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ABSTRACT
Large-scale computer simulations generate data at rates that neces-
sitate visual analysis tools to run in situ. The distribution of work
on and across nodes of a supercomputer is crucial to utilize compute
resources as efficiently as possible. In this paper, we study two work
distribution problems in the context of in situ visualization and
jointly assess the performance impact of different variants. First, es-
pecially for simulations involving heterogeneous loads across their
domain, dynamic load balancing can significantly reduce simula-
tion run times. However, the adjustment of the domain partitioning
associated with this also has a direct impact on visualization per-
formance. The exact impact of this side effect is largely unclear a
priori as generally different criteria are used for balancing simu-
lation and visualization load. Second, on node level, the adequate
allocation of threads to simulation or visualization tasks minimizes
the performance drain of the simulation while also enabling timely
visualization results. In our case study, we jointly study both work
distribution aspects with the visualization framework MegaMol
coupled in situ on node level to the molecular dynamics simulation
ls1 Mardyn on Stampede2 at TACC.

CCS CONCEPTS
• Human-centered computing → Scientific visualization; •
Computingmethodologies→ Simulation evaluation; Ray trac-
ing; Molecular simulation.
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1 INTRODUCTION
With particle simulation codes scaling well on current supercom-
puter architectures, complex phenomena can be simulated at high
fidelity, revealing new insights into the principles of thermody-
namics [11, 25]. The output sizes generated by these simulations
can reach several petabytes and beyond, such that storing the re-
sults becomes unfeasible due to storage and bandwidth limitations
(e.g. [2]). Many of the issues pertaining to this problem are dealt
with by employing in situ analysis and visualization techniques
that process data as it is generated. In the following, we focus on
tightly coupled setups that share the same resources for simulation
and visualization.

Many different in situ frameworks have evolved in recent years [1,
3, 5, 6, 23, 24, 27, 30]. Some software packages focus on efficient I/O,
either by directly optimizing throughput to underlying persistent
storage [16], or by generating optimized data representations [28]
to reduce the data. Others efficiently exploit new hardware archi-
tectures like accelerators [13, 15, 19], or offer an API incorporating
a collection of methods [4, 14]. These techniques aim to strike a
balance between delivering an adequate analysis and minimizing
the impact on resource usage.

It is a common approach for simulation codes to minimize their
time to solution by balancing the computational load across several
compute nodes. To achieve this, typically the domain decompo-
sition is adjusted according to some domain-specific metric (e.g.,
based on molecule density). As it is crucial for performance to keep
the volume of data transfers to the required minimum, the size of
the domain for visualization directly changes with the adjustments
done for the simulation. These changes naturally directly influence
the load characteristics of the visualization as well. Here, a metric
designed to optimize the solver’s time to solution generally deviates
from the criteria employed to balance visualization load [7, 8, 17].
Generally, not only the data content but also the shape of the do-
main have significant performance impact. Another aspect of work
distribution is the (node-level) allocation of compute resources to
simulation and visualization, respectively. Here, the main goal is
generally to minimize the performance impact of the visualization
on the simulation, while still achieving timely visualization results
(e.g., for interactive exploration or monitoring tasks).

This work evaluates the impact of work distribution in the con-
text of in situ visualization. In particular, we focus (1) on the impact
of simulation load balancing across nodes on visualization and
(2) the distribution of threads to simulation and visualization on
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Figure 1: Overview of the deployment on a cluster architec-
ture. Dashed: node-local communication, Solid: on-site net-
work communications.

each node. For this we use the particle solver code ls1 Mardyn [20]
and the visualization framework MegaMol [9, 10], which incorpo-
rates the ray tracing engine OSPRay [22, 26]. This setup is targeted
at providing a loosely coupled, general and robust in situ solution.
Data is exclusively communicated to the visualization via shared
memory on node level.

2 BASICS AND CASE STUDY SETUP
The setup of this evaluation is as follows: Each rank of the simu-
lation has its own node and is coupled to a MegaMol rank on the
same node in a one-to-one manner. The simulation rank transports
only its local partition of the data set to the local MegaMol rank.
Therefore, each MegaMol rank renders only a world-space data
brick that is contributed to a compositing tree (facilitating IceT [18])
each MegaMol rank participates in. The final image is gathered
to a single MegaMol rank that can send it to any (external) client
over TCP/IP. Additionally, MegaMol renders the data set from 256
different view points, which can be combined into an image data
base for post hoc exploration, similar to the ParaView Cinema [21]
approach. These view points are arranged on a cigar shaped con-
struct around the data set bounding box. On HPC resources, the
simulation and MegaMol processes can be launched in separate
MPI worlds. Thus, a failure in the visualization software cannot
interfere with the simulation. A schematic overview of the setup
can be found in Figure 1.

2.1 The ls1 Solver (and its Load-Balancing
Scheme)

We use the multi-center Lennard-Jones 6-12 rigid potential [12],
which is a very common approach for particle-based solvers. The
computational complexity of the simulation originates from mole-
cules being within each other’s potential, as the potential generates
the forces that alter the state variables of the molecules. Usually,
a cutoff radius is employed to neglect the weak long-range effects
(often chosen as 2.5σ , with σ being the cross section of a particle
collision). The main computational load is thus due to pairs of
particles closer than the cutoff, which correlates with the sheer
number of particles, but is mainly influenced by the local density. In
dynamic systems, a load rebalancing is required at regular intervals
to compensate for particle fluctuation across local domains. The

solver recalculates its domain decomposition and moves particles
between ranks accordingly. In general, balancing leads to regions
in the simulation domain with a higher density being refined into
more subdivisions than lower density regions.

2.2 Solver-Visualization-Coupling
When a simulation job is started, each node (“SKX Node” in Fig-
ure 1) of the executing cluster is populated by a process for the
simulation, communicating with each other via one MPI communi-
cator, denoted as “MPI1”. In the same step, an instance of MegaMol
is launched for each node, acting as the visualization component
(“MegaMol Visualization”). To facilitate a loose coupling, these
MegaMol instances employ their own MPI communicator (denoted
“MPI2”), which is, for example, used for compositing the final images
via IceT [18]. Each instance merely occupies some resources, usu-
ally a few cores, sharing the same memory space as the simulation.
There are no memory bottlenecks since ls1 is heavily compute-
bound and thus has a very limited memory footprint. Before start-
ing the actual computation, the solver tries to perform a handshake
over a ZMQ socket [29]. After this handshake, the solver resumes
its remaining setup and goes into the main computation loop. If
that handshake fails, it still resumes the computation but without
communicating data to MegaMol. From here on out, all coupling
communication is only directed towards the visualization, yielding
robustness against failure of the visualization component. At fixed
simulation step intervals, the solver copies relevant simulation data
to shared memory, such as particle positions and velocities. The
only communication between the processes of the simulation in
“MPI1” and the MegaMol instance residing in “MPI2” is a unidirec-
tional update trigger facilitated via a ZMQ socket, activated after ls1
completes the copy to shared memory. This avoids the need for the
two separate MPI worlds to directly interact. The MegaMol instance
listening on the ZMQ socket catches this trigger. Processing the
data chunks is discussed in the following paragraphs.

2.3 Visualization Data Flow
The final visualization is generated in two steps, a ray tracing step
producing an intermediate frame buffer containing color and depth
information, and a compositing step, aggregating the individual
frame buffers into a final image, which is sent to the view node.
Raytracing Step:
For the rendering backend we use the Intel’s ray tracing engine
OSPRay [26], as the Stampede2 cluster at the Texas Advanced Com-
puting Center (TACC), with which we are evaluating our approach,
does not provide GPUs. Our approach is meant to be as general
as possible to support other rendering backends as well, so we
are explicitly not utilizing OSPRay’s built-in distributed rendering.
Note that for the measurements, progressive rendering has been
changed to a fixed number of rays, to generate comparable results
for the runtime measurements.
Compositing Step:
When the individual frame buffers on each node are ready, IceT [18]
composites the final image. In general, MegaMol is able to connect
to a remote instance and transfer image data and camera interaction
to the distributed visualization, but we do not require any particular
interaction to perform this case study.
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(a) step 0

(b) step 25

Figure 2: Rendering of the examined system using OSPRay
at 0 (a) and 25 · 105 (b) solver iterations.

3 MEASUREMENTS AND DISCUSSION
To obtain our measurements, we deploy ls1 on the Stampede2
cluster at TACC. Each node features a two-way Intel Xeon Plat-
inum 8160 with a total of 48 cores. We configured the solver and
the visualization to run in three different per-node parallelization
configurations. This per-node parallelization varies the amount
of threads allocated to each of the simulation and the ray tracing
engine. In all configurations, 46 cores are used and 2 cores are left
for the OS, I/O and other background tasks to run. The simulation
time steps used in our measurements are shown in Figure 2. Each
time step contains 66·106 particles in total. For each simulation
time step, we render 256 different configurations varying in camera
position and orientation, as described above. The generated images
can be used for post hoc analysis of the visualized data similar to
O’Leary et al. [21]. This enables interaction with the data set just
based on images, which is completely independent of the actual
data size. The rendering resolution is 1920 × 1200 across all our
measurements.

The distribution of particle data is performed according to the
selected load balancing scheme. In the following, we denote the
measurements pertaining to the static regular domain decomposi-
tion as “DOM”, while the diffusion based dynamic load balancing
is depicted with “DIF”. In Figure 3 the boxes exemplify the domain
decomposition resulting from different schemes at different sim-
ulation times. Every 20 steps the load is rebalanced, which has
a direct influence on the simulation’s per-step performance. The
rebalancing changes the decomposition scheme (local bounding
boxes) slightly to adopt for best performance. However, this perfor-
mance optimization levels out and does not lead to further benefits,
which is an indicator that the frequency where the load is rebal-
anced can be lowered. However, the rebalancing has to stay active
due to the dynamic behavior of the simulation. The number of
steps depends on the number of nodes, because the grid of local
domain bounding boxes is much more fine-grained. Approximately,
for eight nodes this takes only one or two iterations, and for 128
nodes this can take up to 40 iterations.

In Figure 4, we compare the run times per step of a simulation
running with and without visualization running alongside on the
same node. In addition, we show the performance impact of as-
signing different numbers of threads to the simulation and the

(a) DIF step 0

(b) DIF step 25

(c) DOM

Figure 3: The decomposition adopts directly to the particle
distribution. Here, (a) and (b) directly compare to (a) and (b)
of Figure 2 with the DIF decomposition for 128 nodes. The
domain decomposition (c) shows the standard spacial subdi-
vision of a not load balanced simulation.

visualization’s ray tracing engine (OSPRay), respectively. For this,
different configurations are used: 2/44, 4/42, and 8/38 (OSPRay
threads vs. simulation threads). For the DIF load balancing scheme,
we also take into account that the rebalancing occurs every 20th
step.

This is done by filtering the peaks in the simulation duration,
and also discarding non-equilibrated values (1 to 40 iterations of the
rebalancing). Therefore, the simulation times displayed in Figure 4
are consistent with numbers that actually occur in a production sim-
ulation run. An additional effect of the load balancing is a stronger
thread scaling behavior. In comparison to the DOM simulation
times that can be seen in Figure 4, the load-balanced results have a
slightly steeper slope towards a smaller number of threads. This
should be considered when tuning the coupled system for per-
formance. In the case of normal domain decomposition (DOM),
reducing the simulation’s resources has no significant impact on
the solver performance. We assume this is an indicator that without
load balancing the simulation is not using the full capacity of its
assigned resources. In reverse, this means that the performance
overhead of assigning more resources to the visualization slightly
increases in the case of dynamic load balancing.

Additionally, Figure 4 shows an anomaly. In the case of eight
nodes and the DIF load balancing scheme, the simulation runs
faster coupled to the visualization framework. We assume, this is
due to the case that we allocate the same number of threads for
the simulation, whether a visualization framework is coupled to
the simulation or not. However, without the visualization frame-
work, cores on a node remain unoccupied. The OS scheduler could
switch threads to these unoccupied cores, which would generate an
overhead. However, this assumption requires further investigation.
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Figure 5 shows the rendering performance of the ray tracer
evaluated over all camera positions using the median as value (the
respective figure with error bars with the 10 % decile as lower and
the 90 % decile as the upper bound, can be found in the appendix).
While the impact of less threads on the simulation is very small,
those extra threads that can be used for rendering increase the
performance significantly. Additionally, there is no effect of the
decomposition scheme for step 0 on the ray tracing performance,
whereas there is a noticeable performance increase for step 25.
The performance of the compositor shows a similar behavior with
the exception that for step 0 there is already a noticeable speedup.
However, the speedup already levels out for eight threads, which
means that the benefit of larger number of threads for rendering is
almost at its maximum in our specific case. Note that the time for
writing images to disk is not included in our providedmeasurements
(approximately 0.3 - 0.7 sec per image according to our experiments).

Each data point in Figure 5 is the median of a set of measure-
ments that in fact show a large range of measured render times
due to the varying camera configurations (plots with error bars
shown in the appendix). To investigate this more closely, the ray
tracing computation duration is plotted for every camera angle
in Figure 6(a). In the case where the simulation is starting at time
step 0, the bounding box is not completely filled with particles,
which leads to many camera angles that do not capture any particle.
We also observed a similar impact on compositing performance
(see Figure 6(b)). However in some cases the view is completely
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Figure 4: Influence of the visualization on the simulation.
The left column shows the simulation starting at simulation
time 0, in the right the simulation was resumed at a later
point in time (25 · 105). The rows differentiate between the
two different decomposition schemes (DOM and DIF) that
were used. The full lines are the runs with the simulation
and the visualization running in situ (coupled), and the dot-
ted lines show the results of just the simulation running (di-
rect).

2 4 8
RT threads

0

50

100

150

RT
 ti

m
e 

[m
s]

 step: 0

2 4 8
RT threads

0

50

100

150

RT
 ti

m
e 

[m
s]

 step: 25
DOM 8 nodes
DOM 32 nodes
DOM 64 nodes
DOM 128 nodes
DIF 8 nodes
DIF 32 nodes
DIF 64 nodes
DIF 128 nodes

(a) Ray tracing

2 4 8
RT Threads

0

50

100

150

Co
m

po
sit

 ti
m

e 
[m

s]

 step: 0

2 4 8
RT Threads

0

50

100

150

Co
m

po
sit

 ti
m

e 
[m

s]

 step: 25
DOM 8 nodes
DOM 32 nodes
DOM 64 nodes
DOM 128 nodes
DIF 8 nodes
DIF 32 nodes
DIF 64 nodes
DIF 128 nodes

(b) Compositing

Figure 5: Plot (a) shows the ray tracing performance over the
amount of assigned threads. Graph (b) represents the same
measurement this time for the duration of the compositor.
The plotted value represents the median of the measured
data. The two domain decomposition schemes are plotted
in the same graph for comparison. On the left the ray trac-
ing performance for simulation iteration 0 is shown, on the
right the iteration is started at 25 · 105 iterations. The data
points are distributed around the actual value of threads (2,
4 and 8) to avoid visual clutter. Graphswith their correspond-
ing error bars are found in the appendix.

filled with particles which leads to significantly longer computa-
tion time. In time step 25 · 105 the bounding box is filled more
homogeneously with particles, and accordingly the variance in the
rendering times is reduced. In addition, it can be seen that both the
performance of ray tracing and compositing benefit from dynamic
load balancing.

4 CONCLUSION AND LESSONS LEARNED
In this paper, we analyzed the performance impact of different
work distribution schemes in the context of in situ visualization.
In particular, we evaluated the effects of simulation load balancing
across nodes as well as the assignment of threads to simulation
and visualization on each node. We studied these effects for an
in situ setup featuring a particle solver coupled to a ray tracing
visualization system.

In general, we found that the investigated in situ coupling ap-
proach is quite lightweight and only induces relatively low over-
head. According to our measurements, reducing the node level
parallelization of the simulation only has a minor negative effect on
the simulation’s performance, while the visualization performance
significantly benefits from accordingly increased computation re-
sources. However, we could see that the simulation is generally
more capable of efficiently utilizing more threads when load bal-
ancing is used. As a result of this, the performance overhead of
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Figure 6: Diagram (a) plots the ray tracing times for the 256
different camera angles. Graph (b) shows the duration for
image composition. Here, only the data for step 0 and 2/44
threads is plotted.

assigning more resources to the visualization slightly increases.
Furthermore, in the examined case, the simulation’s load balanc-
ing not only leads to a performance benefit for the solver but for
the visualization as well. We conclude that distributing regions of
dense particles both helps the particle solver as well as the sphere
ray tracing. However, we assume that this characteristic is highly
dependant on the solver and the employed distribution criteria, and
balancing could even have harmful effects for visualization perfor-
mance in other cases. This is a direction that we plan to investigate
in more detail in future work.
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APPENDIX
For reference, we have included the full range of performed measurements and results below.
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Plot of the reached speedup of the simulation due to load balancing in percent.
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Figure of the relative speedup reached by coupling the simulation with the visualization. For time step 0 the accumulated
speedup is 2.5% and for time step 25 the speedup is 4.3%.
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iteration steps. Note that at each frame an image is encoded and stored to disk.
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Plots of the ray tracing (left) and compositing (right) times for all used camera configurations.
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Plots of the overall time of one visualization step for each incorporated rank. Every plot represents a unique configuration of
parameters.
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Graph collection of the ray tracing time for every single rank. Note that especially for step 0 an imbalance of load causes some
ranks to use significantly more time for rendering.
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Plots of the simulation time of every configuration for each individual step. The varying length is due to measurements using
a fixed time limit. Also, coupled runs should run longer to sample each camera configuration.
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Plot of the time the image compositing is using during visualization.
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(a) Ray tracing
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(b) Compositing

Figure 7: Plot (a) shows the ray tracing performance over the amount of assigned threads. Graph (b) represents the same
measurement this time for the duration of the compositor. As a representation we chose the median as value and the 10%
decile and 90 % decile as error bar.
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