
Eurographics Workshop on Visual Computing for Biology and Medicine (2019)
B. Kozlíková, L. Linsen, and P.-P. Vázquez (Editors)

Interactive CPU-based Ray Tracing of Solvent Excluded Surfaces

T. Rau1†, S. Zahn3, M. Krone4 , G. Reina1 , and T. Ertl2

1University of Stuttgart, VISUS, Germany
2 University of Stuttgart, VIS/VISUS, Germany

3 University of Stuttgart, Germany
4 University of Tübingen, Big Data Visual Analytics, Germany

Abstract
Depictions of molecular surfaces such as the Solvent Excluded Surface (SES) can provide crucial insight into functional molec-
ular properties, such as the molecule’s potential to react. The interactive visualization of single and multiple molecule surfaces
is essential for the data analysis by domain experts. Nowadays, the SES can be rendered at high frame rates using shader-based
ray casting on the GPU. However, rendering large molecules or larger molecule complexes requires large amounts of mem-
ory that has the potential to exceed the memory limitations of current hardware. Here we show that rendering using CPU ray
tracing also reaches interactive frame rates without hard limitations to memory. In our results large molecule complexes can
be rendered with only the precomputation of each individual SES, and no further involved representation or transformation.
Additionally, we provide advanced visualization techniques like ambient occlusion opacity mapping (AOOM) to enhance the
comprehensibility of the molecular structure. CPU ray tracing not only provides very high image quality and global illumina-
tion, which is beneficial for the perception of spatial structures, it also opens up the possibility to visualize larger data sets and
to render on any HPC cluster. Our results demonstrate that simple instancing of geometry keeps the memory consumption for
rendering large molecule complexes low, so the examination of much larger data is also possible.
(see https://www.acm.org/publications/class-2012)

CCS Concepts
•Human-centered computing → Scientific visualization; • Computing methodologies → Ray tracing; • Applied computing
→ Molecular structural biology;

1. Introduction

Researchers studying biomolecules are interested in the potential of
interaction between different molecules. These biomolecules have
certain regions of interest with special characteristics, for exam-
ple the binding sites of a protein, where a specific small molecule
can trigger an enzymatic reaction. Another example is docking,
where two molecules that fit together like two pieces of a puz-
zle form a larger molecular complex. Molecular dynamics simu-
lation is an important tool to study such molecular interactions. A
visualization that allows domain experts to explore the simulation
results supports them in drawing conclusions about the simulated
molecules. Therefore, a multitude of molecular models have been
defined, each one highlighting a specific aspect of a molecule, for
example, the molecular volume, covalent bonds between atoms, or
the molecular surface. Among the different molecular surfaces, the
solvent excluded surface (SES) is of high importance as it high-
lights exposed areas of biomolecules that can be reached by other

† tobias.rau@visus.uni-stuttgart.de

surrounding molecules. It provides an intuitive representation of
the interface between a molecule and its surroundings.

The generation and rendering of the SES is not trivial and in-
volves advanced algorithms and special cases. Several approaches
exist to compute and visualize the SES [KKF∗17]. We base our
computation on the contour-buildup (CB) algorithm [TA96], which
can be efficiently parallelized [LBPH10, KGE11]. The resulting
surface is an algebraic representation that consists of three dif-
ferent geometric primitives. In order to attain high image quality
and semi-transparent rendering of the SES for the visual analy-
sis, we use ray tracing instead of rasterization, which would be the
common choice for interactive visualization. Intersections between
the geometric primitives of the SES and a viewing ray can be ob-
tained by just finding the root of one equation per primitive. Semi-
transparent rendering is especially useful for the visual analysis, as
it allows domain experts to simultaneously see the molecular sur-
face and see what is underneath it. Technically, this involves simple
blending and requires that the rays are not terminated after the first
intersection is found. However, semi-transparent rendering of the
SES requires a clear definition of the geometric primitives’ visible
parts, which is not straightforward. Ray tracing can also be used for

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

DOI: 10.2312/vcbm.20191249 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-1445-7568
https://orcid.org/0000-0003-4127-1897
https://orcid.org/0000-0003-4019-2505
https://doi.org/10.2312/vcbm.20191249

T. Rau, S. Zahn, M. Krone, G. Reina, and T. Ertl / Interactive CPU-based Ray Tracing of Solvent Excluded Surfaces

feature extraction. One example is to highlight cavities of the SES
using ambient occlusion opacity mapping (AOOM) [Bor11].

Modern interactive visualization often relies on the parallel com-
puting power offered by the GPU. However, running visualizations
on large data can quickly reach the limit of todays GPU memory.
Furthermore, high performance computing (HPC) systems are of-
ten not equipped with dedicated GPUs. Therefore we use a CPU
rendering option to achieve interactive frame rates and high-quality
images. The CPU ray tracing engine OSPRay [WJA∗17] offers
all required functionality for this task. Additionally, efficient spa-
tial acceleration structures have the potential to reach higher frame
rates than rasterization, especially for large data sets. Ray tracing
simplifies rendering of realistic illumination effects, while still of-
fering interactivity [WMG∗09].

The ray tracing technique used for rendering comes with another
advantage: obtaining high quality renderings of the SES with, for
example, global illumination of the scene does not require addi-
tional effort. The global illumination and resulting occlusion in-
creases the depth perception and structural perception of render-
ings — an important requirement when rendering molecular sur-
faces. The spacial structure is easily intelligible as ambient occlu-
sion (AO) is darkening cavities of the molecules [Bor11, TCM06].

Our contributions presented in this paper can be summarized as
follows: We present a CPU alternative to interactive SES rendering
that is capable of rendering single molecules and molecule com-
plexes. To reach this goal, we implemented our approach using
the OSPRay framework. Furthermore, we used the ray tracing to
specifically highlight surface features such as cavities, which are
important for molecular function. Our solution is easily deployed
on any HPC system for e. g., in-situ coupling to a simulation to
achieve higher frame rates using distributed rendering.

2. Fundamentals & Related Work

In this section, we briefly introduce molecular surface visualization
and explain algorithms we base our work on. We then detail the op-
timizations we introduce to the various processing stages required
for rendering. We also discuss the mathematical background and
the software packages we use for the work we present in this paper.

2.1. Molecular Surfaces

As mentioned above, molecular surfaces are an important repre-
sentation for the analysis of molecular interactions. Kozlíková et
al. [KKF∗17] recently presented an in-depth survey of the differ-
ent types of molecular surfaces, their computation, and their vi-
sualization. Therefore, we only briefly introduce the surface types
that are necessary for the definition of the SES, which we used in
this work. This surface is commonly used for the visual analysis of
biomolecules.

The van der Waals surface (vdW) is the most simple molec-
ular surface. It represents each atom by a sphere. The radius of
each sphere equals the van der Waals radius of the corresponding
atom [KKF∗17], which can be derived from the interaction param-
eters of the Lennard-Jones potential.

Another simple representation is the solvent accessible surface

Figure 1: On the left a sketch of the most common molecular sur-
face types is depicted. Red and pink spheres are the atoms of a
molecule with their corresponding vdW radius, orange spheres de-
pict the rolling probe. The surface of the atoms directly defines the
vdW surface. The path of the probe center (i.e., the Solvent Accessi-
ble Surface) is shown as a green dashed line. The blue line depicts
the SES. On the right side an example rendering of the SES of a
small molecule is shown. Convex spherical patches are rendered
in light gray, toroidal patches in purple, and spherical triangles
are depicted in orange. Additionally, the contours of the contour-
buildup algorithm are shown as arcs around the molecule.

(SAS) [Ric77]. This surface is constructed by rolling a probe sphere
over the van der Waals surface; all possible center positions of this
probe sphere are considered as the SAS. The radius of this probe is
set to approximate a specific solvent (e.g., Rprobe = 1.4 Å, a spher-
ical simplification of H2O). A simpler approach is to extend the
radii of the atoms by the probe radius Rprobe.

The solvent excluded surface (SES) is constructed in a similar
way as the SAS. Again a probe sphere is rolled over the van der
Waals surface; however, the SES is defined by the surface patches
the probe surface traces while rolling over the surface. The effect
can be compared to shrink-wrapping the van der Waals surface.
The surface is classified into two parts, the contact surface and the
reentrant surface [Ric77]. The contact surface consists of all atom
surfaces that the probe can touch while rolling over the vdW sur-
face. Thus, all of the SES that is not a direct part of the vdW sur-
face is the reentrant surface (the probe filling the gaps when it can
get no further). While vdW surface and the SAS allow disconti-
nuities in regions where spheres are in contact, the SES generates
smooth connections between primitives. However, not all contact
points provide a unique tangent plane, there are a few exceptions
that result in singularities [Con83]. In Figure 1, the vdW surface,
the SES, and the SAS are depicted.

The SES can be described analytically using three basic geomet-
ric primitives [Con83]:

Convex spherical patches are generated when the probe is on
contact with only one sphere and can move freely on its surface
(two degrees of freedom).

Toroidal patches are resulting from the probe touching two
spheres simultaneously. The probe can only move on a circular
arc (one degree of freedom).

Concave spherical patches/spherical triangles form when the

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

240

T. Rau, S. Zahn, M. Krone, G. Reina, and T. Ertl / Interactive CPU-based Ray Tracing of Solvent Excluded Surfaces

probe is in contact with three spheres. Here, the probe has no
freedom to move (zero degrees of freedom).

Toroidal patches, for example, are always connected to convex
spherical patches, hence the free 2D movement of the probe loses
a degree of freedom when hitting a neighboring sphere. Also, three
neighboring toroidal patches form a spherical triangle, as they are
always found on connection points of the contour arcs that are gen-
erated by the contour-buildup algorithm. If the probe intersects the
axis of rotation of an arc or an arc piece, a so-called spindle torus
forms. The minor radius of this toroidal patch, is larger than the
major radius and any connected spherical triangles will be singu-
lar as they intersect each other. In Figure 1 the different types of
patches are depicted for a SES of a small molecule.

The SES can be computed in two ways: the first one is to extract
the aforementioned geometric primitives and render them, while
the second one is to discretize the volume of the molecule on a grid
and extract it as an isosurface. The latter approach was for example
used by Can et al. [CCW06] and Yu et al. [Zey09]. Recently, Her-
mosilla et al. [HKG∗17] presented a progressive grid-based com-
putation of the SES that runs on the GPU. Many solutions have
been proposed for the analytic approach, starting with the work
of Connolly [Con83], who devised the formulas that describe the
geometric primitives. For a detailed overview of the different ap-
proaches, we refer to the survey of Kozlíková et al. [KKF∗17]. We
based our computation of the SES on the contour-buildup algorithm
by Totrov and Abagyan [TA96], which was also used by Lindow et
al. [LBPH10] and Krone et al. [KGE11], since it can be parallelized
efficiently on multi-core CPUs and GPUs. A description of the al-
gorithm and our optimizations is given below in Section 2.2. An-
other approach was introduced by Parulek and Viola [PV12] where
the SES is rendered without any precomputation via implicit func-
tions.

2.2. The Contour-Buildup Algorithm

The contour-buildup algorithm was introduced by Totrov and
Abagyan [TA96] and computes the paths that the probe sphere
can roll along with at most one degree of freedom. This algo-
rithm is a per-sphere approach and therefore is easily paralleliz-
able [KGE11, LBPH10], as mentioned above. On modern, parallel
computing hardware, it is therefore preferable to inherently sequen-
tial methods like the reduced surface (RS) algorithm introduced by
Sanner et al. [SOS96]. In the contour-buildup algorithm, the path
that the probe center is following is either an arc or a full circle.
The algorithm can be separated into two phases. In phase one full
circles of intersecting spheres with the extended radius R′i are cal-
culated and in phase two these circles are split into the correspond-
ing arcs on crossings. The extended radius of each atom Ri of the
molecule is defined as

R′i = Ri +Rprobe , (1)

which corresponds to the SAS. Considering sphere σi has a set of
neighbors N(σi) that is in intersection range. The intersection circle
cj of spheres σi and σj ∈ N(σi) is calculated via the sphere position

Figure 2: Intersection of two probe radius extended spheres
(dashed lines) σi and σj. The blue intersection circle is defined by
the circle center vvvj that is relative to the sphere position pppi. The
normal of the circle is denoted as nnnj.

pppi and the circle center relative to the sphere position [TA96]

vvvj = vvvij
R′2i + vvv2

ij−R′2j
2vvv2

ij
, (2)

where vvvij is defined as pppj− pppi. The normal to the circle results as
nnnj =−vvvij and the intersection circle radius yields

r(cj) =
√

R′j− vvv2
j . (3)

Figure 2 shows a sketch of two intersecting spheres and the re-
sulting parameters. If N(σi) contains more than one element, the
resulting intersection circle cj has to be checked against all other
intersection circles with sphere σi. Considering another circle ck
intersects with cj the planes defined by nnnj and nnnk are also intersect-
ing. The resulting intersection line is also intersecting both circles
ck and cj. The calculation of the two intersection points yields to

xxx1,2 = hhh±aaa
R′i−hhh2

aaa222 , (4)

where aaa = vvvi× vvvj is the normal of the two relative circle centers
and hhh is the auxiliary position vector that is located in the middle
between the two intersection points xxx1,2. However, in many cases
the circles ck and cj are not intersecting each other. Therefore, hhh
is used as an indicator if the circles are intersecting. If hhh is located
inside the extended sphere of σi, the two circles are intersecting.

Considering circle ck is not intersecting ci, there are four differ-
ent cases that need to be distinguished to be able to construct the
SES correctly:

1. Sphere σk and sphere σj do not cover cj and ck respectively
2. Sphere σk covers circle cj completely
3. Sphere σj covers circle ck completely
4. Sphere σj covers circle ck completely and sphere σk covers cir-

cle cj completely

To reliably distinguish the cases showed above, Totrov and
Abagyan [TA96] defined three quantities

g1 = nnnj nnnk , (5)

g2 = mmmj mmmk , (6)

g3 = nnnj qqq , (7)

with mmmi = vvvi− hhh and qqq = vvvk− vvvj. Depending on the sign of the
parameters g1, g2, and g3, the previously defined cases appear (see
Table 1).

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

241

T. Rau, S. Zahn, M. Krone, G. Reina, and T. Ertl / Interactive CPU-based Ray Tracing of Solvent Excluded Surfaces

Table 1: All combinations of the three quantities that describe the
configuration of two circles.

g1 > 0 g2 > 0 g3 > 0 Case

true true true 2
true true false 3
true false true 1
true false false 4
false true true 1
false true false 4
false false true 2
false false false 3

In the first case two circles cj and ck are generated, however those
circles can also cross each other. The crossing points are calculated
and the circles are split into arcs. In cases two and three a circle
is completely covered by a sphere and therefore these circles are
deleted. The sphere σi is completely inside sphere σj and σk and is
removed form the further contour calculation.

This also shows the drawback of the contour-buildup algorithm.
The sorting showed in Table 1 transitions into excessive branching
in the implementation. Therefore, a SIMDization of the contour-
buildup algorithm does not increase its performance.

2.3. Generating the Surface

Sphere primitives are generated if the corresponding sphere σi is
not covered. Toroidal patches are generated from the arcs of the
contour with a minor radius of Rprobe and a major radius of cj (see
Figure 2). Also the center of the toroidal patch is defined by the
center of circle cj. To ensure that this geometry is not generated
twice, a patch is only created when the index of the current sphere
is smaller than the index of the sphere that is touched by the probe
sphere. A spherical triangle is generated at points where three arc
endpoints meet. The radius of this patch is then Rprobe and a simi-
lar index comparison as for the toroidal patches is used to prevent
double or in this case triple generation of the same geometry. It
is possible that a spherical triangle can connect to a toroidal patch
with a minor radius larger than the major radius. In this case, parts
of the adjacent spherical triangles are overlapping. This is handled
by cutting spherical triangles with probe spheres of surrounding
spherical triangles.

2.4. Rendering of Algebraic Surfaces

An efficient method to render the resulting algebraic geometries
is ray tracing. Rays are generated from an eye position and shot
through an image plane into the scene. The intersection points be-
tween these view rays and the geometry determine the visibility of
the objects in the scene. For algebraic surfaces of low polynomial
order, these intersections can be computed analytically in a fast and
precise manner. Modern GPU-based ray casting [Gum03, RE05]
combines this idea with traditional rasterization: only a simple
bounding geometry is rendered for each object and the actual ray-
object intersections are computed per pixel in the fragment shader.
Note that this method only uses primary rays that originate from

the eye; secondary rays that would be needed for shadows and other
global illumination effects are not efficient, since the standard ap-
proach does not maintain a queryable global data structure. There
are variants, like the approaches by Lindow et al. [LBH12] or the
approach by Falk et al. [FKE13] that are grid-based, such that sec-
ondary rays can be efficient. As mentioned above, implicit surfaces
have been found to be more efficient than traditional triangle-based
rendering on modern GPUs. The technique is, therefore, widely
used in molecular visualization of models that consist of low-order
polynomial surfaces like spheres, cylinders, or tori [KKF∗17].

However, high image quality can only be achieved if the ray is
not simply terminated after the first hit. Global illumination effects
such as shadows or ambient occlusion lead to a realistic rendering
of the scene. Hence, the computational effort of ray tracing lies in
the ray-geometry intersection tests. For acceleration, the geome-
tries in the scene are segmented into hierarchical structures such
as bounding volume hierarchies (BVH). However, a hierarchy has
to be built before the scene can be rendered, and thus incapaci-
tates time dependent data. Several frameworks have been created
for scientific visualization to efficiently calculate the ray-geometry
intersection.

Wald et al. [WJA∗17] present their ray tracing engine OSPRay
that is optimized for running on Intel CPUs. Stone et al. [SMSS16]
showcased a visualization framework that is able to run in-situ
with a molecular dynamics (MD) simulation. However, this ap-
proach completely relies on graphics acceleration hardware. Parker
et al. [PBD∗10] developed the OptiX framework for efficient ray
tracing on Nvidia GPUs. Both interactive ray tracing approaches
are used for molecular visualization, for example by the popular
molecular visualization tool VMD [HDS96]. In contrast to our so-
lution, the ray tracing of the SES offered by VMD does not use
the algebraic description of the surface patches, but rather uses a
triangle mesh computed by MSMS [SOS96]. Another completely
different approach is presented by Bruckner [Bru19]. The author
defines a Gaussian molecular surface that is derived from a den-
sity function of the atom positions. Using visibility information and
on-the-fly sorting, this technique is able to interactively render dy-
namic molecular data.

Krone et al. [KBE09] where the first to use GPU-based ray cast-
ing to render the patches of the analytically described SES. This
rendering technique, which was introduced by Gumhold [Gum03],
is faster and more efficient than traditional tessellation of the
patches into triangle meshes. However, it makes rendering the SES
semi-transparently even more challenging, since the interior parts
of the surface geometries (torus patches and spheres) have to be cut
away correctly. Kauker et al. [KKP∗13] presented a method that
uses constructive solid geometry; however, their algorithm used the
Reduced Surface [SOS96], which is not parallelizable. Recently,
Jurcik et al. [JPSK16] extended the work of Krone et al. [KGE11]
that uses an efficient GPU-parallelization of the contour-buildup
algorithm, which allowed to render the SES semi-transparently. In
Section 3, we explain our semi-transparent SES rendering. We de-
cided to base our implementation on OSPRay for its independence
from GPUs.

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

242

T. Rau, S. Zahn, M. Krone, G. Reina, and T. Ertl / Interactive CPU-based Ray Tracing of Solvent Excluded Surfaces

2.5. The OSPRay Ray Tracing Engine

OSPRay is an open source CPU ray tracing engine and builds upon
the kernels of Embree [WWB∗14]. It provides abstract structures
such as renderers, materials, lights, and geometries. Embree ef-
ficiently builds and traverses acceleration structures (axis aligned
BVH). Depending on the architecture, the traversal is either vec-
torized over the BVH nodes or the components of the intersection
variables. OSPRay’s modular structure also allows researchers to
implement their own extensions. Custom geometries have to pro-
vide call back functions for intersection tests and bounding box
queries. Currently, these functions have to be implemented using
the Intel SIMD compiler (ISPC) [PM12] to accelerate the perfor-
mance critical code of OSPRay. GPUs are still rare on current HPC
systems, therefore OSPRay is a viable alternative to classical GPU
rasterization. Additionally, by using ray tracing, the implementa-
tion of global effects is less complicated than for rasterization. In
our work, we use OSPRay as built into the visualization framework
MegaMol [RKRE17, GKM∗15].

2.6. Semi-Transparent SES Rendering

For primitive-wise GPU ray casting, as is commonly used for trans-
parent renderings of the SES [KKL∗16], objects must be rendered
in order - either from back to front or vice versa - for correct blend-
ing results. Starting with the most distant fragment for the blending
process (back to front) is described by Bavoil et al. [BM08]

Cdst← Asrc Csrc +(1−Asrc)Cdst , (8)

where Csrc and Cdst are the source and destination colors, and Asrc
is the source opacity. A different result is obtained by using front
to back rendering

Cdst← Adst (Asrc Csrc)+Cdst , (9)

with

Adst← (1−Asrc)Adst . (10)

Here, Adst is the destination transparency that is iteratively obtained
and has an initial value of Adst = 1. Ray tracing implicitly returns
the correct order of the intersection points, because each intersec-
tion is at a certain ray distance. However, traversal of tree-based
spatial data structures like BVHs does not always return intersec-
tions in the correct order if the tree nodes overlap. Amstutz et
al. [AGGW15] found that the correct order of intersections can be
quickly obtained because the intersections requiring re-sorting are
encountered closely together. Only few operations are required to
correct the order of the intersection points.

3. Ray Tracing the Semi-Transparent SES

The rendering of the SES is realized in the ray tracing engine
OSPRay. We leveraged the modular structure of OSPRay to im-
plement the missing required primitives and other custom geome-
tries. Key parts of the implementation are intersection, shading and
bounding box computation. One of the contributions of our ap-
proach is an efficient method for removing the inner parts of tori
and spheres to achieve artifact-free rendering of transparent SES.

Figure 3: Depiction of the cutting planes generation for a spher-
ical triangle patch. In green the spherical triangle patch is shown.
The three molecule spheres σi, σj, σk, and the probe sphere σprobe
are required for the cutting plane calculation.

Additionally, a molecular data set contains color information for
the individual atoms. This color is then interpolated over the sur-
face during the shading step.

3.1. Cutting Geometries

Since the SES is built from just patches of geometric primitives,
parts of each (e. g., a full torus) has to be cut away. In case of a
spherical triangle the cutting geometries are planes (PPPnnn = d, Hesse
normal form). The probe sphere that is in contact with three spheres
at the same time is trimmed by three planes. Therefore, the direc-
tion to each neighboring sphere center (pppj, pppk and, pppprobe) is calcu-
lated. The directions uuui, uuuj and, uuuk span the planes via the normal-
ized cross product of all combinations. A sketch of the sphere setup
and the vectors used for the cutting planes is shown in Figure 3.
Two spherical triangles can intersect each other and if not handled
correctly this results in visible artifacts. By using the probe sphere
as cutting geometry after finding all possible intersecting probe po-
sitions for each spherical triangle patch, these singularities can be
handled. To find intersecting probe spheres more efficiently than it-
erating over all spheres, a neighborhood computation on a grid with
cell length max(1,2Rprobe) is performed.

To find the correct cutting geometry for the toroidal patch is more
involved and requires at least one sphere. The so-called visibility
sphere [KBE09] is used for clipping the initial torus at circle cj
between σi and σj. The position of the visibility sphere yields

pppvs = ddd + pppi− pppprobe , (11)

with

ddd =
||pppprobe− pppi||(pppj− pppi)

||pppprobe− pppj||+ ||pppprobe− pppi||
(12)

as the position vector of the visibility sphere relative to pppi. The
radius of the visibility sphere results to

Rvs =

∥∥∥∥∥∥ pppprobe− pppi∥∥∥pppprobe− pppi

∥∥∥ Ri−ddd

∥∥∥∥∥∥ . (13)

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

243

T. Rau, S. Zahn, M. Krone, G. Reina, and T. Ertl / Interactive CPU-based Ray Tracing of Solvent Excluded Surfaces

Figure 4: Schematic of a visibility sphere used for cutting to ex-
tract a toroidal patch. The visibility sphere is colored in orange and
the vector in green (ddd) points at the center of the visibility sphere
relative to the sphere center pppi.

Figure 4 depicts the cutting of a torus using the visibility sphere
to generate a toroidal patch. For semi-transparent rendering of the
SES we need to add two planes that cut the toroidal patch at the
arc endpoints sss(a) and eee(a) (see Section 2.2). The position of the
spheres σi and σj, and the arc endpoint positions sss(a) and eee(a)
are transformed to local coordinates of the toroidal patch center.
Therefore, the resulting transformed sphere positions are denoted
as oooi and oooj, and the transformed arc positions are called qqqs and qqqe.
With the normals at the arc endpoints nnns and nnne the cutting planes
are spanned

ds = (qqqe−qqqs)nnns , (14)

de = (qqqs−qqqe)nnne . (15)

Note that the direction the normals are pointing at depends on the
angle’s sign the arc is defined over. This information is crucial for
cutting arcs with angles larger than π.

Intersecting a ray with a toroidal patch can yield up to four in-
tersection points. The solving of these quartics was performed by
three different methods:

1. Stabilized Ferrari algorithm (analytical, used by Krone et
al. [KBE09])

2. Bairstow method (iterative, see [PTVF07])
3. Sphere tracing (iterative, used by Lindow et al. [LBPH10])

All four intersections are required for semi-transparent rendering.
The implementation of the stabilized Ferrari algorithm was ported
from Herbison-Evans [HE95]. The ray’s first intersection with the
geometry is transformed in a way that the torus is centered at the
origin and parallel to the xy-plane. To increase numerical precision,
the origin of the viewing ray is translated close to the torus. This
is done using the method proposed by Hart [Har96]. We observed
the stabilized Ferrari algorithm to sometimes fail the intersection
test, which leads to fully transparent stripes inside a torus patch.
Krone et al. [KBE09] used two intersection points for their opaque
rendering method, therefore no numerical issues were observed.
However, Jurčík et al. [JPSK16] report the same instabilities.

Hence, we tried iterative schemes to reduce artifacts. De Toledo
et al. [dTLP07] found the Newton-Raphson method best working
to find the first intersection. As a starting point the first intersection
with the bounding geometry is taken. However, iterating the inter-
nal intersection points becomes difficult as they can be distributed
arbitrarily. This can lead to a convergence to intersection points
that had already been found. The Bairstow method behaves in a
way that it immediately gives all four roots on a successful conver-

Figure 5: Schematic of the circle-plane-based cutting approach.
Sphere σi and sphere σj define a circle cj by intersecting the spheres
with their extended radius. The plane this circle defines by its nor-
mal is shifted towards the center pppi at distance d. This transformed
plane is then used for cutting geometry of sphere σi away that
would lead to artifacts in semi-transparent rendering of the SES.

gence. However, due to polynomial deflation this method becomes
numerically unstable [PTVF07].

Thus we decided upon using sphere tracing. The sphere trac-
ing method introduced by Hart [Har96] works reasonably well
for finding the first intersection of tori [dTLP07] and toroidal
patches [LBPH10], and we extend this method for transparent ren-
dering. Sphere tracing stops if the distance to the surface drops be-
low the ε-Region. Performing further steps does not work, because
the method is stuck in this ε-Region and single large steps to escape
the Region does not work in situations where the ray is roughly
parallel to the surface. However performing multiple constant-sized
steps until the ε-Region is passed and then continuing with the stan-
dard sphere tracing approach to find the next intersection does not
produce any artifacts like the other methods. Additionally, we use
the visibility sphere to restrict the area where the algorithm is it-
erating. The ray is intersected with the visibility sphere and this
intersection point is used as a starting point for the sphere tracing.
As soon as the ray leaves the visibility sphere, the sphere tracing
iteration is stopped.

Convex spherical patches without the requirement of semi-
transparency can be rendered as simple spheres. Again the visibility
sphere can be utilized for cutting parts out of the convex spherical
patches. However, in some cases this is not a sufficient operation,
because not all geometry is removed correctly. For example, if three
visibility spheres are close together, a small spherical triangle could
remain. We developed an improved approach for a correct clipping
of the hidden region of the spheres.

To cut out the inner torus regions, we apply a circle-plane-based,
therefore we again need the arcs that are used for the toroidal patch
construction. The neighbor of sphere σi is σj and provides an in-
tersection circle c by their extended radii. The construction of the
toroidal patch leads to contact circles of spheres σi and σj (see Fig-
ure 5). These circles are used to compute a cutting plane that re-
moves the remaining parts of the sphere. This process is performed
for all intersecting spheres, except for fully covered spheres, as
these regions are already cut by the spheres covering them. For
computation we project the tangent point, where sphere σi and the

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

244

T. Rau, S. Zahn, M. Krone, G. Reina, and T. Ertl / Interactive CPU-based Ray Tracing of Solvent Excluded Surfaces

probe sphere touch each other, onto the circle normal. The normal
nnn of the cutting plane is not influenced by this step and equals the
circle normal nnnj. However, the distance d is

d = nnnxxx , (16)

with

xxx =
pppprobe∥∥∥pppprobe

∥∥∥ Ri . (17)

The probe position pppprobe is computed using a vector uuu that is per-
pendicular to the circle normal nnnj

pppprobe = vvvj + r(cj)
nnnj∥∥nnnj
∥∥ , (18)

where vvvj is the position vector to the circle center of circle cj.
This approach is more stable than the ray-triangle-based approach,
where small triangles can lead to numerical issues in rare cases.
Hence, this method is used for our semi-transparent rendering of
the SES.

3.2. Bounding Geometry

The calculation of tight-fitting axis-aligned bounding boxes is cru-
cial for the rendering performance of OSPRay. Too large bounding
boxes result in additional, unnecessary intersection tests. Our ap-
proach of extracting the optimum bounding box depends on the
geometry type. For each geometry patch type we generate a set of
convex hull points that can be translated into an axis-aligned bound-
ing box. This axis-aligned bounding box is then passed to Embree
for the construction of the BVH for fast ray traversal.

In the case of a non-intersecting sphere, the bounding box of
this convex spherical patch is defined as a box around the sphere
with two times the radius of the sphere as edge length. However, in
general a convex spherical patch is a complex construct of a sphere
and cutting planes (see Figure 6, left). In fact, the cutting planes
are used to reduce the size of the bounding box of the visibility
sphere. To be able to shrink the initial bounding box with a cutting
plane, the plane should only cut through a pair of opposing faces of
the initial box of the whole sphere. If the plane only cuts through
opposing faces, the smallest distance of a cut edge to a corner is
used to shrink the box. Since the final bounding box has to be axis-
aligned, only the maximum distanced point is used for the bounding
box construction.

A spherical triangle is a sphere cut by planes (see Figure 6, right).
So, a good choice for the initial bounding box is the box of the
probe sphere. However, depending on the configuration the spheri-
cal triangle is placed and cut, more than half of the bounding box is
not filled with geometry. In this case we first extract a tight-fitting
bounding box and then obtain the axis-aligned box from corner po-
sitions of the tight-fitting bounding box. Therefore, a plane is de-
fined by the three tangent points where the probe sphere touches the
surrounding spheres. This is followed by the construction of a circle
that is defined by intersecting the plane with the probe sphere. The
first four corner points are ordered to an enclosing square around
this circle. The next four corners are then obtained by shifting the
first points in the direction of the circle normal by the height of the

Figure 6: Depiction of axis-aligned, tight-fitting bounding boxes
for the three geometry types. In the left picture the bounding box
of a sphere is reduced by the cutting plane of the adjacent torus.
Here, blue points show the cutting points with the cube’s edges and
the arrows suggest the distances used for the size shift. The picture
in the center shows a toroidal patch bounding box. The connection
arcs of the toroidal patch (endpoints in red) are used to span the
two rectangles (corners in blue) that define the bounding box. In the
right picture the bounding box of the spherical triangle is depicted
(corners in blue). The three tangent points are shown in red.

spherical triangle. In the last step, an axis-aligned bounding box is
constructed from the resulting eight points. This is similar to the
method presented by Lindow et al. [LBPH10].

The toroidal patch consists of the visibility sphere and two cut-
ting planes (see Figure 6, center). Two cases occur if the arc spans
an angle larger than π (first case) or not (second case). In the first
case, the intersection circles of the visibility sphere and both neigh-
boring spheres are computed. The patch corners, where the toroidal
patch connects with neighboring spherical triangles, are calculated.
Together with the intersection circles of the visibility sphere, the
corners of a bounding rectangle are obtained. With these two rect-
angles that contain the connection arcs of the toroidal patch to the
connected spheres, we derive the axis-aligned bounding box. For
the second case, this method is not sufficient, because the toroidal
patch can potentially stick out of the bounding box. With α as the
angle that the arc is covering, we obtain the lowest point of the
toroidal patch at 1

2 α. This lowest point is then used to translate the
corners obtained by the first method so that all geometry is covered
by the bounding box.

4. Interactive Cavity Highlighting using Ambient Occlusion

Apart from rendering algebraic surfaces and ensuring high im-
age quality our approach is useful for another important use
case of interactive ray tracing: visualization of molecular cav-
ities. Similar approaches are commonly found in the literature
(see STAR from Krone et al. [KKL∗16]). However, these meth-
ods are either approximating the cavity extraction or are not in-
teractive. Our semi-transparent rendering method follows the idea
of Borland et al. [Bor11]. AO weights are mapped to the opacity of
the SES, leaving areas with cavities less transparent than exposed
areas. In contrast to Borland et al. [Bor11] our extraction method
does not use precomputed AO values that are obtained from a tri-
angulated version of the SES. The method presented here is us-
ing real-time occlusion weights that are obtained during rendering.
This also affects the image during progressive refinement (imple-
mented via an accumulation buffer in OSPRay): more samples per

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

245

T. Rau, S. Zahn, M. Krone, G. Reina, and T. Ertl / Interactive CPU-based Ray Tracing of Solvent Excluded Surfaces

Figure 7: Shown is the SES of the molecule 4dfr using ambient
occlusion opacity mapping. This molecule contains several small
cavities and a tunnel. On the left side Equation (21) is used to visu-
alize all the small cavities of the molecule. Additionally, the max-
imum AO sample distance is 5Å and the parameter ρ = 1 gives a
linear scaling. In the right picture Equation (22) is utilized for vi-
sualization, the maximum AO sample distance is 15Å and ρ = 4.
Both images use τ = 0.5.

pixel are increasing the image quality to obtain noiseless render-
ings.

The ray traced ambient occlusion estimates the AO term Op at
point p by Monte Carlo sampling [PJH16] the surrounding hemi-
sphere [Bor11]

Op =
1
π

∫
Ω

nnn ·ωωωVp(ωωω)dω . (19)

Here, the surface normal is denoted as nnn and the AO visibility func-
tion is given by

Vp(ωωω) = min
(
1,max(0,χ(ωωω)ρ)

)
, (20)

with

χ(ωωω) =
1
τ

(
1− Dp(ωωω)

Dmax

)
, (21)

and Dp(ωωω) as the AO sample distance at point p, hence Dmax is
the maximum sampling distance. The parameter τ (0 < τ≤ 1) is an
opacity threshold that allows faster saturation and acts as a scaling
parameter [Bor11]. An additional parameter ρ adjusts for a nonlin-
ear opacity. By taking a closer look at χ(ωωω), this function returns
high values for close surfaces and leads to heavy occlusion of small
cavities regardless of Dmax. Therefore, an alternative function is
provided for the detection of larger cavities

χ(ωωω) =
1
τ

(
Dp(ωωω)

Dmax

)
. (22)

This AO weighting scheme is inspired by the work of Bor-
land [Bor11]. In Figure 7 an ambient occlusion to opacity mapping
using Equation (21) and Equation (22) is shown.

Our coloring approach uses the front to back blending scheme at
each intersection and also includes the AO term

Csrc = βOp Cblend +(1−βOp)Csurface , (23)

where Cblend is the color indicating a cavity (user defined), β is
a parameter to adjust the influence of the user defined color, and
Csurface is the surface color returned by the interpolation scheme of
Krone et al. [KBE09]. Additionally, we found when using the front

to back blending (equation (9)) the AO term Op will occur squared
in the resulting equation, because the color now also contains the
term Op. However, Op is a nonlinear operator (as used in the origi-
nal opacity function by Borland et al. [Bor11]) and can not simply
be squared, otherwise the resulting images would be biased. In a per
ray approach, nonlinear operations on single values result in a com-
pletely different behavior than a per pixel approach. For unbiased
results we modified this approach and perform the blending opera-
tion twice for each intersection point. This mimics the situation of
intersecting two surfaces that are infinitesimally close together. In
the first blending operation the color is calculated as

Csrc = (1−β)Csurface +βCblend ,

and the source opacity is computed as Asrc = Op. The blending for
the second surface is performed as

Cdst← Asrc Adst Csrc +Cdst ,

Adst← (1−Asrc)Adst ,

Cdst← αAdst Csurface +Cdst ,

Adst← (1−α)Adst ,

where α sets the general opacity of the surface. If there is no addi-
tional occlusion by a cavity, the opacity of the surface is still α.
For regions with a high AO term Op the opacity of the surface
is increased. In Figure 8 the influence of the parameters α and β

is depicted. Shrinking parameter α reduces the opacity of regions
without occlusion and increasing parameter β blends more occlu-
sion color into the cavities of the SES. If α= 1 and β= 1 the SES is
fully opaque and the AO colors occluded regions in the correspond-
ing occlusion color Cblend. Additionally, the visualization remains
stable for different numbers of sample rays and does therefore not
bias the SES during accumulation.

5. Results and Discussion

We tested the SES generation, transparency rendering, and ambient
occlusion opacity mapping rendering performance of commonly
used molecules like 1vis, 1aon, and 3g71 [KGE11, LBPH10].
Additionally, we added the largest available molecules found in
molecule databases to showcase that our CPU implementation is
not limited to small memory footprints like GPU implementations.
The machine for these performance tests was equipped with an In-
tel i9-7900x CPU (10 cores), 64 GB of RAM, and an Nvidia Titan
Xp GPU. In Figure 9 a visualization of all molecules that were used
for performance tests is shown. The results of the SES computation
and rendering performance are summarized in Table 2. The first in-
formation under the Count header displays the number of atoms the
data set contains and also details about the contour-buildup algo-
rithm with regard to geometry count and cutting geometry count. In
average there are 34 cutting planes per convex sphere patch, which
corresponds to the expected number of neighbors per sphere.

The contour-buildup implementation of Krone et al. [KGE11]
that runs on a GPU was also measured on the same hardware and
compared to our CPU implementation. This is shown in Table 2
under the header SES Computation. As expected, the highly paral-
lel architecture of the hardware is roughly an order of magnitude
faster than our CPU approach. The implementation of Krone et

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

246

T. Rau, S. Zahn, M. Krone, G. Reina, and T. Ertl / Interactive CPU-based Ray Tracing of Solvent Excluded Surfaces

Figure 8: Visualization of the semi-transparent SES with different
combinations of the blending parameters α and β. The molecule
in the top row is 1vis and only parameter α is varied. The bottom
row shows the molecule 1af6 for two different values of β. The top
left picture shows the SES with α = 0.5 and β = 1. In the top right
corner the parameters are α = 0.1 and β = 1. On the bottom left
the parameters are α = 0.1 and β = 0. The bottom right SES visu-
alization shows α = 0.1 and β = 0.5. Additionally we used a fixed
sample rate (64 samples per pixel) for the 1vis molecule and an
accumulation over multiple renderings for the 1af6 molecule. The
accumulated pictures are obtained after several seconds of accu-
mulation to be able to acquire a decent quality.

Figure 9: Depiction of all molecules used for performance tests.
These visualizations are using our implementation to generate the
SES and were rendered by the OSPRay scivis renderer.

al. [KGE11] can not render transparency and is not dealing with
the additional clipping approaches presented in Section 3.1.

Under the header Rendering we compared the Ferrari and
the sphere tracing intersection algorithms. In previous publica-
tions [KGE11] the Ferrari algorithm was chosen because of its
performance advantage. Because of numerical issues the Ferrari

method however produces visible artifacts in the visualization and
should be avoided in situations that are not performance critical.

For semi-transparent renderings, a ray cannot simply be termi-
nated at the first intersection point. Therefore, the rendering per-
formance will be reduced – in some cases drastically. Additionally,
the acceleration of the spatial data structure, in our case Embree’s
BVH, is also reduced. The AOOM also generates occlusion rays
at each intersected surface that decrease the performance even fur-
ther. In Table 3 the results of our performance measuring of the
transparency rendering and the AOOM rendering are shown. These
results show that both techniques run on interactive frame rates.
However, for larger data sets the frames per second dropped to a
non-interactive level.

5.1. Instancing

Large molecule complexes typically consist of an assessable
amount of different molecule types, but hundreds of thousands of
occurrences in the data. This is a well-known problem in com-
puter graphics and is solved by the introduction of instances. An
instance simply transforms a base geometry and most importantly
does not copy the geometry. The ray tracing engine OSPRay has
built-in support for instancing of geometry. This is of special in-
terest for molecular visualizations because larger molecule com-
plexes (e. g. cells) usually contain the same molecule multiple
times. This means a SES needs only be computed once and can
then be replicated millions of times without memory overhead.
To showcase a rendering of many instanced molecules, we used
the data set 1af6 and replicated it on a cubic grid with fixed dis-
tance between the molecules (no overlapping). The performance
over a large range of instance counts is plotted in Figure 10. The
clearly visible performance drop for the first 103 instances is due to
the large amount of intersection computations during ray traversal.
Additionally, Embree’s BVH spatial structure introduces a large
amount of overhead and exceeds the memory of our machine for
more than 107 instances. This could be improved, by using accel-
eration structures with less overhead (or no overhead) like P-k-d
trees [WKJ∗15]. A downside of the P-k-d trees in regard of our geo-
metric representations used for the SES, are the tight-fitting bound-
ing boxes we presented earlier in this work. The bounding boxes
of a P-k-d tree would appear larger than using the BVH structure
with our bounding box optimizations, and therefore reduce the ren-
dering performance due an increased number of intersection tests.

To showcase the capabilities of the instancing of our SES
geometry, we use the HIV in blood plasma generated by cell-
Pack [JAAA∗15]. The data set modelling tool cellPack generates
biomolecular structures procedurally and thus is able to generate
whole cell data sets with millions of molecule instances. Le Muzic
et al. [LMAPV15] also used cellPack to generate data for their
level-of-detail GPU rendering tool cellView. The HIV with blood
plasma data set contains 40 different types of molecules that are
20.5 k times instanced in total. This results in 61.8 M atoms that
adds up, after processing each molecule with the contour-buildup
algorithm and considering the number of instances, to 268.1 M
primitives. The time to construct the SES of all involved molecules
was 0.604 s and consuming 714 MB of render data memory. The

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

247

T. Rau, S. Zahn, M. Krone, G. Reina, and T. Ertl / Interactive CPU-based Ray Tracing of Solvent Excluded Surfaces

Table 2: Summarized results of the CPU implementation of the SES computation and rendering. The number of atoms for each molecule,
the total number of generated geometries (convex sphere patches, torus patches, and concave sphere patches), and the number of generated
cutting geometry for semi-transparent rendering are found under the Count header. The next header shows the SES computation times (CB
and render data generation) for our CPU implementation and for the GPU implementation of Krone et al. [KGE11]. Differences of tested
tori rendering strategies are shown under the Rendering header. Additionally, the last two column (Memory) shows the memory consumption
of our approach of the corresponding data set. Circles and arcs are used to generate the SES, while only the SES render data is kept for
rendering. The probe radius for all tests was Rprobe = 1.4Å.

Count SES Computation [s] Rendering [fps] Memory [MB]

Molecule Atoms Geometry Cutting GPU CPU Ferrari Sphere Tracing Rendering Arcs & Circles

1vis 2.5 k 9.5 k 46.8 k 0.0085 0.0117 100.6 74.2 3.3 15.0
1aon 58.7 k 266.8 k 1.3 M 0.0252 0.2135 71.2 48.8 91.8 346.5
3g71 91.4 k 376.7 k 1.9 M - 0.3403 87.6 59.5 130.6 546.0

3iyj-poly 1.35 M 6.6 M 32.0 M - 5.0812 26.9 23.1 2312.8 8.0 ·103

3kz4-poly 3.24 M 15.0 M 72.4 M - 12.0472 31.2 20.6 3953.7 19.2 ·104

3iyn-poly 5.97 M 24,1 M 122.5 M - 22.2525 26.5 17.7 5186.6 38.8 ·104

Table 3: Performance of the transparent and AOOM renderings
for a probe radius of Rprobe. The Ferrari algorithm was used for in-
tersection computation. The opacity parameter of the transparency
rendering was set to α = 0.5. For the AOOM, an opacity value
α = 0.1 and a color blending weight of β = 0.75 was set. One AO
sample with a maximum distance of 5Å was calculated per frame.

Molecule Transparency [fps] AOOM [fps]

1vis 23.4 9.1
1aon 8.8 2.7
3g71 10.0 2.7

top view of Figure 11 shows the whole HIV with blood plasma data
set rendering at 3.8 fps, while on the bottom the front half space is
cut away to emphasize the envelope and the capsid of the HIV.

Please note that for the HIV data set, the CellView renderer can
maintain a performance of over 50 FPS. One reason for the high
performance is its level-of-detail approach, the other is that Cel-
lView renders simple sphere primitives in all cases instead of com-
puting the correct SES like our approach does.

As a preview for HPC computation of such data sets, we perform
a spacial subdivision of the data, so the parts can be computed on
different nodes. We measure the rendering performance for each
chunk to get an estimation of the HPC performance of the HIV
with blood plasma data set. In Figure 12 the results for subdivi-
sions into 8, 64 and 512 chunks is measured. For 8 and 64 chunks
the visualization is already interactive. This small measurement se-
ries does not include the overhead an image composition tool like
IceT [MKPH11] would add, however we can clearly see that we
can easily load a much larger data set in the HPC scenario for node
numbers larger than 64 and still are able to render interactively.

6. Conclusion and Future Work

We presented a CPU implementation of the SES geometry that uses
OSPRay [WJA∗17] for computation and rendering high quality

100 101 102 103 104 105 106 107

instances

0

20

40

60

80

FP
S

Figure 10: Rendering performance graph of the molecule 1af6.
The number of instances was increased approximately by an or-
der of magnitude in each step. The rendering is using the Ferrari
algorithm for ray tracing of the toroidal patches.

images. The visualization is integrated into the framework Meg-
aMol [GKM∗15, RKRE17]. Our CPU approach is an alternative to
the established GPU approaches for rendering the SES of molecular
complexes [KGE11, LMAPV15]. However, our CPU implementa-
tion can be utilized in situ on any HPC system as it does not rely on
the availability of GPUs. We used the contour-buildup algorithm
to obtain the algebraic geometry of the SES and provided opti-
mizations to the CSG-based cutting geometry algorithms that are
used to obtain artifact-free semi-transparent renderings. We used
an AOOM rendering technique for interactive visual detection and
inspection of cavities [Bor11]. It is possible to switch between two
different visibility functions what allows for adjusting to a desired
cavity granularity.

Our performance tests show that we are not able to beat the per-

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

248

T. Rau, S. Zahn, M. Krone, G. Reina, and T. Ertl / Interactive CPU-based Ray Tracing of Solvent Excluded Surfaces

Figure 11: Rendering of the HIV in blood plasma data set at
3.8 fps. The top scene contains 20.5 k instances of 40 molecule
types. The total 61.8 M atoms are represented by a total of 268.1 M
primitives. All instances of a molecule are rendered in the same
color. The middle rendering shows the same data set cut in half so
the HIV capsid and envelope are visible. In the bottom image, a
close-up view unveils the details of the SES.

101 102

num chunks

10

20

30

40

50

60

fra
m

e
tim

e
[m

s]

Figure 12: Performance plot of the three different subdivision
schemes (8, 64 and 512). Each chunk was rendered and the time
to calculate a frame was measured. The graph shows the average
value as a dot, and the minimum and the maximum as an error bar.

formance of the GPU implementation of Krone et al. [KGE11].
Future performance optimizations could be realized considering
vectorization of our code. We already attempted a naive vector-
ization (SIMDization) of our algorithms, however the performance
achieved was not satisfactory. By reducing the branching of the
CB algorithm the implementation could benefit from vectorization.
Also the computation of the surface itself requires several sec-
onds on up-to-date hardware, this limits the interactivity of time-
dependent renderings of the SES with our approach. This problem
can, however, be resolved by parallelizing the SES calculation over
multiple machines, which is now straightforward with our imple-
mentation. Further, larger systems, such as the system presented
by Le Muzic [LMPSV14], could be rendered interactively as our
results from the instancing tests are suggesting.

Acknowledgements

This research was partially supported by the Intel R© Graphics and
Visualization Institutes of XeLLENCE program and by the German
Research Foundation (DFG) as part of SFB 716 projects D.3 and
D.4.

References
[AGGW15] AMSTUTZ J., GRIBBLE C., GÜNTHER J., WALD I.: An

evaluation of multi-hit ray traversal in a bvh using existing first-hit/any-
hit kernels. Journal of Computer Graphics Techniques (JCGT) 4, 4
(2015). 5

[BM08] BAVOIL L., MYERS K.: Order independent transparency with
dual depth peeling. NVIDIA OpenGL SDK (2008), 1–12. 5

[Bor11] BORLAND D.: Ambient Occlusion Opacity Mapping for Visual-
ization of Internal Molecular Structure. Journal of WSCG 19, 1 (2011),
17–24. 2, 7, 8, 10

[Bru19] BRUCKNER S.: Dynamic Visibility-Driven Molecular Surfaces.
Computer Graphics Forum 38, 2 (May 2019), 317–329. 4

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

249

T. Rau, S. Zahn, M. Krone, G. Reina, and T. Ertl / Interactive CPU-based Ray Tracing of Solvent Excluded Surfaces

[CCW06] CAN T., CHEN C.-I., WANG Y.-F.: Efficient molecular sur-
face generation using level-set methods. Journal of Molecular Graphics
& Modelling 25, 4 (Dec. 2006), 442–454. 3

[Con83] CONNOLLY M. L.: Analytical molecular surface calculation.
Journal of applied crystallography 16, 5 (1983), 548–558. 2, 3

[dTLP07] DE TOLEDO R., LEVY B., PAUL J.-C.: Iterative Methods
for Visualization of Implicit Surfaces On GPU. In Advances in Visual
Computing (2007), Bebis G., Boyle R., Parvin B., Koracin D., Paragios
N., Tanveer S.-M., Ju T., Liu Z., Coquillart S., Cruz-Neira C., Müller
T., Malzbender T., (Eds.), Lecture Notes in Computer Science, Springer
Berlin Heidelberg, pp. 598–609. 6

[FKE13] FALK M., KRONE M., ERTL T.: Atomistic Visualization
of Mesoscopic Whole-Cell Simulations Using Ray-Casted Instancing.
Computer Graphics Forum 32, 8 (2013), 195–206. 4

[GKM∗15] GROTTEL S., KRONE M., MÜLLER C., REINA G., ERTL
T.: MegaMol – Prototyping Framework for Particle-Based Visualization.
IEEE Transactions on Visualization and Computer Graphics 21, 2 (Feb.
2015), 201–214. 5, 10

[Gum03] GUMHOLD S.: Splatting Illuminated Ellipsoids with Depth
Correction. In Vision, Modeling, and Visualization (2003), pp. 245–252.
4

[Har96] HART J. C.: Sphere tracing: a geometric method for the an-
tialiased ray tracing of implicit surfaces. The Visual Computer 12, 10
(Dec. 1996), 527–545. 6

[HDS96] HUMPHREY W., DALKE A., SCHULTEN K.: VMD – Visual
Molecular Dynamics. Journal of Molecular Graphics 14 (1996), 33–38.
4

[HE95] HERBISON-EVANS D.: I.1 - Solving Quartics and Cubics for
Graphics. In Graphics Gems V, Paeth A. W., (Ed.). Academic Press,
Boston, 1995, pp. 3–15. 6

[HKG∗17] HERMOSILLA P., KRONE M., GUALLAR V., VÁZQUEZ P.-
P., VINACUA L., ROPINSKI T.: Interactive GPU-based generation of
solvent-excluded surfaces. The Visual Computer 33, 6 (2017), 869–881.
3

[JAAA∗15] JOHNSON G. T., AUTIN L., AL-ALUSI M., GOODSELL
D. S., SANNER M. F., OLSON A. J.: cellPACK: a virtual mesoscope
to model and visualize structural systems biology. Nature Methods 12, 1
(Jan. 2015), 85–91. 9

[JPSK16] JURCIK A., PARULEK J., SOCHOR J., KOZLIKOVA B.: Ac-
celerated Visualization of Transparent Molecular Surfaces in Molecular
Dynamics. In IEEE Pacific Visualization Symposium (2016), pp. 112–
119. 4, 6

[KBE09] KRONE M., BIDMON K., ERTL T.: Interactive Visualization of
Molecular Surface Dynamics. IEEE Transactions on Visualization and
Computer Graphics 15, 6 (2009), 1391–1398. 4, 5, 6, 8

[KGE11] KRONE M., GROTTEL S., ERTL T.: Parallel Contour-Buildup
Algorithm for the Molecular Surface. In IEEE Symposium on Biological
Data Visualization (2011), pp. 17–22. 1, 3, 4, 8, 9, 10, 11

[KKF∗17] KOZLÍKOVÁ B., KRONE M., FALK M., LINDOW N.,
BAADEN M., BAUM D., VIOLA I., PARULEK J., HEGE H.-C.: Visual-
ization of Biomolecular Structures: State of the Art Revisited. Computer
Graphics Forum 36, 8 (2017), 178–204. 1, 2, 3, 4

[KKL∗16] KRONE M., KOZLÍKOVÁ B., LINDOW N., BAADEN M.,
BAUM D., PARULEK J., HEGE H.-C., VIOLA I.: Visual Analysis of
Biomolecular Cavities: State of the Art. Computer Graphics Forum 35,
3 (2016), 527–551. 5, 7

[KKP∗13] KAUKER D., KRONE M., PANAGIOTIDIS A., REINA G.,
ERTL T.: Rendering molecular surfaces using order-independent trans-
parency. In EGPGV (2013), pp. 33–40. 4

[LBH12] LINDOW N., BAUM D., HEGE H.-C.: Interactive Rendering
of Materials and Biological Structures on Atomic and Nanoscopic Scale.
Computer Graphics Forum 31, 3 (2012), 1325–1334. 4

[LBPH10] LINDOW N., BAUM D., PROHASKA S., HEGE H.-C.: Accel-
erated Visualization of Dynamic Molecular Surfaces. Computer Graph-
ics Forum 29, 3 (2010), 943–952. 1, 3, 6, 7, 8

[LMAPV15] LE MUZIC M., AUTIN L., PARULEK J., VIOLA I.: cel-
lVIEW: a Tool for Illustrative and Multi-Scale Rendering of Large
Biomolecular Datasets. Eurographics Workshop on Visual Computing
for Biomedicine 2015 (2015), 61–70. 9, 10

[LMPSV14] LE MUZIC M., PARULEK J., STAVRUM A.-K., VIOLA I.:
Illustrative visualization of molecular reactions using omniscient intelli-
gence and passive agents. In Computer Graphics Forum (2014), vol. 33,
Wiley Online Library, pp. 141–150. 11

[MKPH11] MORELAND K., KENDALL W., PETERKA T., HUANG J.:
An Image Compositing Solution at Scale. In Proceedings of 2011
International Conference for High Performance Computing, Network-
ing, Storage and Analysis (New York, NY, USA, 2011), SC ’11, ACM,
pp. 25:1–25:10. 10

[PBD∗10] PARKER S. G., BIGLER J., DIETRICH A., FRIEDRICH H.,
HOBEROCK J., LUEBKE D., MCALLISTER D., MCGUIRE M., MOR-
LEY K., ROBISON A., STICH M.: OptiX: A General Purpose Ray Trac-
ing Engine. In ACM SIGGRAPH 2010 Papers (New York, NY, USA,
2010), SIGGRAPH ’10, ACM, pp. 66:1–66:13. 4

[PJH16] PHARR M., JAKOB W., HUMPHREYS G.: Physically based ren-
dering: From theory to implementation. Morgan Kaufmann, 2016. 8

[PM12] PHARR M., MARK W. R.: ispc: A SPMD compiler for high-
performance CPU programming. 2012 Innovative Parallel Computing
(InPar) (2012), 1–13. 5

[PTVF07] PRESS W. H., TEUKOLSKY S. A., VETTERLING W. T.,
FLANNERY B. P.: Numerical recipes 3rd edition: The art of scientific
computing. Cambridge university press, 2007. 6

[PV12] PARULEK J., VIOLA I.: Implicit representation of molecular
surfaces. In 2012 IEEE Pacific Visualization Symposium (Feb. 2012),
pp. 217–224. 3

[RE05] REINA G., ERTL T.: Hardware-Accelerated Glyphs for Mono-
and Dipoles in Molecular Dynamics Visualization. In EG/IEEE VGTC
Symposium on Visualization (2005), pp. 177–182. 4

[Ric77] RICHARDS F. M.: Areas, volumes, packing, and protein struc-
ture. Annual review of biophysics and bioengineering 6, 1 (1977), 151–
176. 2

[RKRE17] RAU T., KRONE M., REINA G., ERTL T.: Challenges and
Opportunities using Software-Defined Visualization in MegaMol. In
Workshop on Visual Analytics, Information Visualization and Scientific
Visualization (WVIS) in the 30th Conference on Graphics, Patterns and
Images (SIBGRAPI’17) (Niterói, RJ, Brazil, Oct. 2017), Ferreira N.,
Nonato L. G., Sadlo F., (Eds.). 5, 10

[SMSS16] STONE J. E., MESSMER P., SISNEROS R., SCHULTEN K.:
High Performance Molecular Visualization: In-Situ and Parallel Render-
ing with EGL. In 2016 IEEE International Parallel and Distributed Pro-
cessing Symposium Workshops (IPDPSW) (May 2016), pp. 1014–1023.
4

[SOS96] SANNER M. F., OLSON A. J., SPEHNER J.-C.: Reduced sur-
face: An efficient way to compute molecular surfaces. Biopolymers 38,
3 (Mar. 1996), 305–320. 3, 4

[TA96] TOTROV M., ABAGYAN R.: The Contour-Buildup Algorithm
to Calculate the Analytical Molecular Surface. Journal of Structural
Biology 116, 1 (Jan. 1996), 138–143. 1, 3

[TCM06] TARINI M., CIGNONI P., MONTANI C.: Ambient Occlusion
and Edge Cueing for Enhancing Real Time Molecular Visualization.
IEEE Transactions on Visualization and Computer Graphics 12, 5 (Sept.
2006), 1237–1244. 2

[WJA∗17] WALD I., JOHNSON G., AMSTUTZ J., BROWNLEE C.,
KNOLL A., JEFFERS J., GÜNTHER J., NAVRATIL P.: OSPRay - A CPU
Ray Tracing Framework for Scientific Visualization. IEEE Transactions
on Visualization and Computer Graphics 23, 1 (Jan. 2017), 931–940. 2,
4, 10

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

250

T. Rau, S. Zahn, M. Krone, G. Reina, and T. Ertl / Interactive CPU-based Ray Tracing of Solvent Excluded Surfaces

[WKJ∗15] WALD I., KNOLL A., JOHNSON G. P., USHER W., PAS-
CUCCI V., PAPKA M. E.: CPU ray tracing large particle data with
balanced P-k-d trees. In 2015 IEEE Scientific Visualization Conference
(SciVis) (2015), IEEE, pp. 57–64. 9

[WMG∗09] WALD I., MARK W. R., GÜNTHER J., BOULOS S., IZE T.,
HUNT W., PARKER S. G., SHIRLEY P.: State of the Art in Ray Tracing
Animated Scenes. Computer Graphics Forum 28, 6 (Sept. 2009), 1691–
1722. 2

[WWB∗14] WALD I., WOOP S., BENTHIN C., JOHNSON G. S., ERNST
M.: Embree: A Kernel Framework for Efficient CPU Ray Tracing. ACM
Trans. Graph. 33, 4 (July 2014), 143:1–143:8. 5

[Zey09] ZEYUN YU: A list-based method for fast generation of molecu-
lar surfaces. In 2009 Annual International Conference of the IEEE Engi-
neering in Medicine and Biology Society (Minneapolis, MN, Sept. 2009),
IEEE, pp. 5909–5912. 3

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

251

