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Figure 1: Situated visualizations of timber pieces for (1) a sorting and (2) an assembly task. In both tasks, augmented content
supports collaboration partners in performing their tasks without having to consult a paper instruction sheet repeatedly.

ABSTRACT

The use of augmented reality technology to support humans with
situated visualization in complex tasks such as navigation or as-
sembly has gained increasing importance in research and industrial
applications. One important line of research regards supporting and
understanding collaborative tasks. Analyzing collaboration patterns
is usually done by conducting observations and interviews. To ex-
pand these methods, we argue that eye tracking can be used to extract
further insights and quantify behavior. To this end, we contribute
a study that uses eye tracking to investigate participant strategies
for solving collaborative sorting and assembly tasks. We compare
participants’ visual attention during situated instructions in AR and
traditional paper-based instructions as a baseline. By investigating
the performance and gaze behavior of the participants, different
strategies for solving the provided tasks are revealed. Our results
show that with situated visualization, participants focus more on
task-relevant areas and require less discussion between collaboration
partners to solve the task at hand.

Index Terms: Human-centered computing—Visualization—Visu-
alization techniques—; Human-centered computing—Visualiza-
tion—Visualization design and evaluation methods

1 INTRODUCTION

Research on augmented reality (AR) interfaces steadily increased
and investigated the benefits in various tasks [5, 54]. Examples
can be found for navigation tasks [29, 52], sports [34], assembly
instructions [11], and data communication between sensor-equipped
machinery and people [6]. Collaborative work in AR forms an
important subtopic in this research field, for instance, during assem-
bly for fabrication processes [63]. In such cases, human-computer
and human-machine interaction contribute to solving the task, and
human-human interaction is vital for coordination and efficient per-
formance. Understanding how people perceive and interact with
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such new interfaces, and also with each other, is crucial for improve-
ment. A critical component of almost all these AR interfaces is
situated visualization (SV). SV shows information in the context of
the position or state of an object [33] and has been deployed in many
scenarios, for instance, for industrial applications [14].

To this point, user-centered experiments with AR interfaces have
mainly been evaluated by observations and interviews with the par-
ticipants [30,40]. We argue that eye tracking can add a further angle
to triangulate our empirical understanding of AR interfaces. Eye-
tracking capabilities are already built into head-mounted devices
(HMDs) such as the Microsoft HoloLens2 and the Varjo XR, and
are thus easily accessible to many researchers. These devices can
record the gaze behavior of individual participants for live interac-
tion [37, 49] and post-experimental analysis [12, 47]. Eye tracking-
based evaluation has a long tradition in psychology research and
is also often applied to evaluate visual stimuli in human-computer
interaction (HCI) and visualization research [31], mainly to better
understand viewing behavior. In this vein, recording gaze data from
participants performing tasks with AR interfaces provides new ways
to understand task performance concerning visual attention on vir-
tual and real objects. Hence, the main research question we want to
answer is: How does the use of augmented instructions, such as SV
of objects, influence people’s behavior in collaborative tasks?

This question addresses, in particular, explainable measurements
for differences in individual performance. If participants perform
better with SV support, how is this reflected in their viewing behav-
ior? Vice versa, if participants had issues with SV in AR, can this be
explained by investigating their eye tracking data? These questions
can partially be addressed by interviews, but eye tracking provides
an additional objective measurement to assess this behavior. We
focus on non-remote collaborative work in the context of sorting
and assembly tasks as they are commonly performed in fabrication
and construction processes. This scenario covers a wide range of
applications, and we see the proposed approach as a generalizable
concept to evaluate user-based experiences with AR interfaces.

Our contributions can be summarized as follows: (1) An eye-
tracking experiment investigating the differences in viewing behav-
ior between paper-based instructions (PI) as a baseline, and the
presented AR interface that leverages SV. (2) An AR interface to
depict and instruct both tasks by SV (Figure 1). (3) Guidelines



for the integration of eye tracking in evaluation procedure for AR
scenarios. Our results reveal a substantial difference in viewing
behavior between the PI and the SV condition. While participants
switched their attention in the PI condition between the instructions
and the working area, the SV condition allowed them to focus on
the working area. Interestingly, this pattern was not observed in
all participant pairs and often depended on other factors, such as,
previous knowledge, environmental factors, and the team setup. We
examined unusual patterns in more detail by including the recorded
video data and the data from our questionnaires in our analysis. This
analysis confirmed our findings from the gaze data. Furthermore,
gaze data provided cues on the working strategies of participants,
which we also investigated with additional video analysis.

2 RELATED WORK

For related work, we investigate work on the topics of guidance
techniques in AR/VR, AR for collaboration, typical AR evaluation
techniques, and evaluation of eye tracking in AR.

2.1 Visual Guidance in AR/VR
AR as well as VR applications, have the advantage of displaying vir-
tual information into space to guide users during specific tasks. This
guidance can be simple virtual wayfinding for maps or up to complex
instructions for manufacturing tasks. Blattgerste et al. [9] compared
AR head-mounted displays, mobile displays, and traditional PI in
assembly tasks and noted that AR HMD yields the lowest error rate
overall, but PI fairs better when users locate assembly positions.
Within AR display methods, Jasche et al. [24] compared abstract
and concrete means of visualization within head-mounted AR and
found that although concrete AR visualizations do not lead to faster
completion time, they do lead to fewer errors. Similarly, Werrlich
et al. [65] conducted a study, where they compared paper-based
instructions with HMD-based instructions. The results of their study
show that HMD-based instructions outperform paper-based instruc-
tions. A quite recent work from Tobisková et al. [58] evaluates their
AR-based guidance system for manufacturing wooden trusses by
using think-aloud protocols and observations. The authors tested
their prototype with a variety of stakeholders, which also included
professional assemblers. In contrast, we compare PI with SV for
sorting and assembly tasks, including common means of question-
naires and video material, but extend analysis with eye tracking to
acquire quantitative measurements.

Early research visualized Building Information Models (BIM) on-
site for the observation and quality control of ongoing construction
processes [51]. Later, the focus shifted towards the support of crafts-
people tasks, such as bricklaying of complex walls [23] to speed
up construction time and reduce errors in the assembly processes,
or learning a craft [18]. Recent studies focus on the collaborative
aspect through the coordination of humans and machines, including
AR [3, 66]. In addition to HMDs, the use of mobile devices is also
often investigated due to their easy accessibility and handling [4].
This line of work inspired the design of our AR interface, and we
contribute a study that—for the first time—is primarily based on eye
tracking data, which provides additional information in contrast to
traditional evaluation methods in AR/VR.

2.2 AR for Human-Human Collaboration
Collaboration becomes important in different work environments
where sharing additional information with a group of people can
facilitate understanding. Wang et al. [62] present a multi-user collab-
orative AR system, which allows remote support, collaborative anno-
tation, and editing in industrial processes. Lukosch et al. [36] present
some works related to remote collaboration in AR spaces, trying dif-
ferent methods to use AR remotely and guide local workers during
physical tasks ( [2], [20], [21], [32], [36], [57]). Billinghurst et al. [7]
investigate the communication behavior in co-located collaborative

AR scenarios. Knoll et al. [27] utilized co-located collaboration in
AR for gaming purposes (escape rooms), and Bork et al. [10] took
advantage of sharing additional virtual information with multiple
people for educational purposes such as anatomy learning. There
are different kinds of application areas in which collaborative AR
can be applied. Marques et al. [38] introduce a collaborative AR tax-
onomy, where they categorize such collaborative AR papers based
on team, time, task, communication, scene capture and tracking,
context sources, level of user actuation, output and augmentation,
input modalities, and research.

2.3 Evaluation of AR
Dünser and Billinghurst [17] summarized the problems researchers
face when trying to evaluate AR systems. They provide an overview
of evaluation methods successfully tested on AR systems and men-
tion a lack of effective methods, which is mainly caused by the
variety of AR systems provided and the fact that it is often unclear,
who the end-users of the system will be. Based on their review, they
identified different categories, which include human perception and
low-level cognition, user task performance, system usability, system
design evaluation, and collaboration between users. We are focusing
on the collaborative evaluation type in our work. For evaluation
methods, they differentiate between objective measurements, sub-
jective measurements, qualitative analysis, non-user-based usability
evaluation techniques, and informal testing. A more recent work
from Merino et al. [40] categorizes the evaluation of AR into seven
different categories, from those categories our work focuses on user
performance, understanding environment and work practices, team
communication, and team collaboration.

Generally, researchers tend to measure objective measurements
in conjunction with subjective measurements [53]. However, most
AR-based research nowadays uses subjective measurements, as well
as qualitative analysis to evaluate an AR system, like questionnaires,
video analysis, and interviews. Objective measurements are often
restricted to task completion times, accuracy, and the movement path
of participants or objects. There are few objective measurements
regarding the cognition and perception of the user. To fill this gap,
we propose to leverage eye tracking as an additional objective mea-
surement in such studies. As mentioned by Kurzhals et al. [30], the
integration of eye tracking data for evaluation can help the analysts
assess the visual attention of users and, therefore, make assumptions
about their behavior in specific environments.

2.4 Eye Tracking in AR
The analysis of gaze data in 3D environments can reveal how peo-
ple behave in certain surroundings, and it is possible to analyze
their perceptual and cognitive processes through visualizations [28].
Based on these visualizations, analysts can make assumptions and
generate hypotheses regarding the design, features, and understand-
ing of a 3D environment. Besides that, analysts can also use these
visualizations to evaluate a given design of a 3D environment, for
example, in architecture [42], game design [39], and other areas [30].
Blascheck et al. [8] as well as Sundstedt and Garro [56] provide a
literature review on visualizations for 3D gaze data. The majority
of presented works, however, concentrated only on the visualization
of gaze recorded from a physical environment ( [47], [43], [45])
or from virtual environments, which are desktop-based ( [55]) or
in head-mounted virtual reality (VR) displays ( [16], [50], [48]).
The visualization techniques presented in these different works often
consisted of heatmaps to show the distribution of visual attention or
scan paths displaying the fixations and saccades of the gaze data or
the derived gaze trajectories, i.e., the scanpaths.

For eye tracking in AR, the majority of related work focuses on
gaze as an input modality for interaction. Wagner et al. [61] utilize
the combination of gaze and hand for selecting items on a 3D UI.
Pfeuffer et al. [49] investigated how gaze-adaptive UI spaces can



be designed in AR. Lu et al. [35] used eye-tracking data to activate
virtual contents within the periphery of the users through the gaze.

The visualization of the gaze point or the gaze ray itself was often
utilized during collaborative tasks in AR. Jing et al. [25] investigated
different bi-directional collaborative gaze visualizations to show
joint attention as well as user intention. There exists only few work
for visualizing gaze in AR. Muchen and Tamke [42] investigated the
gaze behavior of users in AR for evaluating architectural designs.
Their use case should help to asses architectural designs in order
to improve them within an iterative design cycle. The work of
Öney et al. [67] introduced a visualization tool, which provides the
spatial annotation of fixation data recorded in an AR environment.
Based on their tool, analysts can define areas of interest (AOIs),
label fixations, and examine annotated scan paths. Evaluating AR
using gaze data can help to improve UI designs and interactions by
supporting existing evaluations. With our work, we extend the focus
of this line of research to collaboration behavior derived from the
recorded data on how eye tracking can be applied in comparable
scenarios (e.g., human-robot collaborations) in the future.

3 INSTRUCTION INTERFACES

Based on our literature research, we identified a common approach
for situated visualization of virtual content in a real-world context.
This virtual element supports orienting and positioning a real object
according to defined constraints. The traditional and, in this case,
the baseline approach is to provide a written and illustrated instruc-
tion sheet with step-wise guidance on how to place and assemble
individual parts of an object. We designed a case study consisting of
two tasks (Sorting / Assembly) based on our analysis of the state of
the art and our experience gained in previous research projects. The
Assembly task represents a common manual task in the field of tim-
ber frame construction. While effort has been made to automate the
assembly of beams, studs, and other building components, they are
assembled predominately manually by carpenters or joiners by one
person or in small teams, depending on the size, weight, and com-
plexity of the building element. Therefore, we selected the assembly
of a timber frame as one of our tasks. The Sorting task is of high
relevance when previously prefabricated unique timber elements are
processed automatically by a different machine. After unique beam
elements have been machined in a joinery machine, they have to
be sorted manually for an industrial robot to pick up [60]. Similar
elements like these can be hard to differentiate and require precise
measurement. An incorrect order will result in false assembly, po-
tentially causing collision and damage to the workpiece or even the
machine. Sorting these timber pieces with visual guidance through
AR should help the participants minimize damage.

Baseline: Paper Instructions (PI) For the investigated tasks,
we created a one-page instruction sheet consisting of individual steps
with textual instructions and annotated illustrations about how to
place and assemble the target structure. Figure 2 shows the setup
during the experiment. The instructions were designed to contain a
textual description identical to the augmented instructions. Such a
tangible plan has advantages, as people can point to specific areas
and discuss how to proceed.

Situated Visualization Instructions (SV) The main advantage
of the augmented approach is a direct spatial reference that helps in
understanding where and how to combine parts. We provide a 3D
model of the same model depicted in the PI. The model (Figure 2c)
is also labeled and the labels are referenced in the instruction text,
here, presented as a virtual panel. For single-person use, this panel
could be displayed as a head-up display (HUD) element. For the
collaborative scenario, we implemented a spatial display that both
participants can refer to during their task. With this approach, we
enable better communication between them, as pointing gestures
become available, similar to the baseline condition.

Implementation We used Unity [59] as development plat-
form for this project with support of the Mixed Reality Toolkit
(MRTK) [41]. Furthermore, 3D models of the sorted and assem-
bled timber parts are imported into Unity and rendered using the
Unity standard shaders. MRTK also provides hand tracking for the
users to interact with menus, if necessary, and to act as a trigger and
an anchor for the rendered schematic instructions on the devices.
Our application is separated into three different packages, where two
of these packages are used to perform the study and one part is used
to analyze the recorded data. For the study, we use a client package
on the devices (HoloLenses) that connects to a server package that
runs on a standard laptop and is controlled by the conductor of the
study. The implementation of the communication patterns is done us-
ing the networking library Riptide [64]. We further communicate the
position of each participant to the other participant´s device through
the server to be able to track time spent looking at the partner. The
physical AOIs in the environment, are surrounded by 3D cube col-
liders. Whenever the gaze ray hits the colliders, the corresponding
AOI is saved into our data log. For synchronization of the surround-
ings and AOIs, we use the spatial awareness system of MRTK and
combine it with additional spatial anchors represented by QR codes.
For the collection of eye-tracking data, we use ARETT [26].

4 EYE TRACKING EXPERIMENT

The main goal of our experiment is to derive common strategies and
their related gaze patterns when solving a collaborative task with and
without AR support. Hence, we conducted a mixed methods study
collecting qualitative and quantitative data from (n=16) participants.
They were paired together and we recorded their behavior while
solving two tasks with sets of timber pieces. Figure 3 shows the
scenario of a pair solving tasks and their corresponding gaze rays. In
a post-experiment analysis, we investigated their performance, gaze
data, and their subjective user experience. Figure 2a depicts the setup
consisting of two tables for the conditions and the accompanying
instructions and material. Since the task did not require any specific
expertise, we recruited participants from our institute and campus in
Stuttgart using flyers and mailing lists. Each session lasted around
one hour and the participants were compensated with 12 EUR. The
experiment was approved by the ethics committee of the University
of Stuttgart and preregistered [46].

4.1 Conditions and Tasks
We conducted the experiment following a within-subject design.
The conditions (Section 3) were the formerly described (1) baseline
approach with PI and (2) support with SV. To reduce ergonomic risks
and coordinate actions as well as increase efficiency and flexibility,
we decided to solve the tasks in a team of two. Each group performed
two tasks under two conditions. Within each task, the conditions
and material for the task were counter-balanced. The tasks were
performed in the order depicted in Table 1.

Task 1: Sorting In the material sorting task, we provided the
participants with eight pieces of timber elements with a length be-
tween 30 cm to 43 cm. Each piece has a unique length and different
cutting angles between 0 and 45 degrees at each end. The placement
order of all pieces was provided by PI on a scaffold next to the table,
or with SV (Figure 2b).

Task 2: Assembling An assembly task involves a combination
of three sub-tasks: (1) identifying the timber pieces from a material
supply area, (2) placing them in correct locations, and (3) assem-
bling the elements with a cordless screwdriver while adjusting for
material tolerances. We provided the assembly order explicitly to
enhance the consistency of the data. The assembly task follows
that of a conventional and widely used timber frame geometry with
butt joints and screw connections. To reduce the difficulty level,
pre-drilled holes and threaded inserts were provided in the timber



Table 1: Tasks and trials for the experiment. Both tasks were performed two times, alternating between PI (baseline) and SV with changing
instructions and material. The two different combinations in the Trial column, indicate in which order the conditions can occur.

Task Trial Description

Sorting 1. PI / SV
2. SV / PI

Participants received eight timber beams with different lengths and cutting angles. They
had to order the elements according to the instructions which were presented either on PI,
or as SV.

Assembly 1. PI / SV
2. SV / PI

Five timber pieces had to be arranged and assembled with screws at indicated positions.
Holes were pre-drilled for this task and one participant was determined at the beginning
of the task to use the electric screwdriver, while the other person assisted.

(a) Experiment setup (b) Performing the sorting task with PI (c) First person view of the assembly task

Figure 2: Pictures of the study setup and study tasks. (a) A photo of the experiment setup with two tables, one for PI and one for SV, the
material storage in the background, and the scaffold for holding the PI. One additional table on the SV side was needed to fit the whole
visualization. (b) Two participants perform the sorting task using the PI, which is clipped to the scaffold. (c) A first-person perspective of the
Assembly task is shown. On the table, the SV is rendered and the participant looks at the hand pop-up for further instruction details.

elements. Participants were instructed to assign one person to use the
screwdriver, while the other assists. The instructions were again pre-
sented by a paper sheet (PI) which was also available virtually (SV)
in combination with augmented in-place instructions (Figure 2c).

For a more visual grasp of the exact procedure of the tasks, we
recommend watching the supplemented video to this work. Addi-
tionally, all instructions are provided in the supplemental material.

4.2 Study Procedure

Participants were instructed about the study procedure, data privacy
management, and asked to sign a consent form and demographics
survey. Each participant was asked to wear a Microsoft HoloLens2
and perform the eye-tracking calibration provided by the system.
The participants were also told not to lift the timber pieces too far
off the table to ensure a reliable AOI analysis later. During the tasks,
communication from the conductors to the participants was kept low.
Usually, there were no further instructions needed, but occasionally
participants had further questions or needed confirmation of the
instructions. In rare cases, participants were informed again not to
lift the timber pieces, or to follow the given order of instructions.
For Sorting, we varied the placement order, so the participants could
not learn between conditions. Assembly required the participants to
build two different but geometrically-similar structures.

4.3 Measurements

To triangulate the qualitative aspects of general behavior patterns, we
further measured performance, eye-tracking metrics, and collected
subjective feedback from the participants regarding their experience
with both conditions.

Performance In terms of task performance, we focused on
completion time and correctness. The participants were asked to
solve the task efficiently, but not in competition with the other pairs.

Furthermore, we investigated performance changes for the first and
second trials per task separately to consider potential learning effects.

Eye Tracking To analyze eye-tracking data, we defined AOIs
based on the reference objects important for the task. These AOIs
comprise (1) the instruction sheet (PI), (2) the hand pop-up (SV), (3)
the table they are currently working on (PI+SV), and (4) the head of
their collaboration partner (PI+SV). We investigated the scanpaths to
identify different viewing strategies when solving the tasks. Further,
we analyzed time spans of shared attention during the tasks to gain
insight into collaboration strategies.

Subjective Feedback After each trial, the NASA TLX [22]
was answered individually by each participant. Further, a feedback
questionnaire regarding the comparison and user experience with
the conditions was handed out. The full questionnaire and the in-
structions can be found in the supplemental material.

4.4 Demographics and General Experience
We recorded 12 pairs of participants (24 people) from which 4 pairs
were not included in the evaluation due to incomplete data, caused
by network connection issues; all results below consider the 8 pairs
who completed the study. Of the remaining 16 participants, 10 were
male, 5 were female, and 1 preferred not to indicate their gender.
Participants were between 18 and 55 years old. Regarding their ex-
perience with AR, 11 out of the 16 participants reported having little
or no experience. 10 participants reported having some experience
with building furniture, while 2 reported having no experience and 2
considered themselves experts in comparable construction tasks.

5 RESULTS

The results are separated into the analysis of performance, gaze
behavior, and user feedback, as mentioned before. For statistical
analysis, T-tests as well as Wilcoxon tests were executed, accord-
ingly. Details on normality checks can be found in the supplemental



Figure 3: Views of a pair of participants during an assembly task. The picture in the middle shows two participants performing an assembly
task, one participant is handling the cordless screwdriver, and the other participant assists by fixing the timber pieces in place. On the sides (left
and right) the corresponding augmented first-person view of each participant is shown. Gaze rays are rendered for illustration purposes, they
were not visible to the participants.

Table 2: Table of the success rate for Sorting. We evaluate the total
number of incorrect, the mean (µ) and standard deviation (σ ) of
correct, and the percentage of correctly placed timber pieces.

Condition Incorrect µ σ Correct [%]

PI 11 7.31 1.31 91.41
SV 3 7.81 0.39 97.66

materials. Based on an open/axial coding approach with 3 annotators,
we extracted strategies from our recorded video content.

5.1 Performance
The participants were able to complete all tasks, although not all
sorting attempts were correct.

Correctness The correctness of Sorting consists of two mea-
sures: order and orientation. These two factors were determined
independently, which means that an incorrect order had no influence
on the correctness of the orientation. When screening the photos
of the results, on the first pass, the order was checked, and in the
second pass, the orientation of each individual piece was examined.
From these data points, we calculate the sum of incorrect order and
orientation, the percentage of correctness, the mean score, and the
standard deviation for both conditions (see Table 2). The results
show, that the sorting trials with SV were more accurate and less
varying than the trials with PI. For Assembly, all participants were
able to achieve correct result, as it was focused on collaborative
behavior, rather than possible errors in construction. Therefore, we
did not further analyze the correctness of the Assembly task.

Completion Times Figure 4 shows the completion times for
all conditions, separated by the trial order. Task completion time
improved in all groups between the two trials, indicating a learning
effect for the tasks in general. However, groups who started with PI
improved more with SV during the second trial — from (µ=330 s,
σ=248 s) to (µ=179 s, σ=98 s) in Sorting, and (µ=632 s, σ=227 s)
to (µ=410 s, σ=75 s) in Assembly. We compared the completion
times for Sorting, when participants started with PI (p = 0.6857) and
when participants started with SV (p = 0.1494)(see Figure 4, left
side) and for Assembly, starting with PI (p = 0.1453) and with SV (p
= 0.08647) (see Figure 4, right side). There is a tendency for faster
completion times, when participants started with SV instructions.
However, we could not identify significant differences regarding
completion times between PI and SV.

5.2 Gaze Behavior Analysis vs Open/Axial Coding
Our analysis of gaze data is based on calculated fixations using the
I-VT algorithm [44]. For the analysis of the data, we considered

the fixation counts, the average fixation duration, and the fixation
durations on the different AOIs. Additionally, we investigated the
total amount of time participants gazed at the different AOIs in
the different conditions. The open/axial coding was conducted
using predefined codes based on observed actions. The coders
partitioned the videos into 10s segments and assigned codes for each
segment, with a total average agreement of 93.21%. We refer to the
supplemental material for more details on the coding process.

Figure 5 shows the relative duration of fixations on different
AOIs. In Sorting, participants focused more on the table with SV (p
<0.001), while the focus on the Instruction AOI is higher with PI
(p <0.001). In terms of gaze duration the participants were looking
23.16% of the time on the table and 6.17% on the instructions for
SV and 18.40% on table and 19.90% on instructions for PI.

For Assembly, the fixation duration on the table was significantly
higher with SV (p = 0.03132), instructions were looked up more
often in PI than with SV (p = 0.00346). The total gaze duration here
was 64.35% on the table and 5.66% on the instructions for SV and
55.54% on the table and 14.17% on the instructions for PI.

For both tasks, direct gaze at the collaboration partner did not
occur often. We see this mainly as a result of the given tasks, which
required participants to coordinate objects and their positions rather
than having eye contact during conversation.

Figure 6 shows a visualization of the scanpath sequences on the
AOIs for the different tasks, commonly denoted as scarf plots [8].
The colors in the scarf plots indicate the fixation on predefined AOIs,
while the fixation duration is plotted on the x-axis. The scarf plots
are grouped by the pairs, each pair contains three rows: The first row
indicates durations of shared attention on the same AOI. The second
and third rows show the individual fixations of the participants.

The main pattern in all scarf plots is the switch between the
instructions (green) and the table (blue) participants are working on.
Participants executing PI looked more often at the instruction than
those working with SV. We could further identify some characteristic
behaviors for both tasks and collaboration strategies.

5.2.1 Sorting

Figure 6 (a) shows how the gaze behavior changes substantially
during Sorting with PI. The fixations frequently switch between
paper and workpieces, where the best performing group (Pair 4)
spent little time fixating on pieces, and the slowest (Pair 1) spent
a long time looking at one or the other. In the coding, the code
discussion was most frequently assigned to Pair 1 (µ = 47.67).

Figure 6 (b) shows that during Sorting with SV, the pairs (3, 4,
5, 6) who spent less time looking at the hand pop-up instructions
were faster in executing the task. The coding further revealed that
the pairs (3, 4, 6) had fewer discussions (µ = 1.00) than the slower
groups (µ = 10.75). The slower groups spent 20–30% of the time
looking at the virtual instructions.
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Figure 4: Task completion time between trials represented as box plots with the addition of the individual data points. Each task is split into
two trials for PI and SV.
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Figure 5: Fixation duration on AOIs during (a) Sorting and (b) Assembly task with PI and with SV represented as box plots with individual
data points next to them. The fixation duration is calculated in percent relative to the task-solving duration. Sorting with PI has more fixation
durations on the instructions, while SV has more fixation durations on the working area. Assembly with PI and SV have the highest percentage
of fixation durations on the working area. The fixations durations on the virtual hand pop-up (SV Instruction) is still lower than in the PI task.

5.2.2 Assembly

When fixations on collaborators occurred (orange) during Assembly,
they mainly resulted from participants in the assisting role (Figure 6
(d), Pair 1). Fixations also reveal the assembly strategy for the
timber frame. With PI, Figure 6 (c) shows how pairs (4, 6, 8) first
switched between the instructions and the table and subsequently
only fixated on the table. During the first phase, they tried sorting
the timber pieces according to their order. Therefore, their attention
switched between the table and the instructions. After everything
was laid out accordingly, they only had to screw the pieces together
so fixations were only on the table. In contrast, the other pairs show
a shift of attention between the instructions and the table throughout
the assembly process. This showed that they were executing the
tasks step by step and could further be an indicator of confusion or
uncertainty during the task.

5.2.3 Collaborative Behavior

We further examined collaborative behavior patterns by selecting
outlier groups in each condition through the video recordings and
cross-referenced this result with the gaze data analysis. The findings
are summarized below:

Choice of Strategy The best-performing groups in Sorting,
regardless of the condition, adopted a relatively ad-hoc strategy. The
participants picked up the elements and placed them right away, only
checking the result together at the end. In contrast, both groups that
over-strategized performed more slowly. For instance, as seen in
Figure 6 (a), Pair 1 with PI sorted all the parts by length (along the

blue segment) and compared each element closely (alternating green
and blue).

Anticipation & Parallel Collaboration During Assembly, the
screw insertion is a process bottleneck and groups adopted differ-
ent strategies in this situation. Pair 2 and 7 were, respectively, the
slowest in assembly with PI and SV. Neither pair parallelized the
screwing process using the screwdriver and the pre-insertion process
by hand. Instead of anticipating the next step and helping the partner
pre-insert the screws, the participant stood around waiting or did
a later step, which does not bypass the screwing procedure as a
bottleneck. Because it takes a few seconds to put down the drill, pick
up screws, insert screws, and pick the drill back up, this means the
average time to insert a set of screws nearly triples (from 10 to 30
seconds) between the fastest and slowest groups. This observation
could not be made easily from the gaze patterns, because the partici-
pants were either way mostly looking at the workpiece. From the
coding results, we noted more instances of collaboration through the
code assistance in assembly rather than the sorting task (Assembly µ

= 6.79 and Sorting µ = 0.35). Further, the participants moved more
often during the assembly than during sorting (Assembly µ = 3.08
and Sorting µ = 0.35).

Level of Communication In the slower groups, some engaged
in rather excessive communication. They discussed the task and
what they could do at length before any action was taken. This can
be seen in the gaze pattern where long periods were spent without
fixations on the workpiece (e.g., Figure 6 (a) Pair 1 and 6). The
coding revealed that during the tasks with PI participants discussed
more (Sorting: µ = 17.58 and Assembly: µ = 14.71). Similarly, some



Comparing each timber piece closely

(a) Sorting with PI (Top started with PI)

No hand Pop-up (instruction) use

(b) Sorting with SV (Top started with SV)

Switching between table and instructions
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(c) Assembly with PI (Top started with PI)
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Discussion

(d) Assembly with SV (Top started with SV)

Figure 6: Fixation on AOIs during Sorting (a,b) and Assembly (c,d) tasks with PI and with SV over the task-solving duration in minutes. Each
pair block consists of three rows, where the top row shows common AOI intersections and the two smaller bottom rows show the individual
gaze data. The top 4 pairs solved the task with one condition first and the other condition second, also vice versa for the bottom 4 pairs. The
pairs that have a green text color took the least amount of time to solve the task, while the pairs with red text took the most amount of time.
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Figure 7: Task questions across all conditions and tasks. The charts shows that Sorting tasks felt easier to do than assembly ones. We can also
observe that participants collaborated the least when doing Sorting in SV.
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Figure 8: Response of participants on the general feedback questions.
We observed that SV did not make the task harder and participants
would use it in the future.

pairs did not communicate at all in the first few minutes and each
person tried figuring things out by themselves. This is visible from
the gaze patterns where there are large gaps in the shared attention
(e.g., Figure 6 (b) Pair 2 and 8).

5.3 Feedback

Regarding the task feedback questions, participants rated Sorting
with SV (12/16) as easier done than PI (9/16). However, they re-
ported slightly more collaboration with their partners when using PI
(15/16) than SV (12/16). When looking at these two metrics, we can
say that using SV facilitated the users to be more independent when
doing the sorting tasks. We also observed that Assembly was rated
as easier to do with a partner than Sorting, which makes sense given
the nature of the tasks. Fig. 7 shows the comparisons between the
conditions in the two tasks.

We also asked questions about their general user experience in
the study after they finished all the tasks (see Fig. 8). Participants
pointed out that they would use SV in the future (12/16) more than PI
(9/16). This opinion was also reflected in their feedback, mentioning
“Situated visualization support the user better to perform the task”,
“[...] has fast results in construction [...]”. Most participants (9/16)
agreed that having the hand pop-up was useful. One participant,
however, wrote “AR might have been more accessible if not fixed to
the hand (thus making its use not hands-free, which can be important
for a manual task)”. Only a few (4/16) agreed that SV made the task
more difficult. Even though the majority would use SV in the future,
they mentioned that the design of the SV could be improved through
“color-coding”, “in-between steps”, and “disabling the guidance
during mechanical work”. Finally, most participants (14/16) reported
that their role in the task was clear.

For the NASA TLX data, across all the conditions and tasks,
more than half of the participants rated their performance “good”.
Regarding frustration, at least 10 participants rated it “low”across
all conditions, and particularly for Sorting with SV 15 participants
rated it “low”. For Mental Demand, Sorting with SV also received
lower scores (11/16), while in the other conditions between 6–8
participants rated it “medium low”. As expected, Sorting received

lower scores for Physical Demand than Assembly. For Sorting tasks,
participants also rated the SV condition “low” (12/16) more often
than the PI one (5/16). The performance was rated similarly across
all the conditions; in the best rating 11 participants graded it as “good”
when doing Sorting with SV, and in the worst one 9 participants
rated it “good” when doing Assembly with PI. Detailed charts of the
NASA TLX results can be found in the supplemental material.

6 DISCUSSION

To avoid dichotomous interpretations [13,15] and strengthen replica-
bility, our results comprise traditional statistical methods, extended
behavior analysis, and qualitative analysis to address our research
question. The presented experiment showed that gaze-based mea-
sures provide valuable information for the evaluation of interaction
and collaboration in AR. The completion times for Assembly showed
a non-significant tendency in favor of SV. However, traditional per-
formance analysis (time and error) is not the only relevant aspect
in usability and behavior analysis [1, 30], and might even be harm-
ful when considered in isolation [19]. Eye tracking can be used
to extend performance analysis. In our case, the eye tracking data
showed significant differences regarding fixation durations on AOIs,
that it, SV users look less at instructions and focus more on the
task, providing new insights into the differences between conditions.
If people spend less time on instructions, more complicated tasks
might result in better efficiency with SV. Further, the results reveal
that the focus of participants is different between Sorting and Assem-
bly. During Sorting, the participants try to sort each piece based on
size, shape, and orientation. This caused the participants to check
the paper instructions frequently. The gaze data also indicates that,
during Assembly, the participants seemed to remember the structure
after a while and did not have to look at the instructions as often.
The qualitative analysis of our data discloses fewer pairs discussing
during SV, indicating a higher understanding of the task.

From the scarfplots, we could identify the different working strate-
gies, when it comes to the sorting and assembly of the timber pieces.
If the participants followed the instructions step-by-step, this can
be identified easily by frequent switching of attention between the
respective AOIs. If they tried to figure out the assembly of the pieces
first and then screwed everything together, this behavior results in a
clearer separation of both AOIs in the scarf plot. Especially for Sort-
ing this constant switching between AOIs could be an explanation
for the subjectively perceived higher mental demand with PI. If a
system’s aim is to reduce the mental and physical workload of its
users, these results indicate that SV can potentially achieve this by
helping users focus on important regions for the task.

The examination of the gaze patterns also allowed the identifica-
tion of different behaviors between pairs. We could identify which
pairs discussed for a long time with their partner, and pairs, which
had rather less interaction with their partner. Both aspects are valu-
able information to include in future techniques to support users
with the presented tasks. For instance, an adaptive interface could
detect such potential confusion and provide additional cues to solve
the task, or vice versa, reduce depicted information in a situated
visualization to the essential parts if users know what they are doing.



The gaze patterns show shared attention on AOIs time spans
with potentially much collaboration. While specific collaboration
behavior still has to be investigated by additional means, for instance,
a recorded video of the experiment, this information can substantially
reduce search times in the recorded material.

6.1 Open Challenges

We identified some challenges that will require further research.
These mainly concern the design of future studies based on our find-
ings and how the evaluation procedure can be extended to dynamic
changes during the experiment.

Study Limitations We included inferential statistics to
strengthen our assumptions. However, the current experiment is
of an exploratory nature as we mainly focus on identifying and
describing behavioral patterns during the presented tasks. The de-
scriptive statistics and qualitative observations show tendencies for
different strategies that can already help design new interfaces with
such strategies in mind. Further, the current experiment investigated
the tasks with a learning effect between the first and the second trial.
Although the assembly structure was altered, participants tended to
be more efficient during the second trial. We noticed that this perfor-
mance increase was different depending on the starting condition.
Combining all these aspects into a single hypothesis-driven study
design is nearly impossible and was not the focus of this experiment.
Hence, additional experiments with more constrained study designs
will be necessary to support the resulting hypotheses. Another limi-
tation of our study is the under-exploration of different visualization
techniques for improving situated visualization. The inclusion of
highlighting techniques or visualizing instructions stepwise could
yield a different performance and different gaze patterns worth in-
vestigating and comparing. Besides the visualization, the size of the
instruction can also influence the outcome of the study in terms of
completion time and correctness. We utilized a DIN A3 sheet for
the PI and DIN A4 for the hand pop-up in SV.

Dynamic Visualizations and Environments The current tasks
focused on static SV for sorting and assembly. This type of scenario
can be generalized to numerous assembly, maintenance, and training
tasks. However, tasks with increasing complexity might require
animated or interactive situated visualization because one static
overview becomes visually cluttered or too complex for efficient
interpretation. For instance, we could increase the complexity of the
assembly task by adding elements for a 3D structure, which requires
additional stabilization and would suffer from typical occlusion
problems of 3D visualization. It might also be necessary to adjust
visualizations to the changing conditions of the environment or the
process itself, e.g., when interacting with robots in collaborative
tasks. An evaluation becomes more complicated for such scenarios,
especially when environmental changes occur. Dynamic changes
in the visualization can be captured programmatically, and gaze
hit detections are easy to derive if appropriate collider objects are
defined. But changes in the real-world environment have to be
tracked separately and might even require manual annotation by
investigating recorded gaze replays [30].

6.2 Design Guidelines

Based on our findings, we would like to provide other researchers,
who want to include eye tracking in their evaluation of AR scenarios,
with some guidance and suggestions on what should be considered
when designing SV for collaborative tasks:

Synchronization of Devices: Two AR devices at minimum
have to provide synchronized data for analysis. We achieved this
by client-server communication, if both devices are recorded indi-
vidually, additional audio-visual cues should be included for later
synchronization. The latter might also be helpful for the inclusion

of additional devices, for instance, video cameras for traditional
behavior analysis by observation.

Environment Preparation: The presented experiment was con-
ducted in a controlled environment equipped with fiducial markers
at important positions for AOI definition. Alternatively, other en-
vironment models, e.g., laser scans, could be deployed to match
the mesh provided by the AR device with a semantically enriched
environment model. Annotation of the mesh from the device would
also be possible but might lack details, depending on the applied
surface reconstruction techniques.

Statistical and Visual Analysis: We presented an analysis
based on common eye tracking metrics such as the relative gaze
duration on different AOIs. While this provides an overview, visual-
ization techniques such as the presented scarf plots display a more
detailed view of the data over time. If the research question requires
a more detailed analysis of specific relations between different AOIs,
an analysis by a transition matrix might be helpful.

Following these steps, the integration of eye tracking into the
evaluation procedure of AR scenarios is easy to achieve. However,
the challenge often remains with the analysis of the recorded data.
Hence, we see the development of new techniques and streamlined
solutions for analysis in such scenarios as an important and relatively
untouched research field for the present and the near future.

7 CONCLUSION

We investigated how people cooperatively work on sorting and as-
sembly tasks with and without the support of augmented reality
guidance by SV. Our results showed that the use of SV tends to
improve performance, significantly increases visual attention in the
work area, and reduces the need for instructions. These tasks rep-
resent a set of basic actions often repeated in numerous fabrication
and construction processes. By investigating the viewing behavior,
we could identify different strategies that should be considered in
future AR interfaces to improve work safety, task efficiency, and
reduce mental workload for users to focus on the task at hand.

For future work, we plan to conduct further studies to quantify
how common individual strategies occur during the presented and
comparable tasks. The results of the included performance analysis
are in line with related work comparing situated and paper-based
instructions, indicating that SV can help create supportive interfaces
and eye tracking analysis showed that a more focused workflow
might be one reason for this. While we utilized a scaffold for PI and
hand-pop up for SV, different placement of these instructions should
be explored in future works. We further want to investigate how
the inclusion of live gaze information of the collaboration partner
influences the task. In this work, gaze rays were only included
for illustration purposes, but might also be a valuable support for
coordinating tasks between two or more people working together.
Further, it could be worth investigating how gaze patterns differ
between AR experts and AR novices.

In conclusion, we want to emphasize the importance of evaluating
AR interfaces not just in terms of user experience but also with means
such as eye tracking to understand better where issues with an AR
interface occur and improve interaction, visual representation, and
the experience overall.
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