of IA, with the expectation of a corre-
sponding positive impact on the analysis. While immer-
sive analytics is a term that was coined only a few years
back [15], the research is grounded in work that is much
older, and combines results from several areas and com-
munities, suchashuman-computer interaction (HCI), data
visualisation, VR, AR, visual analytics, and data science.
Already in the 1990’s, Milgram et al. [55, 56] described
a ‘reality-virtuality continuum’ that connects completely
real to completely virtual, i. e. fully technology-mediated,
environments. They saw mixed-reality visual displays as
a subset of VR-related technologies merging real and vir-
tual worlds along the continuum: ‘a generic mixed reality
(MR) environment [is] one in which real world and virtual
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world objects are presented together within a single dis-
play, that is, anywhere between the extrema of the RV con-
tinuum’ [56]. Skarbez et al. [70] later proposed a revision
of the continuum concept to cater for the developments in
technology, and argue that the continuum would actually
be discontinuous and that the virtual reality endpoint can-
not be reached. More importantly, they extend the defini-
tion of mixed reality to the case of real world and virtual
world stimuli being presented together in a single percept
instead of a display only. Fonnet and Prié emphasise the
connection of IA to previous research and related research
areas in their survey of the development of immersive an-
alytics and its predecessors over thirty years [29].

There are several challenging questions connected to
this field, ranging from fundamentals and an underlying
theory to applications and societal impact. Examples in-
clude:
– How can we quantify immersion in an analytics pro-

cess? This encompasses objective characteristics of
the IE, such as technological affordances, as well as
the subjective experience and state of the analyst in-
duced by conducting the process in an IE.

– How can we quantify the impact of immersion on this
process and the analysts’ experience and insight gen-
eration? Do changes of immersion trigger better anal-
ysis quality or experience? Are there required levels of
immersion?

– What are links between technological affordances of
the IE and user engagement and immersion? Can we
name minimal requirements and give guidelines for
which combinations of affordances support user en-
gagement and immersion?

– How can we best support analytics and decision mak-
ing tasks with immersive analytics – which IE designs
improve the analysis quality and user experience for a
specific application setting?

– What are new potentials and benefits that IA brings
for tasks in specific applications areas? Can we tai-
lor IE-based approaches for specific applications such
that the analysis canbe improved significantly, justify-
ing the additional resources and efforts? What are the
drawbacks to the use of IEs in practice?

While evaluation of current approaches still often mainly
targets classicalmetrics such as task performance, e. g. ac-
curacy and time, the potential importance of immersive
environments and their impact on the analysis might go
muchdeeper, and involve abetter internal data andknowl-
edge representation, also known as ‘mental map’ [45], as
well as long-term effects, such as on the recall of data char-
acteristics and analysis results.

Here wewill provide an overview of the field of immer-
sive analytics and discuss central aspects, research ques-
tions, and challenges.

2 Concepts and assumptions

2.1 Immersion

A term that covers central aspects of the underlying con-
cepts of IA is immersion. As it is the case with many other
terms that are used to describe related concepts, immer-
sion is overloaded and has diverging and sometimes fuzzy
definitions in the literature. It has been discussed in a va-
riety of contexts, e. g. for learning, gaming, story-telling,
and data analysis, and has been identified with or delin-
eated from a variety of other terms such as engagement or
flow [60].

Generally speaking, the concept of immersion in IA
is supposed to cover characteristics of an interaction of a
human with an environment. This environment can com-
prise a singlemedium, or a combination ofmedia, and can
be computer-mediated, as in the example of a VR environ-
ment. The interaction can be as reduced as pure consump-
tion, e. g. simply reading a text in a book or on a screen, or
as complexas amulti-modal interactionwithphysical nav-
igation, gesture, and speech recognition. Immersion is as-
sumed to support the engagement of the analyst and thus
subsequently to support the analysis process.

A main distinction that is found in the literature is the
separation of the capabilities of the environment formulti-
modal / visual representation and interaction, and the im-
pact on as well as the (re)action of the human. The for-
mer are rather static, technological aspects, butmight also
comprise the specific design of a representation as well as
its dynamics, e. g. in adaptive visualisations, which adjust
to the user’s requirements, abilities, and actions, whereas
the latter comprises elements of the psychological state,
engagement, emotion, and perception. Consequently, one
attempt to capture these aspects is the separation into
‘psychological’ and ‘technological’ immersion [27]. How-
ever, there are also at least questions if further or more de-
tailed aspects, such as long-term acquisition of skills (also
including time outside of an IE), or more general learning,
should be explicitly taken into account (see [65]).

The investigation of immersion has been conducted
for many years already in the area of gaming research [10,
14, 41], and more recently also for visual data stories, see
Isenberg et al. [37]. Agrawal et al. [2] give a literature re-
view on the term immersion in the context of immersive
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audiovisual experiences. For data analysis, the term be-
came popular in the context of IA [49]. Donalek et al. [25]
discuss immersive and collaborative data visualisations in
VR, and note that immersion provides benefits over tradi-
tional visualisation (perception, understanding, relation-
ship retention), but don’t explicitly define the term and
seem to identify it with 3D VR visualisation. While aspects
of technological immersion can be a precursor or require-
ment for psychological immersion, there are further non-
technical aspects suchas anarrative or a specific visualisa-
tionmetaphor that might strongly influence psychological
immersion.

Slater andWilbur [72] distinguish between immersion
and presence, where the former describes characteristics
of the employed technology, such as field of view, resolu-
tion, and degree of freedom, and the latter is the sense of
‘being there’, a state of consciousness that is the ultimate
goal of virtual reality. Presence is supposed to increase
the engagement, and to turn the experience of the user
from the consumption of computer-generated imagery to
the impression of an experienced reality, e. g. places vis-
ited or real-world objects explored. Note that according
to the authors in this definition immersion requires a
self-representation in the VE, and immersion is increased
when physical reality is shut out, which is only partially
the case across the reality-virtuality continuum. Thus, im-
mersion here is restricted to the characteristics of the sys-
tem, and sensori-motor contingencies that it supports, a
definition which according to Thomas et al. [78] is widely
used in the VR/AR communities. Given the goal of IA, to
improve data analysis by employing immersive technolo-
gies, these characterisations seem to be more demanding
than required, as the lack of the impression of being some-
where else might not comprise the analysis quality. More
recently, presence as the sense of ‘being there’ has also
been termed place illusion [71] to avoid confusion about
the term’s intended meaning.

Brown and Cairns [10, 13] investigate immersion in the
context of games, and propose a definition that includes
three levels, engagement, engrossment, and total immer-
sion. Jennett et al. [41] state that a clear understanding of
the concept in the context of gaming is still missing, ex-
plore quantification measures and present corresponding
experiments. They conclude that immersion in their defi-
nition can be measured subjectively and objectively, and
that it can be associated also with negative experience,
such as anxiety. A few years later, Calleja states that there
is rather more than less confusion about the term [14],
and proposes to distinguish absorption-sense (sense of
involvement and engagement, psychological immersion)
and transportation-sense (feeling of being transported in

a different world) of immersion. In particular for gaming,
immersion is often described to include the player’s re-
sponse to the system and the corresponding psychological
state.

Further terms that are often used in the discussion of
immersion are spatial immersion, where the user’s first-
person 3D view of the surrounding world is supported by
characteristics such as large field of view,movement track-
ing, haptic feedback, and embodied interaction. While of-
ten associatedwith VRE, spatial immersion can also be in-
duced by spatial AR, where projections on the real-world
environment are employed [77].

2.2 Multi-modal representation and
interaction

Amajor assumption in immersive analytics is that natural
and rich interaction supports immersion by removing the
barrier between the analyst and the data [12]. Thus, natu-
ral user interfaces that use physical metaphors and every-
day operations andmovements are investigated in the con-
text of data analysis and corresponding tasks. Using S3D
already extends the possibilities on how to perceive and
interact with data representations. The integration of mul-
tiple senses beyond pure vision has the potential to cre-
ate more natural interfaces that further improve the an-
alyst’s experience and analysis capabilities. McCormack
et al. give an overview and a design framework on multi-
sensory immersive analytics [53], and Martin et al. present
a survey on multimodality in VR [50].

2.2.1 Visualisation

Data visualisation is themost establishedway for data rep-
resentation both in classical and in immersive environ-
ments, using ourmain, high-bandwidth, sense for perceiv-
ing our environment. A major differentiation between vi-
sualisation in classical and in many immersive environ-
ments is the use of S3D. For certain tasks and data [47],
S3D can provide major advances compared to standard 2D
data visualisation, as the third dimension can be used as
an additional channel for further data dimensions, pro-
vides multiple viewing perspectives, and the space in the
third dimension can be used for both arrangement of ob-
jects and their encoding, for example eliminating the over-
lap that oftenoccurs in 2Darrangements.However, this ad-
ditional freedom comes with further potential issues [54],
such as dependence on a viewing perspective, where the
selection of a favourable one can incur further effort, the
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occlusion from stacking of objects along the depth direc-
tion, depth perception and the corresponding requirement
to incorporate proper depth cues for orientation. Individ-
ual disabilities such as the lack of 3D perception in a part
of the population are further issues that need to be taken
into consideration.

2.2.2 Haptics and data physicalisation

The main communication channel of classical visualisa-
tions is, unsurprisingly, the visual channel. By venturing
into immersive spaces, however, multi-modal and multi-
sensory experiences of data might be delivered. When im-
mersing into data, it is specifically interesting to explore
the idea of haptically “touching data”. One way of provid-
ing a haptic data experience of data is through data phys-
icalisation. Here, physical objects, e. g. from 3D printing,
are used to represent data. For example, Figure 1 shows

Figure 1: Visualisations and physicalisation of ser/thr protein phos-
phatase 1 (PP1). From left to right: 3D holographic visualisation of
PP1 (PDB ID: 1FJM [7, 32, 33]) on a looking glass device, data phys-
icalisation with two 3D printed surface models in different sizes
and a standard stereoscopic visualisation on a 2D screen with the
molecular visualisation software ChimeraX [31, 64].

Figure 2: VR exploration of a cell with information regarding protein
localisation and metabolism using a combined VR visualisation
environment based on CAVE2 and zSpace (taken from [73]).

a 3D-printed surface model of a protein. Touching a physi-
cal data objectmight reveal additional information suchas
texture, stiffness, temperature, and weight [40] that goes
beyond traditional visualisations. In addition, the objects
might be tracked to act as a interaction token, e. g. to sup-
port basic manipulation operations such as rotation. The
challenge of physical objects as visualisations lies mainly
in their inflexibility to change and the cost of creating
them.

One way to overcome these issues is to leverage hap-
tic feedback devices that allow to “touch” purely virtual
objects. There is a plethora of haptic feedback devices that
could be used to physically experience objects in Virtual
Reality [68]. Defining an immersive visualisation as such
a virtual object also would allow to touch it with such de-
vices. Figure 4 provides an example of an hand-mounted,
propeller-based feedback device that was used to touch
and haptically interact with abstract data visualisations.

Figure 3: Spatially-resolved transcriptomics data of the heart in an
immersive analytics tool using the zSpace (taken from [8]).

Figure 4: PropellerHand is an ungrounded hand-mounted force-
feedback device based on two rotatable propellers; it can be used
to simulate touching visualisations such as immersive line charts
(taken from [1]).
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Usually, the haptic experience of such devices is inferior
to touching real physical objects and necessitate to instru-
ment the user to different degrees. Still, they allow to deal
with dynamically changing data which is inherent to al-
most all interactive visualisations. Furthermore, they of-
fer interesting opportunities for visually disabled people
to interact with data (little research is available on that
though).

2.2.3 Sonification

Hearing is a further sense that can be used both inde-
pendently, as in data sonification, as well as in combina-
tion with vision and other senses for data analysis. What
makes sound particularly interesting in the context of im-
mersive analytics is the potential of using spatial location
of sound in a physical or virtual environment, and to use
it to overcome issues of pure visualisation such as occlu-
sion and restricted visual variables by additional encod-
ing of data qualities in sound variables such as pitch, tim-
bre, loudness, and patterns. Data sonification has been
often used in art or art-related projects [74, 21], and has
been discussed to be an important component in multi-
modal immersive analytics approaches. In addition, there
is a considerable body of work on general aspects of mul-
timodality, such as contradiction, crosstalk, and overload.
However, both research on the fundamentals of use in im-
mersive analytics, such as considerations of the wider de-
sign space and suitable encodings, as well as practical
use in systems and frameworks are still limited. Interest-
ing questions in this context are if the encoding should
be redundant to visual encoding or complementary, what
metaphors and design patterns can be developed, and
were the limits are, e. g. in precision or overload contribu-
tion of sound to the analysis, and in how far evidence with
crossmodal perception hold in IE [3].

2.3 Collaboration

Support for collaboration beyond the capabilities of stan-
dard desktop environments was stated as an explicit goal
of IA research [9]. By breaking the barriers of the confined
space in desktop environments, IE provide ample oppor-
tunities for the support of collaborative data analysis [17].
This includes both collocated as well as remote collabora-
tion and their combination. Large display walls and envi-
ronments such as the CAVE provide the physical space for
collocated collaboration, whereas in particular virtual en-
vironments allow to scale remote collaboration easily [67].

Important factors for the design of corresponding IEs are
proper representations of collaborators and their actions,
support for communication and interaction between par-
ticipants, as well as support for provenance, e. g. to hand
over the current state of analysis in asynchronous settings.
Important related questions are what the required charac-
teristics of collaborator representation are, how communi-
cation is supported, how IEs and potentially different de-
vices [30] can be used to create both shared and private
interactive views on the data, and how analysis methods
are integrated in a consistent way.

2.4 Situated analytics

Much of the existing research in IA focuses on leveraging
VR displays for the purpose of data visualisation and an-
alytics. The interesting characteristics of VR for such sce-
narios include stereoscopy for spatial tasks on 3Ddata, but
also an almost unlimited “space to think” [4]. While some
of the existing IA approaches have also beenused inAR, so
far they have been rarely truly situated or embedded into
the real world context. Doing exactly this is the goal of sit-
uated analytics [28].

Situated analytics focuses on how analytical work can
be embedded into the user’s spatial environment. To do
this, a computational understanding of the real world is
needed, which then can be leveraged by AR to display
virtual data representations along with real physical ref-
erents. The interesting question of course is how exactly
the relation between real physical objects and virtual data
visualisations is implemented. Thomas et al. [78], for in-
stance, see in situated analytics those visualisations that
are perceived in close spatial and temporal proximity to
its referent. Data from a smart meter might for instance be
shown right next to it, like a virtually attacheddisplay [28].
Willet et al. [83] follow a similar idea of situatedness, but
go one step further and call visualisations that are directly
overlaid onto referents “embedded visualisations”.1 CAD
model data might for instance be shown directly in place
to simulate different setups of production chains [36]. Or
you show pollution data right in the streets where they
were measured [81]. An accurate registration of the virtual
data with the physical environment is needed for such so-
lutions.

Situated analytics displays bear a huge potential as
they merge the real and the virtual in a seamless way. In

1 Commonly, situated analytics is considered to include both, situ-
ated and embedded visualisations.
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comparison to VR-approaches, they thus do not necessi-
tate the user to get detached from the real world and in-
stead bring data visualisation exactly into their current
spatial and social environment. With highly sophisticated
AR displays (which do not exist yet) one can even imag-
ine that such an approach might eventually replace tradi-
tional screen-based displays. For the time being, however,
themainbenefit lies in tasks that intrinsically need to com-
bine physical and virtual components.

Characterising the full potentials of situated analytics
is still an open research question. One of the challenges
is that developing truly situated/embedded visualisations
is non-trivial. While much progress has been made on the
technical sophistication of AR hardware (e. g., Microsoft’s
HoloLens 2), developing situated analytics tools still re-
quires to combine different concepts from computer vi-
sion, augmented reality, internet of things, and visuali-
sation. Dedicated toolkits that support this development
process have only very recently started to become avail-
able [28]. Even with good toolkits, however, many de-
sign challenges remain. These primarily stem from the
fact that, for situated analytics, visualisation designs need
to be directly incorporated into real world circumstances.
Classical visualisations on screen, and even more so im-
mersive visualisations in VR, are viewed in a fairly con-
trolled environment. Situated analytics solutions, in con-
trast, might be strongly impacted by environmental fac-
tors, such as environmental visual clutter, changing light
conditions, or simply users moving around with their AR
displays. All of these factors pose a plethora of open re-
search questions for visualisation, and call for novel ro-
bust and adaptable visualisation designs.

3 Major research topics and
challenges

3.1 Concepts for and evaluation of
immersion

As we have seen in the previous discussion, immersion
is a term that has multiple descriptions and approaches
formeasuring, includingquantitative andqualitativemea-
sures. Characterising and quantifying immersion in the
context of IA is thus a major topic and challenge in cur-
rent research. In particular the support for different lev-
els of immersion induced by the affordances and the de-
sign of the IE is amajor open question. Further, the immer-
sion along complex workflows in application areas, and

the impact of changes of environments and correspond-
ing changes of the immersion and focus on the analysis
is investigated. Cummings and Bailenson [19] performed a
meta-analysis on 83 studies to investigate if greater levels
in the immersive qualities of an environment elicit higher
levels of presence (as defined by Slater and Wilbur). They
conclude that technological immersion has a medium-
sized effect on presence. Miller and Bugnariu conclude
from their meta-study that the impact of technological im-
mersion might be strongly depending on user characteris-
tics and tasks [58].

3.2 Understanding and evaluating
perception for data analysis in IE

Perception plays a major role in data visualisation, pro-
viding the fundamental mechanisms underlying any vi-
sual data analysis and communication. A large body of
research has been concerned with perception on 2D dis-
plays, also for data analysis. Immersive environments of-
ten provide S3D visualisation, and through 3 or 6 degrees
of freedom also different perspectives and frames of refer-
ence for the data representation. Large display walls, and
CAVE or VR environments also often support larger dis-
play space and field of regard than classical desktop envi-
ronments. Occlusion, overload, depth distortion, and dis-
tance can however make perception, visual search, and
the mapping of spatial organisation to a mental mapmore
difficult. Thus, the effect and limits of IE for perception in
analysis tasks need to be investigated and characterised,
and corresponding guidelines created regarding effective
encoding and layout of data in IE. There is significantly
less research so far in this direction compared to the re-
searchon classical 2Ddisplays. An initial step in that direc-
tion is the investigation of graphical perception for IA [82],
which compares three displaymodalities for scatterplot vi-
sualisation in a limited setting of 100 − 200 data points,
including VR and AR HMDs.

3.3 Understanding and supporting the
mental map

The problem of supporting the creation and maintenance
of a mental map is concerned with the question of the in-
ternal representation of knowledge on a certain data set,
its structure and content, and the connection to the exter-
nal representation, i. e. the computer-mediated content.
The visualisation, but also the interaction with and the
navigation in the data and representation spaces, need
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to be designed in a way that facilitates this maintenance
as well as the user’s orientation and cognition using this
map. While for standard 2D environments the investiga-
tion of the mental map with respect to data analysis has
been conducted already for many years [5, 59], the trans-
fer to IE has been performed only recently [45]. In par-
ticular the effects of S3D, spatial immersion, and multi-
modal representation and interaction are of interest. The
exploitation of the spatial memory through spatial organi-
sation and physical navigation [76], aswell as the effects of
large field of view and field of regard and of direct interac-
tion [12] are supposed to improve the mental map, which
however needs further evidence from user studies.

3.4 Scalability

Scalability in IAhas several aspects, including the limits of
human perception and cognition and the technological re-
strictions such as rendering performance. While more and
more powerful hardware supports to render large num-
bers of objects in virtual andaugmentedenvironments, the
requirements for low-latency high-framerate rendering of
content are still demanding as even a small deviation can
have detrimental effects on the user experience [11] and
subsequently on the analysis. Amajor challenge in IEs that
goes beyond the considerations for traditional visual ana-
lytics [66] is to exploit the specific IE affordances to create
scalable representations and navigation schemes. While
the large design space offers opportunities for scalability
that go beyond traditional environments, the design has to
be carefully considered to not put too much strain on the
user and to balance the tradeoff between the potentially
influencing factors for efficiency, effort, and orientation
such as the number of navigation operations, representa-
tion levels, and the amount of physical navigation [6]. An
important research direction for scalability is the investi-
gation of the suitability of abstraction and aggregation ap-
proaches and potential transfer of established approaches
into IE.

3.5 Interaction and navigation

Immersive environments provide a rich set of options for
interaction with data representations, and navigation in
thedata and its representations.Gesture and speech recog-
nition, eye tracking, physical navigation, physicalisation,
mid-air interaction, andhand-held controllers can be used
to support corresponding operations. These can provide
direct interaction, for example with 3D representations

of data points, or target indirect interaction, for example
through 2D menus blended into a S3D environment. The
designs have to be carefully chosen to ensure that the re-
quirements aremet, e. g. regarding requiredprecision, and
that no heavy burden is put on the user, e. g. avoiding ef-
fects such as the ‘gorilla arm’ or ‘midas touch/gaze’ [38].
Wang et al. [79] investigated the impact of matching the
input and output device dimensionality. They found no
evidence to suggest that the parity of dimensionality be-
tween input and output devices plays an important role on
performance, but a tradeoff between accuracy and speed
when using either 2D or 3D devices.

3.6 Transitional interfaces

Given the availability of a broad range of devices and tech-
nologies used in data analysis for representation and in-
teraction, as well as the complexity of analysis workflows
which might include multiple stages and a collaboration
within or between groups, switching between different de-
vices and environments might be necessary or advanta-
geous for analysis. The research direction of transitional
interfaces [35] looks into the requirements and the possi-
ble designs for such situations, with the goal that users
can seamlessly switch between contexts, which are con-
stituted by interaction spaces such as VR and AR, and po-
tentially also by different data scales and representations.
One vision for transitional interfaces is that systems from
different locations along the RV-continuum can be inte-
grated as coherent and consistent interfaces in a shared
physical space [42]. That way, transitions between tradi-
tional 2D, VR, andARwould allow to choose the best avail-
able support of a task at hand, and also collaborations
across degrees of virtuality could be facilitated [69].

4 Use cases
We organise our use case examples according to the
amount of spatial information in the data under analysis.

4.1 Analysis of data in the context of the
environment

4.1.1 Animal behaviour research

Animal behaviour research investigates the drivers
and mechanisms of animal behaviour and interaction.
Lightweight sensor tags allow to collect large data sets
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Figure 5: TeamWise animal movement analysis tool showing a visu-
alisation of a bird returning from winter migration to Lake Constance
(taken from Klein et al. [44] under creative commons license [18]).

Figure 6: Storks soaring, shown in VR with satellite imagery of the
environment.

of movement and further parameters such as accelera-
tion, and physiological or environmental conditions. The
resulting trajectories and further derived data structures
can be analysed to detect behavioural patterns and events
and to categorise periods into classes of behaviour such
as foraging or fighting [24]. Thus, a combination of spa-
tial and temporal data is relevant for analysis. While this
analysis can make use of automated analysis methods
and statistics, the results as well as the original movement
data often need to be investigated in the context of the ge-
ographic environment it occurred in. Both the integration
of potential environmental drivers for an animal’s deci-
sion as well as the visual interpretation by an analyst are
thus components that are required in the analysis work-
flow. Immersive environments are well suited to support
the resulting combination of 3D spatial information, such
as terrain, satellite imagery, trajectories and abstract data
representations such as interaction networks or charts,
see Figures 5 and 6. The display space can be used to show
further environmental context that an animalmight use as
orientation, alternative perspectives to better analyse the
animal’s perception of the environment or other animals,

or for additional linked data views. An important asso-
ciated question is which or how much information can
be embedded in the 3D visualisation, and where instead
linked views and 2D charts provide better overview and
interpretation possibilities. The evaluation of the interpre-
tation of the displayed information in a 3D visualisation is
thus an important part of immersive analytics research.

4.2 Analysis of data with spatial referents

4.2.1 Molecules

In biology and biochemistry, 3D models of molecules
are routinely used for analysis of molecular interaction,
e. g. binding analysis and the analysis and communica-
tion of molecular docking processes. While technologies
such as the Cave automatic virtual environment (CAVE) al-
ready provided stereoscopic 3D and collaboration environ-
ments thirty years ago, the advent of high-qualityVRhead-
mounted displays allows for remote collaboration, high-
resolution rendering and intuitive interaction with molec-
ular structures. Stereoscopic 3D and haptic feedback have
been utilised in docking and further investigation of the
use of IE for the domain [22, 43, 61, 63].

4.2.2 Spatial transcriptomics

Spatially-resolved transcriptomics is a novel method
which allows to systematically investigate gene expression
with spatial resolution [51]. It provides a large amount of
data that has to be explored and analysed in spatial (3D)
context. An example of an immersive analytics system de-
signed to support the interpretation of spatially-resolved
transcriptomics dataset is 3D-Cardiomics-VR [8], see Fig-
ure 3. It allows to visually explorewithin an organ (such as
the heart), which then is represented as the spatial refer-
ent, patterns of gene expression and compare genes based
on their 3D expression profiles.

4.2.3 Brain data analysis

Brain data analysis can involve several aspects of impor-
tance for the analysis of brain-related questions, such as
brain anatomy, structure, and function and temporal ac-
tivity. The data can be acquired from sources such as elec-
troencephalography (EEG) and functional magnetic reso-
nance imagery (fMRI) measurements for activity, and dif-
fusion tensor imaging (DTI) for structure, and MRI, com-
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Figure 7: Brain data analytics – a brain model that allows to distin-
guish anatomical regions is combined with brain activity data. The
activity data acquisition provides time series that can be depicted in
a classical chart, but also turned into a network by correlation anal-
ysis, which allows to map activity correlations between regions into
the 3D model. Interaction allows to rotate the model and to select
regions for in-depth analysis of their activity and correlations. Taken
from [39], © 2019 IEEE.

puted tomography (CT) or positron emission tomography
(PET) for the anatomy. General goals are a better under-
standing of the inner workings of the brain and its archi-
tecture, to find activity patterns, and to compare cohorts
or individuals regarding structure or function. Typical ap-
plications are to detect, classify, monitor, predict diseases,
such as Dementia or Alzheimer’s disease, as well as the
impact of physical damage, to identify inter-species differ-
ences and similarities, and potential evolutionary devel-
opments, and to correlate behaviour and brain activity for
a deeper understanding of the underlying mechanisms.

For most of these application tasks, both the under-
standing of the anatomy and structure aswell as the topol-
ogy of functional relations are relevant. Due to this combi-
nation of spatial information, such as the brain’s anatomy
and structure, and abstract data, such as activity correla-
tions, IE that use S3D representations of the brain as well
as charts and abstract representations, e. g. node-link di-
agrams, have the potential to provide more direct and in-
tuitive analysis interfaces. See Figure 7 for an example of
such a combination. Immersive environments might not
only help in the analysis of data [62, 39], but already in the
preprocessing steps, e. g. the modelling of 3D structures
from imaging slices [84].

The design of proper environments for use in practice
poses however several open challenges, including proper
metaphors for representation, intuitive interaction and
linking, and the seamless integration of analysis meth-
ods [39]. In addition, the difficulties stemming from the

dynamic nature of the data, the challenges stemming from
the application andparameterisation of sophisticated pro-
cessing steps along the analysis pipeline, and our still
restricted understanding of the brain’s inner workings
require not only interactive visualisations, and different
views and perspectives, but also human-centered compu-
tational analytics to allow assessment of intermediate re-
sults, e. g. from image processing and parcellation, and
subsequent adjustments to method settings.

Besides thedynamics, also theuncertainty that is built
up along the processing pipeline [23] is a major challenge.
Consideration of uncertainty in analysis methods as well
as the integration of corresponding information for visual-
isation are still a major challenge in current research [80].

4.3 Abstract data

While mapping of spatial data, in particular three-
dimensional data, into S3D environments looks like a nat-
ural choice, the value of S3D visualisations, in particular
for abstract data, needs further motivation and justifica-
tion [46]. Metwith reservations from the data visualisation
community for some time, visualisation of abstract data in
IE still offers several potential advantages, and in particu-
lar in combination with spatial data these advantages can
be exploited. Recent initial research shows the potential of
S3D visualisations for exploration and analysis of abstract
data such as high-dimensional data [34, 57], e. g. when di-
mensionality reduction is used, or networks [45, 17, 48].

Due to their prevalence in a variety of application ar-
eas, where they are used to model and represent data
for both communication of knowledge and analysis pur-
poses, networks have attracted high attention in recent
research on IA. As they have no intrinsic spatial struc-
ture or direction, there is a lot of freedom in the design
of visual representations, including encoding, layout, and
metaphor. Most representations employ the node-link or
matrixmetaphor, ofwhich the former lends itselfmorenat-
urally to a 3D representation, see Figure 8. The layout is
usually given as node positions and routing of the edges as
curves or segments, and established layout methods such
as the force-directed and stressminimisationmethods can
be easily extended towork on three dimensions.While lay-
out methods can more easily optimise certain goals in 3D,
such as distance representation due to the additional di-
mension, that however does not automatically lead to im-
proved readability, e. g. due to perspective-dependent oc-
clusion and distortion. Navigation, in particular in large-
scale networks, poses a further challenge that is not yet
well investigated, requiring efforts to better understand
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Figure 8: Investigation of mental map preserving node-link network
visualisation where a user interacts with an immersive 3D network
visualisation in VR. Taken from [45], © 2020 IEEE.

the mechanisms behind mental map creation, orientation
in networks and S3D network representations, including
the evaluation of traversal methods [75, 26].

5 Discussion

Despite the promises of more efficient and more engag-
ing environments for data analysis, IA solutions haven’t
received broad acceptance in real-world applications out-
side of several core areas. These areas have either al-
ready been early adoptors of advanced technology, such
as chemistry, where stereoscopic 3D modelling has been
used already for some time in drug development, or need
data representation in a spatial context that is natural for
representation in IE, e. g. simulations in disaster manage-
ment. There are several potential impediments for the fur-
ther employment of IA in practical applications. These in-
clude in particular
– the lack of evidence and guidelines on efficient IA de-

signs for specific application requirements, including
a comprehensive characterisation of the design space,

– the rapid technological advance in the last years,
which made the maintenance of code bases and de-
sign approaches difficult as they had to be adjusted
nearly constantly to new software, APIs, and device
capabilities,

– the existence of well-established high-quality solu-
tions in standard environments, which partly cover

for the lack in design opportunities with sophisticated
and well-implemented approaches,

– the still sometimes cumbersomehandlingof hardware
(e. g. sharing of VR HMDs),

– and the potentially detrimental effects in particular of
VR devices on communication (still lacking collabora-
tion support and blocking out the surroundings) and
well-being.

Both fundamental research and applications bring to-
gether topics and questions from several fields, and open
awide range of directions regarding underlying theory, ev-
idence from user studies, and practical solutions tailored
towards the requirements of an application area. We gave
an overview on the concepts, topics, research questions,
and challenges.
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