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Fig. 1: The proposed hybrid user interface for robot programming comprises a head-mounted display (HMD) app showing

Augmented Reality (AR) visualizations and a respective user interface, a smartphone app, and a desktop app. All apps are

synchronized and show the same state, so the user can seamlessly switch between them, allowing the user to choose the

appropriate device for each sub-task of robot programming.

Abstract— Robot programming for complex assembly tasks is
challenging and demands expert knowledge. With Augmented
Reality (AR), immersive 3D visualization can be placed in the
robot’s intrinsic coordinate system to support robot program-
ming. However, AR interfaces introduce usability challenges.
To address these, we introduce a hybrid user interface (HUI)
that combines a 2D desktop, a smartphone, and an AR
head-mounted display (HMD) application, enabling operators
to choose the most suitable device for each sub-task. The
evaluation with an expert user study shows that an HUI
can enhance efficiency and user experience by selecting the
appropriate device for each sub-task. Generally, the HMD
is preferred for tasks involving 3D content, the desktop for
creating the program structure and parametrization, and the
smartphone for mobile parametrization. However, the device
selection depends on individual user characteristics and their
familiarity with the devices.
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I. INTRODUCTION

Programming robots, especially for complex assembly

tasks, requires expert knowledge and is time-consuming and

error-prone. At the same time, the need for more straightfor-

ward robot programming is growing, especially for small

and middle-sized enterprises [1], due to personnel costs,

lack of professionals, quality and traceability requirements,

and potentially small lot sizes. One approach to make robot

programming more efficient is skill-based programming:

Reusable skills, with arbitrary abstraction levels, can be

composed and then only require parametrization [2], [3].

However, this process is still difficult for complex tasks and

requires deep knowledge of the robot programming language.

In recent years, the development of Augmented Reality

(AR) head-mounted displays (HMDs) has grown signifi-

cantly. AR allows immersive visualization of 3D content

within the target environment, which can bridge the gap

between the programming environment and the actual pro-

gramming task. It enables the operator to work mobile and

hands-free within the (often complex) robot cell environ-

ment. While AR shows advantages in the domain of 3D robot

simulation [4], [5], AR user interfaces (UIs) come with other

challenges: most people are not used to it, and interactions

like, e.g., text entry using a holographic keyboard, are still

very challenging and time-consuming compared to a classical

user interface [6].

We are interested in how these issues could be addressed



by merging the advantages of the different technologies.

To this end, we contribute a novel hybrid user interface

for robot programming, consisting of a 2D desktop UI, a

smartphone application, and an AR HMD, towards the next

generation of industrial robot programming interfaces. The

main idea is that users can choose the appropriate device for

the respective sub-task and switch seamlessly between the

devices. We evaluated the interface in an exploratory user

study with six domain experts on typical assembly tasks. The

expert study allowed us to collect insights on different device

combinations and derive research implications for future

AR-assisted robot programming interfaces in an industrial

context.

II. BACKGROUND & RELATED WORK

There are versatile ways to create robot programs

for industrial robotic arms, the most common of which

are offline programming, learning programs in simulation,

programming-by-demonstration, and online programming

approaches like the classical teach pendant programming

[7]. Although learning- and demonstration-based approaches

have been studied for decades, they still struggle with the

demands of industrial robot applications, such as reliability

and robustness [8]. Thus, manually programming robots is

still the go-to solution, which is often more intuitive and

time-efficient in industrial environments. Our work focuses

on the method of mixed offline/online programming using a

skill-based programming framework like pitasc [9] but also

applies to other offline/online programming approaches.

A. AR-based user interfaces for robotics

While AR has already been used for more than a decade

for visualization during robot programming [10]–[14], ad-

vances in technology have made AR HMDs more popular.

Devices have become cheaper and more ergonomic, expand-

ing the applications and use cases that can be implemented

with them.

Most applications in robotics focus on trajectory planning

and visualization. Quintero et al. [15] introduced an AR user

interface allowing for trajectory creation and visualization as

well as online reprogramming, reporting reduced teaching

time and better performance but a higher mental workload

compared to kinesthetic teaching. Gadre et al. [4] included

gripper actions, as well as a task list where the user can

create sequential programs from a set of robot actions and

evaluate them on a pick-and-place task. The results showed

a lower cognitive workload, higher usability, and higher

naturalness with the AR HMD interface. Ostanin et al. [16]

introduced spatial markers for trajectory waypoint definition

and workspace visualization. Rivera-Pinto et al. [17] used

the HMD spatial perception for collision avoidance and

compared two trajectory teaching methods. Krieglstein et al.

[18] applied a full-featured AR user interface to skill-based

robot programming, including frame teaching, program com-

position, simulation, and execution on the real robot, as

well as visualizing skill parameters like velocity- or force-

controlled axes situated in 3D space.

While these works showed that AR can beneficially be

used for robot programming, they do not provide a concept

of how AR can be integrated into existing robot programming

workflows, given today’s ergonomic and usability issues with

AR HMDs [19].

B. Hybrid user interfaces

It has been shown that smartphones and tablets can

help users to navigate through HMD AR/VR visualizations

since most people are used to smartphones nowadays, and

the precise touch resolution and physical touch feedback.

Butscher et al. [20] used AR-visualization from an HMD,

along with a touch-sensitive tabletop for visualizing and

analyzing multidimensional data. They found that touch input

is more fluid and precise than a gesture-based system. Surale

et al. [21] used a 3D-tracked multi-touch tablet as an input

device within an immersive VR environment for solid 3D

modelling, finding advantages of the touch-based input and

disadvantages in handling and 3D-tracking of the tablet.

Similarly, Vock et al. [22] used a smartphone and an AR

HMD together with multimodal interaction, namely head

gaze and voice input. They found that smartphone control

is “reasonable” and “pleasant” due to familiarity with such

devices, and it is particularly useful in writing text.

Jansen et al. [23] combined a Virtual Reality (VR) HMD

with a desktop view in an analytics tool for automotive

user interface evaluation. They found that the desktop 3D

view was advantageous for overview tasks, while the VR

view showed advantages in detailed passenger movement

analysis due to a better perception of spatial distances and

highlights the need for a seamless transition between the

devices to reduce disorientation. Most recently, Lunding

et al. [24] proposed a hybrid user interface for authoring

virtual content for AR-supported human-robot collaboration,

combining traditional inputs (e.g., desktop computer, mobile

touch-screen device) with in-situ inspection with a head-

mounted display.

The existing works have shown that hybrid interfaces are

actively proposed and discussed since they can address the

issues of today’s AR HMDs. The possibility of combining

novel AR techniques with existing, well-designed and opti-

mized desktop UIs could be a good fit for the challenges in

industrial robot programming. To the best of our knowledge,

there exists no application of a hybrid user interface for robot

programming yet.

III. SYSTEM DESIGN

A. Application Design

As a baseline interface, we use a classical 2D desktop

app with a mouse and keyboard interface for the given skill-

based robot programming software pitasc [25]. For situated

3D visualization and trajectory definition, as well as mobile

and hands-free work inside or outside the cell, we choose

an AR HMD app. Interaction with AR UIs is sometimes

tricky, particularly when entering text or numbers with the

holographic keyboard. Thus, a smartphone app extends the



Fig. 3: Desktop application design. In the skill parametrization panel (left), skills can be added from the skill library and

parametrized. The 3D scene (center) shows the existing coordinate frames and the robot simulation, which can be started

from the execution panel. The frame editor panel (right) allows for frame creation and editing.

AR HMD app for more familiar text and number input, also

addressing the mobile aspect of HMDs.

To reduce complexity and learning time, we choose an

asynchronous approach, i.e., no simultaneous usage of dif-

ferent devices is required. The applications are always syn-

chronized so all devices are updated on user input. Thereby,

users can decide at any time which device they want to use;

they are not being forced to one device.

2D Desktop App: The desktop app (see Fig. 3) ori-

ents towards commercial state-of-the-art software like Ar-

tiMinds [26] and Intrinsic Flowstate [27]. The main panel is

the skill parametrization panel, where the user can compose

and parametrize the skills by expanding on click. Adding

skills can be performed from the skill library panel, where

the user can search and add skills. The frame editor panel

allows for frame creation and editing. The execution panel

allows for execution on the real robot or in simulation in the

3D scene on the right, containing a 3D view of the virtual

robot cell and the digital twin of the robot.

AR HMD App: The AR interface is based on Krieglstein

et al. [18]. Like in the desktop app, a panel to compose and

add skills from a skill library opens up after clicking on

the add button. The skill parametrization panel opens when

clicking on the respective skill (see Fig. 4). For (rough) frame

teaching and validating the robot’s kinematic configuration

at the taught pose, the UI includes a frame teaching mode, in

which the user can drag the end effector of the virtual robot

to its desired pose (see Fig. 5). The hardware-depending

accuracy of the holograms limits the frames’ accuracy, but,

depending on the given task, this is still enough, e.g., for pre-

positioning and trajectory waypoints, and allows for faster

teaching than using the robot teach panel. In the execution

Fig. 4: AR HMD app design. The skill parametrization panel

(center) allows for skill composition and skill parametriza-

tion (right). The user can start the robot simulation and the

real robot in the execution panel (left).

panel, the user can start applications either in simulation or

on the real robot. The holographic robot allows for situated

in-place visualization and validation in the real robot cell.

Smartphone App: The smartphone app extends the AR

UI with the following features: It detects when the user

edits a text or number field and pops up the respective

text field on the smartphone, allowing for typing with the

smartphone keyboard (see Fig. 5). The entered letters are

synchronized with the HMD UI, so the user can switch the

interface anytime. Furthermore, once a skill is selected on

the HMD for parametrization, it is automatically opened on

the smartphone, such that the whole parametrization can also



Fig. 5: The frame teaching procedure with the HMD app.

The user drags the end effector to the respective spatial

position and presses the “Add Target” button (left). The frame

can be renamed by clicking on the name (right). Using the

smartphone app, the user can avoid the holographic keyboard

for faster input. The text input is synchronized between the

HMD and the smartphone app. Robot cell and HMD are

aligned using a QR marker.

be performed on the smartphone.

B. Architecture & Implementation

To allow for multi-device programming, we propose a

server-client architecture for robot programming (see Fig.

6). The server holds the instance of the program and pro-

vides an interface via GraphQL on a ROS [28] service. It

provides queries for fetching the pitasc applications and the

skill library, setting parameter values, adding, moving and

removing skills and applications, and undoing/redoing.

The clients fetch the current program and show it to the

user. If the user performs changes, i.e., sets a parameter

or adds a skill, the client asks the server to change this

parameter. If the server accepts the change, all clients are

informed about the changed parameter(s) and fetch the

changes. Thus, all clients are always up-to-date and show

the same program state.

This architecture also enables multi-user applications,

which could be particularly interesting for educational pur-

poses, e.g., for robot programming trainings including HMDs

with AR technologies, and for shared or collaborative pro-

gramming approaches.

IV. EVALUATION

Equipped with this HUI system, we are now interested

in exploring how robot programmers would use the different

devices on realistic tasks, and whether their combination in a

HUI provides benefits to them. We seek exploration, insights,

and qualitative expert feedback for further development and

possibly later industrial usage. We want to see which device

the users prefer for which task and which challenges the

users are facing with the usage of HUIs.

With these goals in mind, we opted to conduct an ex-

ploratory study with a small number of expert users, i.e., ex-

perienced programmers with the skill-based pitasc software.

Such expert studies are recommended by modern human-

computer interaction literature for our purpose [29]–[32], as

they are optimized for ecological validity and realism [33].

Following this literature, we actively chose not to follow a

classical controlled experiment with Null Hypothesis Signif-

icance Testing (NHST) [34]. NHST would have come with

significant drawbacks in our case: the number of available

expert participants is limited, and we thus would have needed

to invite novice users as well; tasks would have thus needed

to be simplified, resulting in a substantial reduction of

ecological validity; quantitative performance measures would

be mainly governed by current technical limitations of AR

HMDs, disguising the true underlying effects [35]; and, strict

hypothesis testing would have come at the cost of reduced

possibilities for exploration and insights [36].

A. Study Design

Setup: The experiment is conducted at a safe robot cell

with a Universal Robots UR10e robot arm. Fig. 1 shows

the setup for the study. We choose a terminal mounting task

as a typical assembly task, preferably solved using force-

controlled assembly skills. Fig. 7 shows the cell setup for

the tasks, i.e., the robot, the top hat rail, the terminal clamp,

and the box to throw the terminal into.

Tasks and Procedure: First, the participants familiarize

themselves with the devices one after another in a tutorial.

They create an application to pick a terminal from the tray,

name the application, add skills to it, parametrize them, and

teach a frame to which the robot can move after picking. By

sequentially introducing the three different devices step-by-

step, they learn all critical aspects of the system.

To explore the singular usage of the devices, then, the

participants perform a simple placing task in two conditions:

once using the 2D desktop application (condition A) and

once using AR HMD and smartphone (condition B). The

task is to throw the terminal into a box. The order alternates

for each participant.

In the final task, all devices can freely be used (condition

C). To engage the users in choosing the most appropriate

device for programming, this task is more complex compared

to the previous stages. The task is the actual mounting of the

terminal on the mounting rail, requiring complex assembly

skills.

Interview: For collecting qualitative expert feedback, we

conducted personal interviews after the last task, asking the

following questions:

Q1. Could you imagine using this system in your daily

work?

Q2. Do you think having the hybrid setup helped perform

the tasks?

Q3. Which interface did you prefer and why?

Q4. What was the hardest part about performing the tasks?

Q5. What do you think can be improved in general?

The answers were evaluated using thematic analysis [37].

Participants: Six participants (one female and five male)

took part in the study, with an average age of M = 29.5

years (SD = 2.9). All participants were experts in robot

programming (self-rated experience of M = 4.2 (SD = 0.7)

on a scale of 1 (low) to 5 (high)) and had experience with the
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Fig. 7: The cell layout for the assembly task. The terminal

clamp has to be picked up and thrown into the box (simple

task). In the complex task, it has to be mounted on the top

hat rail.

pitasc system (self-rated experience of M = 3.2 (SD = 1.5)).

The self-rated AR experience was M = 2.0 (SD = 0.9).

B. Results

All participants completed all tasks successfully. The

average time for condition A (desktop) was M = 6.2 minutes

(SD = 1.6), and for condition B (HMD and smartphone)

M = 8.7 minutes (SD = 2.0). For condition C, the complex

task where all devices could be used, the average time was

M = 18.7 minutes (SD = 5.9). The average relative device

usage in condition C was M = 70% (SD = 13) desktop app,

M = 27% (SD = 12) AR HMD app, and M = 3% (SD = 2.5)
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Fig. 8: Absolute device usage for all conditions for each

participant.

the smartphone app. Fig. 8 shows the absolute device usage

for all conditions. Interestingly, both the absolute and relative

device times vary considerably between the participants, even

for similarly rated robot programming and pitasc experience

(Participants P4, P5, P6).

Regarding usability in daily work (Q1), the participants

stated that they can imagine using the system in a more

sophisticated and less prototypic state, since they see benefits

compared to a singular interface (“I think it was a good

additional degree of freedom to do things with the tool I

consider to be the best fit.” (P6)); nevertheless, P1 and P2

reported concerns about the practical applicability compared

to traditional programming methods.

Participants were primarily positive regarding the useful-

ness of the HUI for completing the task (Q2, 5x yes, 1x

no (P2)). Regarding the preferred interface, all participants



prefer the desktop application as a singular interface, men-

tioning efficiency (P1, P3, P4, P5), pleasantness (P2, P3, P5)

and convenience (P1, P2, P6) as reasons.

Concerning the most suitable device for a particular sub-

task (Q3), all participants agreed that the HMD was best

suited to teach new (rough) frame positions; desktop or

smartphone were considered more helpful for adjusting the

orientation (P1, P6). Additionally, the HMD was stated to be

great for visualizing the movement of the simulated robot in

the real world (P1, P4). Most participants (P2, P4, P5, P6)

explicitly mentioned that the desktop application was best

suited for creating the application structure. Other explicitly

mentioned benefits were the overview (P3), the interaction

(P2), and the exact value input (P1, P2). The smartphone

application was disclosed to work well for acceptable tuning

frame positions (P1, P2, P6). Its functionality was contro-

versial and ranged from “useless” (P1, P3, P4) to “I could

imagine creating whole application structures with it” (P5).

P3 and P4 stated that the smartphone application would be

very helpful if the desktop application were unavailable or

not so easy to reach, e.g., within a bigger robot cell.

Regarding Q4 and Q5, some participants reported usability

issues with the HMD (“inconvenient” (P2, P3), “difficult

handling of virtual objects” (P5), “the virtual keyboard is

a mess” (P3)). P1 stated that after some learning time, it

became more straightforward to use. P2 also mentioned that

“Somebody who is more socialized with a mouse and key-

board will probably prefer the desktop application. Someone

who grew up with smartphones and tablets will probably

prefer the smartphone application. Finally, someone more

into AR and VR will probably prefer the HMD application”.

P6 reported issues with reflections on the smartphone when

looking at it through the HMD.

V. DISCUSSION

The results, on the one hand, indicate that AR is helpful

when it handles actual 3D content. Participants mentioned the

frame teaching in AR as smooth and beneficial since it allows

for defining the frames directly at their pose inside the real

cell, being much more natural than on a desktop interface

and faster than jogging the real robot to the desired pose.

Furthermore, the situated robot simulation was considered

helpful for visualization of the robot program since the

robot program is shown in-place inside the cell, making the

simulation very close to as if the real robot was moving,

which aligns with the findings of Diehl et al. [5]. On the

other hand, some participants reported usability issues with

the HMD, as they avoided the text and number input on the

HMD with Microsoft’s “Mixed Reality Keyboard”, which is

a commonly known issue [38], [39] that probably decreases

with technical progress and proliferation of HMDs. It is also

well-known that the rating of HMDs varies with individual

user characteristics [40], [41], which presumably caused

the varying device usage proportions (see Fig. 8). These

individual preferences also apply to the smartphone, whose

usefulness was highly controversial. As P3 and P4 stated, it

could be more useful in applications requiring a high level

of mobility, which also applies to the HMD.

For tasks like creating the program structure and

parametrization, both tasks without any 3D content, all

participants preferred the desktop environment. This might

relate to their experience with existing sophisticated UIs,

and it shows that keeping the strengths of existing interfaces

can also reduce reservations about new interfaces. All in all,

five out of six participants found the HUI beneficial over a

singular user interface, which shows that also for robotics,

hybrid user interfaces are a valuable chance to incorporate

HMDs into today’s workplaces.

Limitations: Hybrid user interfaces require some kind of

server-client architecture, which mostly does not exist in

today’s robot programming software, complicating the tran-

sition to a hybrid user interface. The recent browser-driven

Intrinsic Flowstate software [27] is an exception, indicating

that changes might be expected in the future. Furthermore,

from a usability perspective, the design space of HMD

applications has to be explored further. As two participants

stated, a consistent design of the desktop application and

the HMD app would help to switch between the devices

more seamlessly. It would also help to increase familiarity

with the HMD app, which has to be considered for future

commercial applications, as well as the support of different

devices (cross-device) [42], [43].

VI. CONCLUSION

We explored how a hybrid user interface consisting of

a desktop application, an HMD user interface, and a smart-

phone app can benefit robot programming for complex tasks.

We proposed a software architecture based on a server-client

pattern and designed and implemented the first HUI for

industrial robot programming. In an exploratory expert user

study, we evaluated the HUI on typical and realistic assem-

bly tasks. The insights from domain experts indicate that

for sub-tasks like creating the program structure and basic

parametrization, a classical desktop app is still preferred,

while an HMD is beneficial for sub-tasks which require

spatial and situated visualization and interaction. Therefore,

the combination of the devices within a HUI can capitalize

on the strengths of each technology. However, the acceptance

and usefulness of each device is user-specific. Giving users

the chance to choose the device that fits their needs most for

each sub-task has the potential to increase user experience

and programming efficiency, and reduce programming errors.

Future work should further explore the aspect of frame

teaching, incorporating computer vision techniques to detect

features like planes, edges, and holes and offer possibilities

to, e.g., align a frame with the detected geometry. Increasing

the tracking accuracy by, e.g., using the existing model of

the robot and the cell would increase the utility of the

results. Furthermore, the situated visualization can be further

examined to visualize different possible trajectories, com-

bined with reachability and singularity analysis. Addressing

these challenges could pave the way for AR-assisted robot

programming in an industrial context.
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itive industrial robot programming through incremental

multimodal language and augmented reality,” in IEEE

International Conf. Robotics and Automation, 2011, pp.

3934–3939.

[11] A. Gaschler, M. Springer, M. Rickert, and A. Knoll,

“Intuitive robot tasks with augmented reality and virtual

obstacles,” in IEEE International Conf. Robotics and

Automation, 2014, pp. 6026–6031.

[12] S. Ong, A. Yew, N. Thanigaivel, and A. Nee, “Aug-

mented reality-assisted robot programming system

for industrial applications,” Robotics and Computer-

Integrated Manufacturing, vol. 61, p. 101820, 2020.

[13] D. Ni, A. Yew, S. Ong, and A. Nee, “Haptic and visual

augmented reality interface for programming welding

robots,” Advances in Manufacturing, vol. 5, pp. 191–

198, 2017.

[14] J. Lambrecht and J. Krüger, “Spatial programming
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