
Challenges and Opportunities using
Software-defined Visualization in MegaMol

Tobias Rau, Michael Krone, Guido Reina, and Thomas Ertl
Visualization Research Center, University of Stuttgart (VISUS)

Allmandring 19, 70569 Stuttgart, Germany
Email: {firstname}.{lastname}@visus.uni-stuttgart.de

Abstract—In this paper we describe how we integrated the
OSPRay ray tracing engine into the traditionally GPU-centric
MegaMol visualization framework. Since OSPRay is purely CPU-
based, this adds software-defined visualization to MegaMol. This
enables us to use MegaMol for in-situ rendering on HPC systems
that lack GPUs. Furthermore, we designed the integration so
that the new OSPRay rendering can be used alongside the
classical OpenGL-based rendering. We describe how the ray
tracing paradigm, where the whole scene has to be available
during rendering, changes the module graph of MegaMol. The
performance of the OSPRay ray tracing is shown to be at least
competitive with classical GPU-accelerated rendering methods
for particle rendering available in MegaMol.

I. INTRODUCTION

Visualization is an established means for analyzing and
exploring scientific data. Although the rendering capabilities of
modern desktop PC are constantly improving, the disconnect
between performance and data set sizes is increasing. One
obvious remedy is to use High-Performance Compute clusters
for data visualization. As pointed out by Moreland et al. [1]
visualization in the HPC world is currently experiencing
significant changes due to the constantly rising number of
nodes and cores, leading to an increasing degree of parallelism.
Future supercomputers are expected to exceed the exaflop
scale. Such HPC systems are able to run simulations that
generate data sets that are already problematic from the storage
perspective. One prominent example are cosmological simu-
lations like the DarkSky dark matter simulations where each
time step can exceed 30 TB [2]. Such data sets make traditional
postmortem visualization approaches unfeasible and call for a
paradigm shift to in-situ visualization.

MegaMol is a framework for scientific visualization devel-
opment that has been successfully applied to many problems
including large particle data sets. It offers a thin abstraction
layer on top of OpenGL and is primarily tailored to running
on a normal desktop PC equipped with a high-performance
graphics card. MegaMol is designed to be used for postmortem
visualization of data sets that fit into the main memory of a
desktop PC. Due to it’s GPU-centric nature, it outperforms
several well-known applications in its intended scenario [3].
However, MegaMol offers only rudimentary support for in-situ
visualization, since it requires a GPU. Looking at the Top 100
list of HPC systems shows that less than 25 % of these systems
are equipped with GPUs (and only two systems in the Top 10
have GPUs). Therefore, adding software-defined visualization

that does not rely on high-performance GPUs for rendering
to MegaMol would be a feasible solution to enable HPC
rendering and in-situ visualization. Software-defined visualiza-
tion (http://www.sdvis.org/) is an open source initiative started
by Intel to improve performance and efficiency of prominent
visualization solutions by using CPU-based ray tracing.

Implementing a CPU ray tracing engine into an OpenGL
framework is not straightforward. The MegaMol rendering
paradigm implements separate renderer for each type of ge-
ometry (e.g., spheres, streamlines, volumes) and data sets.
Using the OpenGL depth buffer, combining the rendering
results requires no explicit handling, as long as all geometry
is opaque. For ray tracing, the complete scene has to be
passed to the renderer to be able to compute a global spatial
acceleration structure, which is necessary for fast ray-object
intersection tests. Conversely, such a global view of all data
allows the visualization to use global illumination methods
like ambient occlusion [4] or path tracing that highlight the
shape and spatial arrangement of the displayed object(s). This
cannot be obtained straightforwardly using OpenGL, due to
the inherently local paradigm of the rasterization. Specialized
approaches for specific problems, for example ambient occlu-
sion for molecular data, have been presented (e.g., [5]–[7]).

Using the Open source, Scalable, and Portable Ray tracing
engine (OSPRay) [8] as renderer brings two major differences
to classical GPU-based rendering: The rasterizer is replaced
by a ray tracer, which is executed on a multi-core CPU.
Computing the visualization on the CPU has the additional
benefit that access to the full memory of the machine is
granted, which allows for loading much larger data sets that
would not fit into the more limited GPU memory anymore.
Software-defined visualization is also beneficial for in-situ
visualization, where the simulation and the visualization run
in parallel on an HPC system.

OSPRay offers rendering routines for typical input data
types, for example volumes, polygon meshes, and non-
polygonal geometry like implicitly defined spheres or cylin-
ders. It builds upon the fast Embree ray tracing kernels [9],
which are highly optimized for Single Instruction, Multiple
Data (SIMD) execution. Here, the same instructions are exe-
cuted by multiple threads on individual data simultaneously.
Implicit geometry is also used for particle visualization in the
MegaMol framework [3] using OpenGL GLSL shaders [10],
[11]. Consequently, the most commonly used visualization



Rendering Module

cd->requestData(frm)

cd->getDataPtr()

Rendering Module

cd->requestData(frm)

cd->getDataPtr()

Composi�on 
Module

View3D 
Module

Data Module

Data Module

Fig. 1. Classical MegaMol module graph with OpenGL rendering modules.
In this picture, the data call is annotated as cd. The rendering module requests
a frame (frm) and the call offers a pointer to the requested frame data.

data in MegaMol can be used straightforwardly in OSPRay.
The OSPRay engine is already used by other scientific visu-
alization software like ParaView [12] or VMD [13], [14].

An alternative to using OSPRay would have been the VTK-
m [1] visualization toolkit, which is tailored to HPC execution
and provides a set of data parallel primitives. Here, a set
of simple algorithms act as an abstraction layer between
the hardware architecture and the visualization code. These
algorithms are optimized for extreme parallelism by taking
advantage of SIMD execution and node-level parallelism.
However, this would require to rewrite all our rendering code
from scratch in contrast to using OSPRay as mentioned above.

II. MEGAMOL 101
MegaMol is designed as a modular, rapid prototyping

framework tailored to scientific visualization written in C++.
Functionality is encapsulated in modules that communicate
via strongly-typed channels termed calls. A running MegaMol
instance consists of an arbitrary number of interconnected
modules that form a graph. This concept allows to reuse
components and recombine them to solve new challenges. A
minimal MegaMol module graph consists of a data source
module, a rendering module, a view module that represents
the window and the corresponding calls to connect these
modules. Module slots define compatible calls that are able
to connect modules at runtime. MegaMol control flow follows
the pull paradigm in the sense that the window starts polling all
connected modules for updates. However, a call also optionally
transports parameters or state variables to the called module,
which allows for bidirectional communication (push-pull).
Figure 1 shows an exemplary module graph with two renderers
that have their individual data providers. Each module called
by the view can in turn issue an arbitrary number of calls to
its downstream connected modules. For example, a renderer
module called for an updated image will in turn call the data
provider for the data that should be rendered, for example one
particular frame of a particle simulation. If the requested frame
was not yet loaded, the data module loads this frame from disk.
The renderer can then access the data via a pointer provided
by the data call. As a result, there is no need for duplicating
any data in memory during the whole visualization pipeline.
For more details, please refer to Grottel et al. [3].

OSPRay Renderer 
Module

cd->requestData(frm)

geometry geometry geometry

...

Fig. 2. Module connection and communication model of the OSPRay im-
plementation. The rendering module requests a frame and geometry modules
write the pointer to the requested data via the call into a container inside the
rendering module. This method allows for infinite stacking of modules.

III. INTEGRATION OF OSPRAY INTO MEGAMOL

The major difference between OSPRay and MegaMol is that
OSPRay gathers the data for entire scene to be rendered, as
mentioned in the Introduction. MegaMol rendering modules,
on the other hand, are self-contained in a way that each
module renders its content independently of other modules
at the same module graph depth. That is, multiple different
opaque renderable objects can be drawn by different render-
ers that have no need of communicating with each other,
since OpenGL will take care of depth compositing by design
and most MegaMol renderers only use local lighting. Since
OSPRay implements ray tracing, it always operates on the
whole scene. That is, OSPRay conceptually doesn’t fit well to
the MegaMols architecture. Consequently, the integration of
OSPRay into MegaMol necessitates a mechanism to collect all
data prior to passing it to OSPRay and triggering the rendering.

The new way of communicating data to the rendering
module is to pass all data pointers directly to the OSPRay
rendering module, which appends it to a temporary list per
rendered frame. This offers a significant advantage over the
original MegaMol paradigm, since there are no limitations
of different data sets and data types for a single rendering
module. We added OSPRay geometry modules instead of
classical renderers. These geometry modules only collect the
data, transform it into a renderable representation, and pass
it to the OSPRay rendering module, which exists only once.
Upon being called, the first geometry module will get the
interface for adding data from the upstream OSPRay renderer
and use it to add its own data. It will then call its downstream
geometry module and pass the interface for adding more data.
This results in a pattern that allows to daisy-chain an arbitrary
number of geometry modules. In Figure 2, a schematic of this
new data handling paradigm is shown. Note that light modules
use the same mechanism as geometry modules. We decided to
encapsulate the concrete geometry list and light list of OSPRay
to ensure that no module can modify or delete data that has
been added by other modules.

The information put into the geometry list of the rendering
module is also used to calculate the union of individual
bounding boxes for all included objects, resulting in a new
bounding box that encloses the entire scene. This bounding



box is used to compute the initial camera setup so that the
whole scene is visible.

IV. RESULTS AND DISCUSSION

A. MegaMol Configuration

Figure 3 shows a module graph within the MegaMol con-
figurator. The module graph includes OSPRay modules and
shows the connection scheme as explained in section III.
The View3D module requests an image via the CallRender3D
that triggers the OSPRayRenderer to request data via the
CallOSPRayStructure and CallOSPRayLight calls.
Each OSPRay geometry module (e.g. OSPRaySphere-
Geometry, OSPRayTriangleMesh) has a connection to
a data source. In the case of a OSPRaySphereGeometry,
a MultiparticleDataCall is connected that offers a
universal interface for particle data. Other modifications of
the displayed data are available via additional modules like
the OSPRayOBJMaterial or the LinearTransfer-
Function. The OSPRay API is loaded only into the
OSPRayRenderer module for two reasons: the first one is
the ability to retain existing data management modules; the
second one is the ability to handle the data management inside
the geometry modules independent from the OSPRay API.
This makes it easy to write additional geometry modules even
in a completely separate plugin of MegaMol.

B. Image Quality and Performance

Ray tracing typically offers higher image quality than
OpenGL rendering due to the global illumination, which is
usually only partially approximated when using OpenGL.
Figure 4 shows a direct comparison of the new OPSRay
rendering in MegaMol and a traditional MegaMol OpenGL
renderer that uses ambient occlusion to achieve similar image
quality. The data set is a laser ablation simulation containing
199,940,704 atoms, which has a size of 2.97 GB for one
frame. Both methods render each atom as a sphere while
the image resolution was set to 1920×1200. The OpenGL
module uses fast GPU-based sphere ray casting [10] with
local lighting. The OSPRay module uses the scivis rendering
method provided by the OSPRay library, and was configured
to simple ray casting using a distant light (local lighting).
MegaMol achieves 2.9 frames per second (fps) on an Nvidia
Geforce GTX 1060 and OSPRay reaches 14.3 fps on an Intel
i7-6700 (4×3.4 GHz). The higher rendering speed of OSPRay
is expected since the OpenGL renderer has to rasterize each
sphere and generate one ray per fragment while the ray tracing
only generates one primary ray per pixel and can terminate the
rays on the first hit.

We also measured the performance using ambient occlusion,
since this technique gives valuable depth cues for large particle
data sets. In case of the OpenGL-based rendering, we used
the grid-based ambient occlusion approximation by Staib et
al. [6]. OSPRay’s scivis was configured to compute secondary
rays for ambient occlusion. The OpenGL rendering runs at
approximately 1.6 fps. The image quality and rendering speed
of OSPRay depends on the number of rays cast per pixel. The

performance of a single ray per pixel is approximately 7.6 fps.
However, a comparable image quality can only be reached at
a minimum of 10 rays per pixel, which results in a frame rate
drop to about 2 fps.

C. Adaptive Rendering

For better performance during interaction, the user can
configure the rendering module to use the adaptive rendering
provided by OSPRay. As long as the camera parameters or
other parameters that trigger a recalculation of the image are
not changed, more and more rays are cast into the already
rendered scene. This improves the image quality over time.
While the user is interacting with the visualization—e.g., by
moving the camera—the OSPRay rendering module is only
casting one ray per pixel, resulting in smooth interaction. For
rendering a still image or a movie, however, the adaptive
sampling can be deactivated to get a consistent image quality
during the tracking shot, which is then computed offline.

Activating the adaptive rendering for the 199.9 M atom data
set used for performance measurements retains the 7.6 fps and
the full image quality shown in Figure 4 is reached after 10
interations (∼1.4 seconds).

D. Ray Tracing Performance and Scaling

OSPRay makes heavy use of Intel’s single program multiple
data (SPMD) compiler ISPC [15] and the Embree ray tracing
kernels [9]. ISPC optimizes code for the CPU vector unit.
That way, a SPMD code can efficiently run on the SIMD
units available on modern multi-core CPUs. While ISPC takes
care of the rendering and shading, Embree is used to build
and traverse the spatial acceleration structures, for example
hierarchical scene graphs [8]. Besides, Embree also takes
advantage of SIMD vectorization using ISPC.

The most efficient vector extensions available on the current
hardware are automatically chosen during runtime, which
makes OSPRay a highly portable library. We compared the
performance of OSPRay on an Intel Xeon Phi 7210 2nd

generation (Knights Landing, KNL) and an Intel i7-6700.
The Xeon Phi represents a highly parallel vector instruction
machine, while the i7 represents a typical desktop workstation
CPU the average MegaMol user is using. For the test, we
rendered a 16k image of a medium occupied scene on both
systems with an increasing number of rays per pixel. The
result of this performance test is shown in Figure 5. For a
low number of rays per pixel, the i7 performs as good as the
KNL, however, with an increasing number on rays, the KNL
scales significantly better than the i7.

V. CONCLUSION AND FUTURE WORK

We presented the implementation of the CPU ray tracing
engine OSPRay into the visualization framework MegaMol.
Because of the software-defined aspect provided by OSPRay,
MegaMol can now be used for scientific visualization on HPC
systems that lack GPUs. The integration of OSPRay required
a rethinking of MegaMol’s data distribution paradigm to be
able to take advantage of all features OSPRay offers. The new



Fig. 3. Simple OSPRay module graph generated with the configuration tool provided by MegaMol. The OSPRayRenderer module provides two connections
for the new module communication paradigm: one for lights and one for geometry.

Fig. 4. Visualization of a laser ablation simulation of aluminum. Each of the
199.9 M atoms is rendered as a sphere. The top image shows a ray tracing
obtained using the OSPRay sphere geometry and the built-in scivis renderer
with one ray per pixel. The center image shows the full quality provided by
OSPRay after convergence. The bottom image shows the results of a Mega-
Mol sphere rendering module with approximate ambient occlusion lighting
implemented in OpenGL.

daisy-chaining paradigm extends the established module graph
of MegaMol so that is has become more versatile by mak-
ing the whole scene available for rendering. The established
OpenGL renderers can still be used in concert with the new
OSPRay renderer. To achieve this, the result of the OSPRay
renderer has to be copied into an OpenGL framebuffer object
with depth information enabled. Due to the depth test, all
geometry rendered to this framebuffer using OpenGL will be
correctly composited with the OSPRay content.

Fig. 5. Performance while rendering a 16k image with an Intel i7-6700 and
the Intel Xeon Phi 7210 (Knights Landing, denoted as KNL).

Currently, MegaMol has more different rendering capabili-
ties than OSPRay (e.g., protein surface visualization [16]). In
the future, we want to extend OSPRay by such functionality.

As mentioned above, the integration of OSPRay into Mega-
Mol is a first step to perform in-situ visualizations on HPC
clusters without GPUs. This also requires a distributed exe-
cution of MegaMol on multiple nodes, where each MegaMol
instance renders the data available on the same node. In a
final pass, all individual images have to composited using
color and depth information. Note that this is currently only
possible if local lighting is used and no node-spanning visu-
alization primitives like streamlines are generated. This is a
common problem of distributed visualization that uses global
information [17]. Thus, as a next step, we want to extend our
implementation to be able to share data across domains via
MPI to enable such global effects. For fast rendering, OSPRay
can be already executed in parallel on multiple nodes using
MPI. This is especially useful if the cluster offers more nodes
than are required for the simulation.

ACKNOWLEDGMENTS

This research was partially supported by the Intel®Parallel
Computing Center program, by the German Research Foun-
dation (DFG) as part of SFB 716, and by BW Stiftung as part
of project ”Digital Human”. We also want to thank Johannes
Roth for providing the laser ablation data.



REFERENCES

[1] K. Moreland, C. Sewell, W. Usher, L. t. Lo, J. Meredith, D. Pugmire,
J. Kress, H. Schroots, K. L. Ma, H. Childs, M. Larsen, C. M. Chen,
R. Maynard, and B. Geveci, “VTK-m: Accelerating the Visualization
Toolkit for Massively Threaded Architectures,” IEEE Computer Graph-
ics and Applications, vol. 36, no. 3, pp. 48–58, May 2016.

[2] S. W. Skillman, M. S. Warren, M. J. Turk, R. H. Wechsler, D. E.
Holz, and P. M. Sutter, “Dark Sky Simulations: Early Data Release,”
arXiv:1407.2600 [astro-ph], Jul. 2014.

[3] S. Grottel, M. Krone, C. Müller, G. Reina, and T. Ertl, “MegaMol
– A Prototyping Framework for Particle-Based Visualization,” IEEE
Transactions on Visualization and Computer Graphics, vol. 21, no. 2,
pp. 201–214, Feb. 2015.

[4] S. Zhukov, A. Iones, and G. Kronin, “An Ambient Light Illumination
Model,” in Eurographics Workshop on Rendering, ser. Eurographics,
G. Drettakis and N. Max, Eds. Springer, 1998, pp. 45–55.

[5] M. Tarini, P. Cignoni, and C. Montani, “Ambient Occlusion and Edge
Cueing for Enhancing Real Time Molecular Visualization,” IEEE Trans-
actions on Visualization and Computer Graphics, vol. 12, no. 5, pp.
1237–1244, 2006.

[6] J. Staib, S. Grottel, and S. Gumhold, “Visualization of Particle-based
Data with Transparency and Ambient Occlusion,” Computer Graphics
Forum, vol. 34, no. 3, pp. 151–160, 2015.

[7] P. Hermosilla, V. Guallar, A. Vinacua, and P. P. Vázquez, “High quality
illustrative effects for molecular rendering,” Computers & Graphics,
vol. 54, pp. 113–120, 2016.

[8] I. Wald, G. Johnson, J. Amstutz, C. Brownlee, A. Knoll, J. Jeffers,
J. Günther, and P. Navratil, “OSPRay - A CPU Ray Tracing Framework
for Scientific Visualization,” IEEE Transactions on Visualization and
Computer Graphics, vol. 23, no. 1, pp. 931–940, Jan. 2017.

[9] I. Wald, S. Woop, C. Benthin, G. S. Johnson, and M. Ernst, “Embree:
A Kernel Framework for Efficient CPU Ray Tracing,” ACM Trans.
Graph., vol. 33, no. 4, pp. 143:1–143:8, Jul. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2601097.2601199

[10] G. Reina and T. Ertl, “Hardware-Accelerated Glyphs for Mono- and
Dipoles in Molecular Dynamics Visualization,” in EG/IEEE VGTC
Symposium on Visualization, 2005, pp. 177–182.

[11] S. Grottel, G. Reina, and T. Ertl, “Optimized Data Transfer for Time-
dependent, GPU-based Glyphs,” in IEEE Pacific Visualization Sympo-
sium, 2009, pp. 65–72.

[12] J. Ahrens, B. Geveci, and C. Law, “ParaView: An End-User Tool for
Large-Data Visualization,” in Visualization Handbook, C. D. Hansen and
C. R. Johnson, Eds. Butterworth-Heinemann, 2005, pp. 717 – 731.

[13] W. Humphrey, A. Dalke, and K. Schulten, “VMD: Visual Molecular
Dynamics,” J. Mol. Graph., vol. 14, pp. 33–38, 1996.

[14] J. E. Stone, W. R. Sherman, and K. Schulten, “Immersive Molecular Vi-
sualization with Omnidirectional Stereoscopic Ray Tracing and Remote
Rendering,” in IEEE International Parallel and Distributed Processing
Symposium Workshop, 2016.

[15] M. Pharr and W. R. Mark, “ISPC: A SPMD compiler for high-
performance CPU programming,” in 2012 Innovative Parallel Comput-
ing (InPar), May 2012, pp. 1–13.

[16] M. Krone, K. Bidmon, and T. Ertl, “Interactive Visualization of Molec-
ular Surface Dynamics,” IEEE Transactions on Visualization and Com-
puter Graphics, vol. 15, no. 6, pp. 1391–1398, 2009.

[17] W. Usher, I. Wald, A. Knoll, M. Papka, and V. Pascucci, “In
Situ Exploration of Particle Simulations with CPU Ray Tracing,”
Supercomputing Frontiers and Innovations, vol. 3, no. 4, pp. 4–18, Oct.
2016. [Online]. Available: http://superfri.org/superfri/article/view/112


