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Abstract—We introduce a conceptual model for scalability designed for visualization research. With this model, we systematically
analyze over 120 visualization publications from 1990 to 2020 to characterize the different notions of scalability in these works. While
many papers have addressed scalability issues, our survey identifies a lack of consistency in the use of the term in the visualization
research community. We address this issue by introducing a consistent terminology meant to help visualization researchers better
characterize the scalability aspects in their research. It also helps in providing multiple methods for supporting the claim that a work is
“scalable.” Our model is centered around an effort function with inputs and outputs. The inputs are the problem size and resources,
whereas the outputs are the actual efforts, for instance, in terms of computational run time or visual clutter. We select representative
examples to illustrate different approaches and facets of what scalability can mean in visualization literature. Finally, targeting the diverse
crowd of visualization researchers without a scalability tradition, we provide a set of recommendations for how scalability can be
presented in a clear and consistent way to improve fair comparison between visualization techniques and systems and foster

reproducibility.

Index Terms—Scalability, visualization, structured literature analysis, conceptual framework

1 INTRODUCTION

We address the issue of characterizing scalability in visu-
alization research. Scalability is a frequent topic, with many
papers claiming to improve scalability or achieve scalable—or
sometimes, more scalable—techniques. The visualization research
community has a long tradition of acknowledging the need for
scalable solutions, as for example, included in summaries of grand
research challenges for various communities of visualization []1]],
[2] or roadmaps for future research [J3], [4].

Despite the high relevance of scalability—or maybe, because
of this—we noticed a large range of connotations or uses of this
concept in visualization papers. This situation reflects the large
diversity of research topics and methods in visualization, and it
may also be the multidisciplinary nature of visualization, which
includes research from computer science and algorithms, human-
computer interaction, psychology, etc. Some of these communities
have established models and methods for assessing scalability,
but not all of them. However, even when such approaches might
be established in another community, they might not necessarily
be common knowledge in the visualization research community.
Furthermore, it is not always clear whether a wholesale adoption
of these methods is possible or if they need to be adapted and
fine-tuned to the specificities of visualization research.

In short, there is a wide range of interpretations of the
concept of scalability in visualization, sometimes with only implicit
documentation and communication of the concrete interpretation
used in a paper. This can lead to misunderstandings and impair the
reproducibility of research results.
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The recent restructuring of the IEEE VIS conferences into
a single conference with multiple areas attests that visualization
research is becoming more diverse and trying to be more integrated.
While some articles will remain targeted to a distinct audience
well aware of its own meaning of scalability, a growing number
of articles will cross boundaries to address multiple meanings of
scalability, leading to more diverse reviewers and readers, with
different backgrounds. We aim at helping authors, reviewers, and
readers navigate the different aspects of scalability.

To this end, we contribute a conceptual model for scalability
that is designed to be versatile and flexible enough to capture exist-
ing uses of the concept ‘scalability’ in visualization research, align
terminology, improve conceptual and methodological consistency
across domains, and allow for other uses in the future. In particular,
we envision the model to help communicate about scalability across
the diverse subcommunities of visualization. Our model is built
on an effort function that takes inputs in the form of problem size,
assumptions, and descriptions of resources, and maps these to a
description of effort as the output associated with the visualization.
Key to the flexibility of the model is the large freedom in modeling
the inputs and outputs: they can cover technical aspects such as data
set size, available compute nodes, or compute times, all the way to
human-oriented aspects like readability or user task performance.
Therefore, we are able to show that this model can be instantiated to
cover the typical scenarios of scalability in visualization, and also
the different interpretations of the terms “scalability,” “scalable,”
and “more scalable.”

We argue that seeking the common traits between the multiple
existing definitions and presenting them with a unified model
creates a helpful framework for comprehension. We recognize
our model would not help authors and reviewers within their
subfield, e.g., visualization in high-performance computing (HPC)
or graph drawing, since they have a clear understanding of their
own meaning of scalability. However, it becomes useful for articles
mixing two aspects of scalability, e.g., how HPC can provide
more readable features, with a need to be understood by the two
subcommunities. This kind of scenario is becoming more frequent
in visualization and this is why we need a unifying model.
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Using the conceptual model as a framework, we analyzed the
current state of visualization research and contribute a structured
and systematic literature analysis of the full papers published in
IEEE Visualization, SciVis, InfoVis, and VAST from 1990 to 2020.
The literature search led to 127 articles for which we derived
a coding scheme and analyzed them, respectively. Four of the
authors participated in multiple rounds of reviews of these relevant
papers followed by discussions to establish the conceptual model,
scenarios, and coding scheme. The two other authors coded the
complete set of papers after being introduced to the coding scheme.
Our goal was to learn about the current usage of the notion of
scalability in visualization research, as well as to assess how well
our conceptual model allows characterizing previous research on
scalability. We make the coding book and results publicly available
at the following repository: https://osf.io/xrvu7/.

Based on our conceptual model, general observations, and
the literature review, we arrive at recommendations to improve
the design and presentation of scalability-related research when
targeting an outside or mixed audience. We believe that this would
also help compare visualization techniques and systems, and foster
reproducibility.

2 RELATED WORK

The visualization research community has become more diverse
over the years, starting with statistics, algorithms, computer
graphics, and computational science in the early 1990s, and joined
by human-computer interaction (HCI), psychology, vision science,
design, cartography, and many more. The concept of scalability
varies from one community to the next, with different levels of
maturity. In this section, we review related work discussing and
defining scalability in different areas of computer science and in
the visualization community.

2.1 Definitions of Scalability

Weinstock and Goodenough [5]] define the scalability problem as
“the inability of a system to accommodate an increased workload.”
Bondi [6]] mentions several definitions of scalability in computer
science:

o “Scalability is the property of a system to handle a growing
amount of work by adding resources to the system.” Adding
resources may have the form of adding more nodes to a system
made of multiple small interconnected servers (scaling out
or horizontally) or adding more resources to a single node
(scaling up or vertically) [[7].

e Load scalability is the “ability to function gracefully, i.e.,
without undue delay and without unproductive resource
consumption or resource contention at light, moderate, or
heavy loads while making good use of available resources.”

o Space scalability is that “memory requirements do not grow to
intolerable levels as the number of items it supports increase.”

o Space-time scalability: “continues to function gracefully as
the number of objects [. . .] increases by orders of magnitude.”

o Structural scalability means that “implementation or standards
do not impede the growth of the number of objects it
encompasses, or at least will not do so within a chosen time
frame.”

Parallel systems and HPC distinguish mainly two types of scalabil-
ity:

o Strong scaling: “how the solution time varies with the number
of processors for a fixed total problem size.”
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o Weak scaling: “how the solution time varies with the number
of processors for a fixed problem size per processor.”

Hill [8]] tries to define scalability for multiprocessor systems and
admits: “but I fail to find a useful, rigorous definition of it.” Duboc
et al. [9]] define it as: “a quality of software systems characterized
by the causal impact that scaling aspects of the system environment
and design have on certain measured system qualities as these
aspects are varied over expected operational ranges. If the system
can accommodate this variation in a way that is acceptable to the
stakeholder, then it is a scalable system.”

All the definitions are specified as properties of systems
at an abstract level, focusing on “amount of work,” “delay,”
“resources,” “productive resource consumption,” “[work]loads,”
“memory,” “function gracefully,” “time frame,” “adding nodes,”
and “shared memory.” They rely on implicit domain knowledge to
be clearly understood and are not suitable to the wide audience of
visualization practitioners.

2.2 Scalability in Visualization and Visual Analytics

Visualization and visual analytics are concerned with general
computer science scalability when it comes to systems or algo-
rithms. In addition, they are also concerned with more specific
issues. Robertson et al. [|[10] mention information scalability, visual
scalability, display scalability, and human scalability, in addition
to computational scalability. They also add other scalability issues:
software scalability, temporal scalability, cross-scale issues, privacy
and security issues (related to scale), and language issues. Yost and
North [11]] also mention graphical scalability (“limits imposed
by the number of pixels”) and perceptual scalability (“When
the screen is not the limiting factor, just how much data can a
person effectively perceive?”). Eick and Karr [[12]] want to quantify
visual scalability by modeling the dependence between responses,
factors, and data. They admit that it cannot be done because few
responses can be quantified or measured. Instead, they break down
the problem into subparts affecting the overall scalability, adding
“visual metaphors,” “interactivity,” and “aggregation” to the list of
factors affecting scalability.

Scalability is also related to evaluation since it is based on
measuring efficiency. Lam et al. [[13|] describe seven scenarios for
evaluation in visualization, some of them leading to quantitative
results and others to qualitative ones. Scalability is part of the
“Evaluating User Performance” and “Evaluating Visualization
Algorithms” scenarios. One area in which scalability evaluation is
well-established is the HPC/visualization community, where the
main focus is on algorithmic scalability with well-defined metrics
and definitions (e.g., strong scalability). However, the rest of the
visualization community may not be familiar with these definitions,
and it remains unclear if they could be applied in a broader context
than those with HPC resources.

2.3 Scalability in HCI, Psychology, and Vision Science

Scalability related to humans is different from scalability in
computer science. In their seminal book, Card et al. [14] describe
the human as a processor with numerous capabilities, some of them
ruled by laws or models expressible mathematically. Visualization
is concerned with several of these capabilities, in particular regard-
ing perceptual scalability, cognitive scalability, and movement. The
psychology laws and models often refer to information theory,
considering perception and action as communication through
capacity-limited channels.
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Scalability has been studied for some aspects of visual percep-
tion, such as ensemble coding [|15[], preattentive processing [16],
and the limit of the number of colors perceived efficiently [|17]],
Fitts’ law [18]] for pointing, the scalability of item selection and
navigation [19], Hick’s Law [20] for reading items, and the
scalability of menus [21]]. Budiu [22] discusses several issues
related to scaling user interfaces: working memory limits, screen
size that limits the capacity of the communication channel, and
attention limits. Brown et al. [23]] list scalability challenges in
HCI relative to the number of users, the different contexts of use,
and the multiplicity of systems and technologies. Therefore, while
most of the human capabilities exhibit hard limits, interaction
and visualization techniques allow performing tasks with various
interpretations of scalability.

2.4 Summary

Scalability is addressed in many ways by the different disciplines
and communities related to visualization. Still, they share many
concepts but instantiate these concepts with wide variations.

Several articles relate scalability to “factors and certain depen-
dent variables” [9]], [[12], [24], also called independent variables
and measures. Duboc et al. [9] also mention nuisance variables:
“Variables whose effects cannot be completely controlled for
or variables that are simply not considered in the experiment
design.” They also consider the scalability problem as a multi-
criteria optimization problem with multiple measures to optimize,
combined into a utility function. Although we acknowledge that
their model is useful, we believe it is too complicated with respect
to the interpretations of scalability as seen in the visualization
research community where the measures are not usually combined.

Human capabilities do not scale as nicely as machine ones.
Visual perception is limited in scalability by physiological factors,
such as the number of cones and rods at the lower level. Some
pattern processing allows humans to perform important tasks
efficiently (sometimes called “preattentively”), but these perceptual
tasks only work under stringent limits. The eye can track the
movement of a few moving objects on a screen, but this tracking
fails when too many objects cross (visual crowding). Therefore,
scalability-related human performance can hardly be assessed
on theoretical grounds only, it should usually be checked with
experiments. For these reasons, while scalability in the HPC and
distributed computing communities has established definitions and
evaluation methodologies, these do not directly translate to all parts
of a visualization system with a human in the loop.

In this article, we do not define scalability but provide a model
to express particular instances of scalability according to the “utility
function” of Duboc et al. [9]].

3 SCALABILITY MODEL

Our first contribution is a conceptual model that describes the
scalability of a visualization system, component, or technique. The
model is designed to (1) express different scalability concerns that
are relevant to visualization applications (e.g., visual, perceptual,
computational), (2) be applied to different parts of the visualization
pipeline, and (3) allow reasoning about different meanings of
scalable and scalability.

3.1 Model Components

The scalability model represents the scalability of a visualization
process that tackles a specific problem, by a function with four
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components: problem size, resources, assumptions, and effort,
which are described in more detail in the coming subsections.
The function maps the problem size, expected to vary or grow
across applications, to the effort associated with the process’s
solution to the problem, provided an amount of resources and some
assumptions, specific to the particular problem addressed. The
relationship between these four components is formalized by the
function f:
fi(S;RA) — E

with § being the set of variables describing the problem size, R
describing the available resources, A the assumptions, and E the
effort associated with the result. The components of the conceptual
model are summarized in The notation separates S from
R and A to express the difference in role of the actual input S from
the context parameters R and A.

3.1.1 Problem Sizes S

The problem size variables are properties that characterize the
complexity of the problem targeted or solved by the process. Most
commonly, these variables are descriptions of the size of the input
data: either in number of elements or attributes for discrete data,
or in sample size for continuous data. However, they could also
correspond to data characteristics that go beyond data size, such
as data distribution, or refer to input other than data, such as the
number of simultaneous users or the visual output size (e.g., image
resolution).

3.1.2 Resources R

The resource variables are properties related to the material
components of the system or application environment. They are
factors influencing effort while being independent of the input data.
They typically include computational resources (e.g., number of
cores, memory), or other resources that the designer can leverage to
improve performance. Resources are characterized by the fact that
they are often limited in practice, and therefore the optimization of
their usage is one lever to improve performance.

In some communities like HPC, being scalable encompasses
the intent to optimize resource usage as well as being designed
to gracefully adapt and make use of any additional resource
available at their maximum capacity. Examples include networks
of computers (e.g., [25]) or grids of projectors (e.g., [26]). In
other communities like HCI, having additional screens is related
to opportunity since screens are relatively cheap and can also be
shared between applications. Scalability questions relate to the
usefulness of dedicating more screens to a visualization application
when the screens are already available (e.g., [27]). Depending on
the community, using multiple processor cores is considered as
resource optimization or opportunity. We connect the resources and

meaning of scalability in more detail in

resources R

1

problem sizes S —| f — efforts E
S
1
assumptions A

Fig. 1: Conceptual model with problem size variables S and
resource variables R as input, assumptions A, and effort variables
E as output to f.
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3.1.3 Assumptions A

Assumptions define the validity bounds of the function f for the
chosen research context and problem definition. More precisely,
assumptions include the range of available resources, the range
of reasonable values to expect for problem size, and the range of
values considered acceptable or satisfactory for effort variables
(e.g., interaction rates perceived as interactive [[14]]).

3.1.4 Efforts E

The effort variables are properties describing the performance
of the process. Effort variables can be measures of efficiency
(e.g., readability) or measures of cost (e.g., computation time).
For convenience, we consider that effort variables can always
be expressed as a cost, where lower values are better. From a
computational perspective, some examples of effort variables are
computation time or frame rate. From a visual and user perspective,
some examples are the ambiguity of a data representation (as
opposed to its faithfulness), the interactivity of the system, the
ease and speed of task completion, the number of insights, or
visualization quality metrics. As in complexity theory, across all
applications, effort can be defined as average, best, or worst case
for a given set of problem size characteristics. Additionally, other
aggregates across outcomes could be considered, such as standard
deviation, for instance.

3.2 Meaning and Expression

Generally, a scalability issue is an inability of a technique or
system to accommodate an increase in problem size, for the given
resources. The inability is manifested by efforts that do not meet
requirements, e.g., inaccurate results, processing that takes too long,
or a system failing to respond. A scalable system might address
a scalability issue in different ways. In our model, the function
f formalizes the relationship between the components relevant to
scalability such that the meaning of scalability can be expressed
as properties of f. We present three examples of meanings of
scalable or more scalable in relation to f, illustrated in
based on the shape of f, based on f passing a threshold, or on f
demonstrating better performance on large problem sizes.

When scalability is the ability to sustainably handle increasingly
large problem sizes with reasonable effort, it corresponds to
concluding scalability from the shape of f. One example, illustrated
in is demonstrating that f (blue line) is linear with
respect to increasing problem size at fixed resources. Another
example is demonstrating that f is reciprocal with respect to
increasing amount of resources at a fixed problem size, to show
that an increase in problem size can be accommodated by more
resources.

When scalability is the ability to handle problems of larger size
than before, it corresponds to the function fey, sustaining the same
amount of effort for a larger problem size than another f4:

fnew(Snew§R,A) = fold(Sold§RaA) = Efixed

with Spew > Soiq and, ideally, identical resources and assumptions.
Under this meaning, the threshold of interest, Efeq, 1S typically an
upper bound to the acceptable effort, for instance, the maximum
reasonable latency. This case is illustrated in with a
threshold defined by the upper bound of the gray area.

When scalability is the ability to perform better for a range
of problem sizes, it corresponds to the function fpey sustaining

effort
effort
effort

problem size problem size problem size

(a) Shape. (b) Threshold. (c) Better performance.

Fig. 2: Examples of effort functions, fyew in solid blue and f;q in
dashed green, with fjew being more scalable than fuq according to
three meanings of scalable.

lower effort than another fq for all, or most, of the interval of S
considered:

fnew(SQRvA) < fold(S;RaA)

The function fi,.w may be better by a constant: fyew(S;R,A) =
foua(S;R,A) — ¢, ¢ > 0 like the example of The key
difference with the meaning threshold is that there is not necessarily
any concern with extending the range of supported problem sizes
in that case.

Because the meanings of scalability are connected to the
characteristics of f, the scalability claim in a paper is often
supported by some level of description of the function f. We model
this aspect by the level of expression of f, which is closely linked
to the methodology employed. The function f may be described by
an explicit function relating the set of problem size variables S and
resources variables R to the set of effort variables E. An explicit
function for f may be a model function or an approximation, for
instance describing its asymptotic behavior with big O notation.
Explicit functions are reported following a complexity analysis,
mathematical proofs, or performance modeling. The function f may
also be described by sample points that are measurements of effort
variables for a sample of problem size variables. Samples points
are reported through examples results, plots, or tables following a
performance evaluation using synthetic data or datasets of varying
problem size.

4 EXAMPLES OF MODEL INSTANTIATIONS

In this section, we present examples of instantiations of the model
using different example papers structured in four stereotypical
scenarios that are not meant to be comprehensive but rather
didactic. The model, including the scalability meaning, corresponds
to a scalability claim but scalability experiments/evaluation can
also be described in terms of problem size, resources, effort, and
assumptions.

4.1

Algorithm papers, including rendering papers, usually present a
contribution for which instantiating the model is straightforward. In
most cases, the problem size variables are clearly-defined properties
of the input data, and the effort variables are fully explained and
correspond to the computation cost in terms of execution time
or memory. Because algorithm performance can be studied in a
controlled manner, it is possible to evaluate their theoretical effort
function. Still, most papers use an asymptotic model because the
constants vary depending on hardware, configuration, etc.
Consider, for example, the problem of graph drawing that
consists of optimizing the layout of the nodes of a node-link

Algorithm Scalability
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diagram on the display. The approach based on solving a stress
model requires computing the full matrix of all-pairs shortest paths
between the graph nodes. This operation costs O(|V|*1log(|V|) +
[V||E|) in time and O(|V|?) in space for a graph with |E| edges
and |V| nodes. For this problem, the problem size variables relate
to the size of the input graph while the effort variables are the
computing time and associated memory consumption. Khoury et
al. 28] propose an approximation technique to solve this problem
in quasilinear time and space and describe its effort function
with detailed theoretical expressions of asymptotic complexity,
together with experimental measures of computation time for a
given implementation. An algorithm is usually considered scalable
if it runs in linear time relative to the problem size.

Example: Drawing Large Graphs by Low-Rank Stress Majorization |28]

Expression: explicit function (big O notation)
Meaning: shape (more scalable means more linear)

number of edges |E| —|

f — execution time
number of nodes |V| —|

—> memory consumption

In some cases, the problem size does not relate to the input
data but rather the size of the visual output. Falk and Weiskopf [29]
consider the problem of rendering 3D vector fields using a texture-
based representation. The computational cost of this problem is
naturally cubic with the output image resolution. The proposed
algorithm uses an image-oriented sampling approach and only
computes the parts of the dataset that are represented on the final
image. Consequently, this algorithm is mostly independent of the
dataset size and predominantly governed by the output resolution
and the number of samples. Performance measurements of a GPU
implementation show that the rendering times are almost constant
as the dataset size increases and scale linearly with the output
image and the number of samples.

4.2 Parallel Computing Scalability

This scenario is rooted in scaling experiments that are employed to
understand the scalability of parallel computing implementations,
typically in the context of HPC, cluster computing, or architectures
with multiple cores or GPUs. These scenarios also occur in
visualization research, mostly in large-data visualization with
volume rendering or flow visualization. In this context, scalability is
presented as a mapping to compute times with the effort measured
for varying problem sizes and hardware resources (i.e., compute
nodes). In this scenario, one major concern is the optimization of
computing resource usage, measured using efficiency, a metric that
compares the gain in execution time (speedup) compared to the
amount of additional resources made available to the system. The
role of varying resources is extensively studied when looking at
computational speedup in relationship to number of processors of
compute nodes (e.g., Gustafson’s law [[30] for weak scalability).
This leads to assessing the explicit function of our model, related
to resources varying together with problem size.

One such example is by Howison et al. [31]. This work
assesses the scalability of volume rendering techniques using
hybrid parallelism. They measure the problem size in terms of
the size of the volume, here, the number of cells in a uniform 3D
grid. They discuss that there might be additional data dependency
due to the distribution of data values, but identify that there is
no relevant impact from data-dependent early ray termination in
their case. Effort is measured in memory consumption (MB) and
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speedup of the compute times (i.e., indirectly, the compute times).
Scalability is primarily understood as the functional mapping to
compute times (or speedups). To this end, they measure the effort
for varying problem size and hardware resources (i.e., compute
nodes); in this sense, the functional mapping is represented by
quite fine sampling of the function. In addition, they discuss further
assumptions, in particular, parameter choices such as various types
of block sizes used to distribute the compute work and the type
of parallelism (hybrid parallelism vs. distributed memory only).
Moreover, they also evaluate strong and weak scalability.

Example: Hybrid Parallelism for Volume Rendering on Large-, Multi-, and
Many-Core Systems [31]

Expression: sample points (fine sampling)
Meaning: shape (weak and weak-dataset scalability)

number of cores

number of cells — f
image size —

— compute time
— memory consumption

ES
1

parameter choices

4.3 Visual Scalability

One common scenario of scalability in visualization research targets
the study of how the technique’s or tool’s visual performances are
affected by the increase in size of the input data. In this context,
scalability is presented as a mapping to readability primarily, and
sometimes compute time as well, with the effort measured for
varying problem size. These papers present new visualization
techniques that can show a larger amount of data in a readable way
through data aggregation, interaction, or smart visual encoding.
However, they do not always use measurements for the effort
function for the readability aspect, but rather discuss the limits
of previous encodings, present the rationale behind the new one,
and provide visual examples. When the computational aspect of
scalability is discussed, it is often in relation to interaction latency.
This scenario seems to be the most typical among visualization
papers, at least it is the most commonly found in our survey (see

[Section J).

Example: Structure-aware Fisheye Views for Efficient Large Graph Explo-
ration [32]

Expression: sample points (example datasets)

Meaning: better performance

—> computing time

number of edges —| f
— node overlap

number of nodes —

Wang et al. [|32] tackle the visual clutter problem of large graph
drawings using a focus+context interactive view. The problem size
is the graph size. The main effort variables dependent on problem
size are the number of overlapped node pairs which evaluates
clutter, and the computing time which evaluates interactivity.
The quality of the drawing as evaluated by two metrics (edge
orientation offset and shape preservation) and task completion rate
are also measured but not in relation to the graph size, i.e., as
concerns orthogonal to scalability. The authors do not claim that
the technique is scalable but rather that their technique is made
to mitigate scalability issues and that it outperforms other similar
techniques that are compared in an evaluation using five datasets
of different sizes.
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4.4 Cognitive and Perceptual Scalability

This scenario covers studies from the psychophysics domain
interested in user response to stimuli or studies to investigate
the scalability of human perception and cognition when performing
a visualization tasks. In this scenario, studies are close to an ideal
controlled environment while being subject to the variability of
humans. The effort variable is the user performance or cognitive
load, measured in terms of objectively measurable metrics such as
task completion time and accuracy. Problem sizes may be input
size or task complexity. In this scenario, articles may present the
issues under the terms perceptual or cognitive scalability, or may
not mention scalable or scalability at all. In contrast to the visual
scalability scenario, in this scenario, studies are not only interested
in human limits regarding how visible elements are but also in the
cognitive limitations.

Ghoniem et al. [33]] compare the scalability of two repre-
sentation techniques for graphs, adjacency matrix and node-link
diagram, regarding their readability. The problem size variables are
the number of nodes and the edge density, defined as +/|E|/[V|?
for a graph with |E| edges and |V | nodes. The effort variable is the
readability measured by participants’ response time and accuracy
across seven tasks such as finding the most connected node or
evaluating the edge density.

Example: A Comparison of the Readability of Graphs Using Node-Link and |
Matrix-Based Representations [33]

Expression: sample points (example datasets)
Meaning: more scalable means faster completion rate on average

— task completion time

number of nodes |V| —| f
I— accuracy

edge density —|

Another example by Guiard et al. [19], investigates the
scalability of Fitts’ law for pointing tasks, relevant to selection
and navigation in any pan-and-zoom environment. Fitts’ law
describes the empirical relationship between the user movement
time and the pointing task difficulty, called index of difficulty
ID = log,(D/W + 1) where D is the target distance and W the
target size. The time for pointing is MT = a+ b x ID. In the
physical world, the ID is limited to about 10 bits. Using a zooming
interface in a virtual world, the study shows that Fitts’ law still
applies beyond the limit. The effort variable here is the throughput,
defined as the ratio between the ID and the movement time while
the problem size is the ID. The study concludes that, for a higher
range of IDs, the throughput of multiscale pointing is constant, so
Fitts’ law holds, limited only by human fatigue.

4.5 Non-stereotypical and Composite Scenarios

While these four scenarios are representative of a large part of
the typical scalability concerns, we acknowledge that they are
not exhaustive: some research work will lay at the intersection of
scenarios and others may not exactly fit any scenario.

For systems handling many users, either interacting indepen-
dently or in direct or indirect collaboration to complete a common
task, scalability is understood as the capacity to accommodate for
more users. In Glemarec et al. [34], the main challenge is to handle
multiple user sessions at once: the problem size here is the number
of users, while the effort variable is the system performance in
terms of latency. In Deng et al. [35]], the challenge is to collect
a large training set of images with labels indicating the presence
or absence of a set of objects of interest, by querying humans on
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a crowdsourcing platform. Here, the problem size is made of the
number of images and the number of objects of interest, which can
both be large and users of the system are technically the resources
available to complete the annotation task for a dataset. The effort
variable is the number of human queries, which directly correlates
with the financial cost of completing the annotation task for a
dataset.

Similarly, systems using non-conventional display sizes (mobile
displays or tiled displays) sometimes take interest in scalability
with the number of composing screens/projectors or the overall
display size. The dependent variables describing effort can be
related to rendering characteristics like pixel error and compute
time (in the form of frame rate) or user task completion time for
testing human perceptual or cognitive limits in such configuration
(e.g., [11]).

4.6 Dependent Scalability Issues

Visualization system papers may include multiple aspects of
scalability (visual, computing) or multiple components (query-
ing component, rendering component) for which the scalability
concerns differ and may depend on each other. We focus on this
case to show how multiple scalability concerns can be modeled
using multiple instances of the model, as illustrated in

A common pattern in large, interactive visual analytics systems
is to render aggregated data and rely on a precomputation step
to build a data structure supporting fast queries for interactive
exploration. Some examples among many are data cubes used
for multidimensional and spatiotemporal data exploration (e.g.,
Nanocubes [36]), prefetched indexes for brushing and linking
interactions [37]], or custom in-memory hierarchical structures for
detail-on-demand interactions [38]. In these systems, the scalability
concern of the rendering step is trivially solved by representing pre-
aggregated data, in the form of heatmaps, histograms, or clustered
graphs for instance. Detail-on-demand interactions are based on
the querying system that is, in turn, the focus of the scalability
concern for increasingly large data. The use of a precomputed data
structure to speedup queries trades performance improvement for
query time at the cost of the precomputation step and the usage of
additional memory to store it. Across systems, the assumptions and
concerns differ regarding this preliminary step. In Nanocubes [36]],
the storage size of the data structure is a primary concern since the
target is to store it on a laptop. However, their computing time is
of lower concern, suggesting data is assumed to be static. In ASK-
Graph [38]], no scalability concern is listed for the precomputation
step, however, the data structure computation is parameterized by
the available resources: available RAM and maximum number of
edges that can be processed in a few seconds.

Scalability concerns can also vary as research advances. For
instance, for spatial and multidimensional data cubes, Hashed-
Cubes [39] is presented as an improvement over the state of the
art regarding storage size and query time. In addition, they also
present building time as an important factor, unlike previous work,
and mention supporting dynamic data as future work.

This illustrates that the criteria of scalability can be different
across the components of a system (precomputing, querying,
rendering), sometimes functioning together. They also depend
on the context of application, e.g., static vs. dynamic data, or client
resource requirements. In turn, the amount of space dedicated to
these different levels of scalability concerns vary in articles.
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Fig. 3: Dependent scalability issues as multiple instances of the
model for a common pattern in large, interactive visual analytics
systems: aggregate visualization using a precomputed data structure
to enable fast interactions. Rendering the visualization has no
scalability concern since it is ensured, by design, to only handle
aggregated data. The focus is on scaling the querying step, while
the scalability concern for the precomputing step varies across
applications.

4.7 Comparison with Related Work

Related work mentioned factors and measures; they become our
problem size, resources, and efforts. The distinction between factors
and resources is clarified in our model. The nuisance variables
can belong to problem size or assumptions, depending on their
nature. Regarding multi-criteria optimization advocated by Duboc
et al. [9], our efforts could be expressed with a combination of
criteria if desired. In addition, our model also specifies different
meanings and expressions of scalability that are usually implicit
in each community or domain but can be hard to understand
when the readers are from very different backgrounds. Finally,
visualization and visual analytics are evolving domains in search of
better evaluation methods. Therefore, the meaning and expression
of scalability will evolve and require clarification. We that believe
our model can be a first step to encourage the diversification
of scalability definitions and help support the development of
scalability evaluation methods, especially for research related to
the Visual Scalability and Cognitive and Perceptual Scalability
scenarios.

5 LITERATURE ANALYSIS

To relate our model and scenarios to the current state of vi-
sualization research, we conducted a structured and systematic
literature analysis based on a coding scheme describing the different
components of the scalability model. We carried out iterative
coding rounds to form and refine a coding scheme describing the
meaning and reasons supporting scalability claims in visualization.
Methodologically, we followed a manual coding process that
originally stems from qualitative research and allows for the
systematic and structured analysis of literature under ill-defined
tasks that necessitate human coders [40]. Such approaches have
been frequently used in visualization research, for instance, to char-
acterize evaluation methods [13]], [41]], interactive dimensionality
reduction [42], and ensemble visualization [43]. In the following,
we describe our methodology, analysis process, and quantitative
and qualitative results.
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Fig. 4: Number of papers and full-text occurrences (band: min-max,
line: mean) of the terms scalability and scalable in the sample
of 127 papers, per year. The first three columns show charts per
conference, the last column shows charts for the whole.
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Fig. 5: Top-17 occurring expressions including the terms scalability
or scalable with number of papers from the sample of 127 papers
that use them in their full-text content across years and all papers.

5.1

The selection of papers included in our study is based on the
vispubdata dataset [44], containing 3394 papers from the IEEE
Visualization (VIS) conferences from 1990 to 2020 (conference
and journal articles as well as panel or poster papers). This initial
set of papers was filtered automatically to select papers including
the prefix scalab- at least once in their abstract, title, or keywords
in order to capture papers for which scalability was a main concern.
This process generated a set of 157 relevant papers. After removing
30 papers because they mentioned scalability but did not discuss
it, we were left with a corpus of 127 papers: 35 conference, 87
journal, and 5 others articles, among which 6 were of length 5
pages or fewer (full list available at https://osf.io/xrvu7/).
gives an overview of the frequency of how often the
respective terms were used in these papers, organized by year and
conference. shows the frequency of the top-17 occurring
expressions related to scalability. This list gives a picture of the
different aspects and meaning of scalable and scalability.

Literature Sample

5.2 Coding

The coding process started with an open-coding phase during which
four co-authors of the paper, who developed the model, reviewed
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TABLE 1: Summary counts for the corpus. Left: Conference counts
for the collected and coded papers. Right: Counts for papers
excluded, with or without consensus coding, and edge cases.

Venue  Coll. Coded Set Count Edge Cases
VAST 44 37 Excluded 30 -
Vis 47 36 Coded 127 14
SciVis 19 16 Consensus 21 5
InfoVis 47 38 No consensus 106 9
Total 157 127 Total 157 14

32 seed papers to identify existing variables for the components of
our conceptual model for scalability. This phase allowed us to get
an overview of the selected literature and led to the development
of categories of fixed codes constituting a coding scheme. After
multiple iterations, the coding scheme was tested by the four coders
on a small sample of 12 papers. The coding scheme is structured
by the two objectives of our literature review, which are to describe
(1) what the scalability claim is about in a paper, and (2) how
scalability is presented in the paper. The coding scheme has four
categories of codes for the former, and two for the latter:

Input covers the problem sizes and resources of the effort function
associated to the paper’s scalability claim, i.e., they describe
what varying parameters are considered, jointly to simplify
the coding book. Inputs can be multiple: Data Size, Data
Characteristic, Compute Nodes, Display Resolution/Units,
User/User Sessions.

Output covers the outputs of the effort function, i.e., the costs
or dependent parameters considered in the scalability claim.
Outputs can be multiple and may be qualitative (not measured):
Compute Time, Memory Consumption, User Performance,
Error/Quality, Clutter/Readability.

Meaning covers three different, mutually exclusive, meanings
for being scalable, defined in relation with our model’s
effort function. Function Shape characterizes scalability based
on the shape of the function (constant, linear, bounded).
Extend Domain defines being scalable as being able to handle
problems of larger size than before. Better Performance
defines scalable as the exhibition of better performance
compared to another technique, i.e., having a lower effort
for the same inputs.

Scenario covers the four scenarios from [Section 4} Algorithm &
Rendering Scalability (ALGO), Parallel Computing Scalabil-
ity (PARA), Visual Scalability (VISU), Cognitive & Perceptual
Scalability (PERC). We hypothesize that these scenarios
will be able to capture/separate the different definitions of
scalability and practices of visualization subcommunities.

Expression describes how explicit the effort function is in the
paper: Model Function and Asymptotic Function for function
expressions, Plots/Tables and Few Samples for sample points.

Reasons gives possible arguments exposed, or evaluations con-
ducted to support the presented expression of the effort
function and associate meaning of the scalability claim:
Unspecified, Didactic/Argumentative, Theoretical Validation,
Experimental Validation, Case Study/Examples.

During a second phase, the two other co-authors, who did not
participate in the preliminary phase leading to the coding scheme,
coded the complete set of papers, to validate the coding scheme and
quantitative insights from the literature. These new coders were first
introduced to the model and trained on four examples. Some aspects

Input Output
User/UserSession Clutter/Readability
ScreenResolution /Units Error/Quality
ComputeNodes UserPerformance
DataCharacteristic MemoryConsumption
DataSize ComputeTime

Meaning Scenario
BetterPerformance ALGO
ExtendDomain P\ﬁgﬁ
FunctionShape PERC

Expression Reasons
FewSamples CaseStudy/Examples
ExperimentalValidation
A Plc.>t|s:/Tab.Ies TheoreticalValidation
symptotic unct!on Unspecified
ModelFunction Didactic/Argumentative

0 1 0 1

Fig. 6: Distribution of codes for the 127 coded papers.

initially part of the coding scheme (number of comparisons with
other techniques, assumptions) were removed for simplification
and User/User Session added to input codes. The coding process
progressed in batches, identical for both coders, starting with
the 12 papers previously coded for calibration. After each batch,
the coders reviewed low-agreement papers to obtain a consensus
coding. During that process, they excluded 30 papers for lack of
details about scalability and identified 14 “edge case” papers that
barely fit into the coding scheme. Out of the 127 papers from the
coded corpus, 21 were assigned a consensus coding and 106 were
assigned the average of the two coders’ coding (see[Table T). The
inter-coder agreement was .72 for the 127 papers when including
the initial low-agreement codes of the 21 papers that benefited
from a consensus coding, and .76 for the 106 papers that did not
(Bennett, Alpert and Goldstein’s S [45] with Jaccard distance).
Using the interpretations of Cohen’s kappa, these scores denote
substantial agreement (between .61 and .80).

5.3 Quantitative Results

An overview of the coding results for our corpus is shown
in Most frequently, scalability claims are related to
Data Size (Input), and concerned with Compute Times and/or
Clutter/Readability (Output). The most typical scalability claim
is Extend Domain (Meaning). The most frequently represented
scenarios are Algorithm & Rendering Scalability and Visual
Scalability (Scenario). The distribution of the expression codes
follows their level of care for strictness with the majority of papers
reporting at least some aspect of scalability with singular examples
(Few Samples), whereas very few described the effort function with
the precision of a Model Function (Expression). Although linked
to the common big O notation for describing algorithm complexity,
the Asymptotic Function code remains rarely reported. The most
commonly found (non-exclusive) reasons to support scalability
claims are Didactic/Argumentative, Case Study/Examples, and
Experimental Validation.

To highlight the relationship between the codes of the coding
scheme and identify those that are consistently used together,
we look at the correlation between codes across the corpus.
Figure /| shows the clustered correlation matrix of the codes for
the 127 papers. We find the most common coded scenario, VISU
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Fig. 7: Correlation between codes as a clustered heatmap. Rows
and columns are ordered identically, following the order of
the dendrogram leaves. Cell hue indicates cluster membership
following the six clusters from the represented dendrogram cut
(hierarchical clustering: Ward linkage criteria), while cell intensity
encodes correlation coefficient between codes (Pearson coefficient).

(Visual Scalability), is linked to the codes Clutter/Readability,
Didactic/Argumentative, Case Study/Examples, Few Samples (in
blue), which describe almost all aspects of the typical visual
scalability scenario. The green cluster highlights the codes that
are related to the ALGO scenario, such as Model Function and
Function Shape. The orange cluster, less defined, includes the
PERC scenario with some related codes such as User Performance
(Output). We also find several, unsurprising, pairs of highly
correlated codes such as Compute Nodes and PARA (red), or
Asymptotic Function and Theoretical Validation (purple).
[Figure 8| presents an overview of the papers. At the top, papers
are represented as a UMAP [46] 2D projection of their coding and
colored by coded scenario. The UMAP projection reveals a clear
split between two clusters. At the bottom, the average coding per
scenario and per cluster is represented as a heatmap. The cluster on
the right resembles papers approaching scalability primarily from
a visual angle, as characterized in the VISU scenario (blue), with
Clutter/Readability as an effort variable. The papers from the other
scenarios in this cluster are likely those that discuss aspects of
scalability that are primarily associated with the blue scenario (i.e.,
Didactic/Argumentative, Case Study/Examples, Few Samples). For
example, three of the red papers are related to tiled-displays (screen
or projectors). The cluster on the left covers papers approaching
scalability primarily from a compute angle, as characterized in
the ALGO (green) and PARA (red) scenarios, with Compute Time
as an effort variable. The papers from the other scenarios in this
cluster are those that discuss aspects of scalability that more often
associated with the green scenarios (i.e., Plots/Table, Experimental
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Fig. 8: Overview of the coded corpus. Top: UMAP embedding of
the 127 papers of the corpus based on their codes (excluding the
Scenario) and colored by scenario. Bottom: distribution of papers
codes per coded scenario and per projection cluster (left/right). Cell
intensity indicates the proportion of papers from the row group that
have the column code: black indicates all, white none.

Validation). Overall, this overview shows that multiple aspects of
scalability coexist in the community, and even within our four
stereotypical scenarios. It also hints to categorizations of scalability
papers finer than, or different from, our scenarios.

5.4 Results per Scenario

The four scenarios were devised after reviewing part of the corpus
papers, being aware that some papers will differ from stereotypical
cases. In some cases, the scenario in which the scalability claim
was demonstrated is different from the scenario of the overall paper.
For example, some of the papers that belong to the ALGO scenario
demonstrated the scalability using parallel implementations (i.e.,
PARA scenario) or by conducting a user study (i.e., PERC scenario).
During the coding phase, coders assigned a single scenario per
paper and picked the one that matched more closely the overall
paper context. While the majority of papers were successfully
coded into one of the four stereotypical scenarios, the coders also
found recurrent types of papers within each scenario.

In the ALGO scenario, the typical paper presented rendering
algorithms for scientific data describing biomedical, spatial, or
physical phenomena. As shown by their average coding in
these papers typically have Data Size and/or Compute Nodes as
input, and Compute Time and/or Memory Consumption as output.
To measure the scalability of the proposed technique or method,
they usually conduct an extensive Experimental Validation by
varying the input parameters and the results is often communicated
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in forms of Plots/Tables. Another type of papers from this
scenario address multi-projector displays (6 papers). In these papers,
scalability applies to a new calibration method and is relative to
an increase in the number of projectors, which challenges the
quality of the final picture. Here, the encoded input corresponds to
Screen Resolution/Units, while the encoded output corresponds to
Error/Quality and, in some cases, Compute Time. In these papers,
the scalability claim is often demonstrated by showing few pictures
of the final tiled display (i.e., Few Samples).

The typical paper in the VISU scenario introduced a new
visualization technique, or a novel visual analytics tool that aims at
solving specific analysis tasks for targeted domain users. As shown
by the average coding for VISU papers in the typical
coded input and output are Data Size and Clutter/Readability,
respectively. The typical scalability claim is demonstrated by a Case
Study combined with Didactic/Argumentative discussion based
on few and sometimes only one dataset and has the meaning of
Extended Domain. About half of these papers address the scalability
problem by employing summarization, aggregation, or sampling
strategies on the data layer, the presentation layer, or both and often
in combination with interaction techniques (27 papers). The rest
address the scalability problem with new techniques (e.g., layout,
interaction) or new visual analytics systems combining existing
visualization methods, but without aggregation.

Papers in the PARA scenario typically describe a new parallel
implementation of an existing algorithm, or a new system using a
parallel architecture that can scale up to numerous User Sessions
without introducing undue delay (i.e., load scalability).

Finally, only 5 papers matched the PERC scenario. These papers
are generally concerned with measuring User Performance relative
to varying Screen Resolution/Units and DataSize, one example
being the study of perceptual scalability on large tiled-display
walls. While no single scalability meaning emerges, all papers
present Experimental Validation with results communicated in the
form of Plots/Tables.

5.5 Edge Cases

Throughout the coding process, the coders marked 14 papers as
difficult to code using the coding scheme. These papers were
additionally open coded for the reasons why they did not fit, to
evaluate the limitations of the coding scheme and the conceptual
model. After an open-discussion session with all co-authors, we
identified four different, non-exclusive, reasons of difficulty:

1) Require inference: 7 papers presented a scalability claim
(often in the beginning) without establishing a clear link
between scalability and the results in the rest of the paper. A
common pattern was a switch in the terminology used (e.g.,
using scalability first and then performance).

2) Use of a scalable related-work component: 2 papers
presented visualization systems relying on a subcomponent or
a supporting system said to be scalable. They discussed the
scalability of another system, without necessarily relating it
to the scalability of their contribution.

3) Limited scalability: 1 paper did not claim scalability but
rather discussed scalability issues and limitations of their
work. While this is a good scientific practice, it was difficult
to code, particularly the Meaning code.

4) Other meanings: 2 papers used the word scalability to
describe concepts we believe could be best described by
other words, e.g., adaptability, automation, flexibility.
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In the latter case, we believe authors could use our model to
describe the discussed aspects of scalability and thus, convey a
clearer and more meaningful message. While these edge cases did
not challenge the coherence of the model, they raised questions
about the difference between scalability and other system properties
like flexibility.

5.6 Summary and Discussion

While the coder agreement confirms the validity and applicability
of our model to visualization research, we also observed that the
coding scheme fell short of precisely capturing the scalability
concern or claim of some papers in our corpus. One reason is
that several notions of scalability can coexist in the same paper,
for instance connected to different components. For these cases,
the paper coding ended up describing multiple aspects as a single
effort function, but also grouping different types of reasons together
even when they each corresponded to a single effort variable.
Although not covered by our coding process, the multiple scalability
considerations in a paper could be coded more precisely as different
coding instances. Another reason is the lack of consistency in the
terminology used that made it difficult in some cases to connect the
general scalability discussion to detailed evaluations and results. In
other cases, it was not clear if the authors wanted to communicate
an improved scalability or scalability limitation through their
evaluation. Our model is meant to address most of these cases, to
help authors clarify and expose their claims.

The literature analysis gives an overview of the types of
scalability discussed in the corpus and how scalability claims
are presented and supported in the corpus of papers. The most
frequently represented scenarios are Visual Scalability and Al-
gorithm & Rendering Scalability with Computation Time and
Clutter/Readability being the two most common types of effort
considered. The meanings of scalable are various even within the
same scenario category, the most common being the ability to
supporting larger problem sizes than before (Extend Domain).

We acknowledge that this overview depends on the balance
of topics in the venues chosen for our corpus of papers. Our
corpus may be biased toward less of the traditional scalability
papers, from the computer graphics community for example, that
may be presented at IEEE VIS but originally published in TVCG
and not covered by our pool of papers. However, we believe
that the IEEE Visualization (VIS) conference publications are, at
least for the last decade, representative of the publications in the
domain. Moreover, our filtering process also comes with some
limitations: similar to our corpus including papers using scalable
to refer to concepts different to our interest (false positives),
some other papers discussing scalability issues under different
terms or only in the body of the paper could be missing (false
negatives). This could have affected papers from the Cognitive &
Perceptual scenario for instance, as they represented only a small
portion of our corpus. Our filtering process shows that roughly
5% of the papers were concerned with scalability at the IEEE
VIS conferences. To provide some context, we filtered the list of
publications from other venues relevant to the visualization domain
using the same criteria. We report the numbers and portion of
collected publications for these other corpora of papers in
Around 5% or fewer papers are recovered for venues with a broad
scope (VIS, EuroVis, TVCG), and around 20% for the EGPGV
and LDAV symposia, which are focused on parallel/large-scale
graphics and visualization. This is not surprising since scalability
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is a major topic in parallel/large-scale visualization, and less so in
other conferences with a broader scope. We can anticipate that the
proportion of papers discussing scalability in conferences with a
broader scope will raise as other visualization subcommunities also
develop definitions and methodology to evaluate scalability.

TABLE 2: Number of publications collected for different venues,
using the same filtering approach as used for our corpus.

Collected

157/3394 (5%)
44/1263 (4%)
209/3913 (5%)
118/4447 (3%)
39/212 (18%)
43/191 (23%)

Venue

IEEE Visualization (VIS) conf. (1990-2020)
EuroVis (2000-2020)

IEEE TVCG (1995-2020)

CGF (1982-2020)

EGPGV (2002-2020)

LDAV (2011-2020)

6 RECOMMENDATIONS AND EXAMPLES

According to our review, the term scalability is used with multiple
meanings and the claims of scalability are sometimes difficult to
interpret. The different visualization subcommunities may have
different traditions related to scalability. Most of them borrow
methods from other computer science fields such as algorithms
and databases. The HPC visualization community is familiar
with scalability issues but, when attempting to publish work
spanning across subcommunities should make sure the well-
known HPC/visualization issues are understood by the others.
Similarly, scalability about human issues may be understood by
communities connected to HCI or psychology but not always
by e.g., the computer-graphics community within visualization.
Therefore, we see the need for a clear communication between
the wide range of fields and subcommunities that play a role in
visualization research.

In the following, we provide a set of recommendations for
researchers without a scalability tradition and authors targeting
the diverse crowd spanning multiple visualization communities, to-
gether with example papers from our corpus. Clarifying scalability
claims will benefit the research process, the readers of the resulting
papers, their reviewers, and eventually the visualization research
community as a whole. It could even guide future research to cover
scalability aspects more thoroughly.

For Researchers

We are convinced that considering scalability right from the start,
and all the way through, is highly beneficial to a research project.
We envision that doing so is similar to the thorough consider-
ations that researchers already put today into other evaluation
questions [[13]], [41], [47].

Incorporate scalability early on: Assessing scalability needs
planning, and it cannot be done well at a late stage of the work.
Choose a scalability goal early and decide how to support
your scalability claims. In particular, incorporate scalability
considerations in the evaluation of your work.

Sharpen the expression and meaning of scalability: Only a
few visualization papers try to model or measure a scalability
function, or mention the asymptotic behavior. Several papers
just report a few measurements. Higher-level characterizations
are valuable because they provide a more informative view
on scalability. Boosting the description of the scalability
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expression and meaning has to be included early in the
research process.

For Authors

The following recommendations can help authors improve the
presentation of scalability in papers, especially when unfamiliar
with scalability issues. Most of these recommendations are a follow-
up of the literature review and the difficulty found when parsing
the edge case papers.

Clarify scalability: Stating or explaining the meaning of scalabil-
ity in the context of your work can help resolve ambiguity.
The explanation could be kept short as long as the meaning
becomes clear. This can be done by relating your work to
existing and well-established scenarios (e.g., [48]]).

Consider our conceptual model: We expect that many explana-
tions of scalability can be simplified by using our model.
In particular, by describing problem size, effort considered,
resources, and assumptions.

Take similar papers as examples: Our structured analysis facil-
itates finding papers that target certain aspects of scalability
and, thus, are inspiring presentations for your own work.

Discuss limits and assumptions: Many techniques are scalable
up to some limit and/or under certain assumptions, and these
should be explicitly mentioned. Similarly, complex systems
tend to be hard to evaluate—the evaluation is often restricted to
picking just a few measurements. The underlying assumption
for the evaluation should also be documented (see [49], [50]).

Do not overload terms: Do not use the words ‘“scalability” or
“scalable” as synonyms for “efficient,” “fast,” “good perfor-
mance,” “faster than baseline,” etc. Refrain from using them
as buzzwords and use terms consistently to avoid ambiguity.
The paper by Abello ef al. [|38] serves an example where
different concepts such as scalability, flexibility, and usability
are distinguished.

Match the description and importance of the claim:
Supporting a strong claim of scalability requires explanations,
sometimes equations, tables, or figures. Weaker scalability
claims can get by with shorter explanations and less
supporting evidence. Choose the right balance according to
the importance of scalability in your paper (e.g., [51]]).

Consider more than one scalability claim: A paper may make
multiple scalability claims, or present different scalability char-
acteristics that are then combined into an overall scalability
assessment, as explained in Document scalability
for each of the claims, considering the above recommendations
(e.g., 510, 152], [53[).

Provide a nil-report: If a solution to a concrete problem is
proposed but does not scale, report it—as an element in a fair
assessment of your work. It may encourage others to improve
upon your solution (e.g., [54], [55]).

For Reviewers

More explicitly considering scalability can also be beneficial when
reviewing papers.

Be specific with required revisions: When asking for more in-
formation about scalability, be specific. The above recommen-
dations for paper authors can be used to clarify expectations.



SCALABILITY IN VISUALIZATION

For the Research Community

Finally, we also see the role of the visualization research community
as a whole.

Fostering interdisciplinary communication: Many communi-
ties of visualization, but even more importantly, outside of
visualization, already have well-understood interpretations and
meanings of scalability. However, these often differ across
subfields of computer science. Therefore, an explicit descrip-
tion of the type of scalability implied can help communicate
research outside the community. This is particularly important
for research that will concern such an outside audience.

Include scalability in best practices: We should strive to im-
prove the way we discuss scalability in our papers, to better
compare our approaches and make progress. To this end,
existing best practices for conducting and reporting research
should be further extended to cover the relevant scalability
considerations.

Applying the Model: Coding Examples

In[Table 3] we provide examples of how we coded the paper corpus.
We do so by quoting selected excerpts from the selected papers
and show how they map to our coding scheme. These excerpts are
good examples of ways to mention the main model components
in a research paper, which we recommend authors to do to present
definitions accessible for all visualization research domains.

7 CHALLENGES AND FUTURE DIRECTIONS

Clarifying scalability in visualization goes beyond improving the
current state of communicating research results, it also highlights
open issues for the visualization research community.

7.1

Characterizing scalability according to our model is tightly linked
to the more general problem of evaluating visualization. There
is an ongoing discussion in the visualization community about
appropriate ways to perform evaluation [13]], [41], even a full
workshop dedicated to the topic since 2006 (BELIV).

Evaluation is especially hard when we want to assess human-
related aspects. This directly relates to the problem of measuring the
effort in our conceptual model. With experiments involving human
participants, one can arrive at samples of the measured outputs.
However, some performance measurements are notoriously hard to
characterize or measure, such as readability and understanding.

Therefore, it is interesting to use existing or develop new
proxies for measurements such as memorability, readability, or dis-
criminability [[66]]. Even harder is the development of computational
models for evaluation, or tools to facilitate the evaluation of tech-
niques and systems such as EvalBench [67] and Touchstone [68].
They would be extremely useful to support faster evaluation and
enrich the scalability expression, but they can be very difficult to
do in general; they apply to visualization or interaction techniques
but not to systems. However, fundamental evaluation issues are not
restricted to human-oriented studies. For example, it is already hard
to characterize all relevant input parameters and assumptions for a
complex technical system such as a multi-GPU cluster running an
advanced volume rendering system. Control of input parameters
is also related to the issue of external validity of experiments,
for example, for real-world data (uncontrolled) vs. synthetic data
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(controlled, but not realistic). One promising solution could be
the extension of the approach of generative data models [69].
This is also linked to developing additional quantification methods
for visualization [70]. In summary, we see the need for further
developments in evaluation methods to improve the characterization
of scalability.

7.2 Reproducibility, Comparison, and Benchmarking

Addressing scalability in a visualization article is important not
only for the paper but also for the community, to build knowledge
about the comparative scalability of related research work. We are
interested in monitoring the progress in research on scalability over
the years, but we still lack consistency in scalability reports and
meanings. Reproducibility and replicability [[71] help tremendously
for these comparisons and the community should incentivize
visualization research to increase the number of reproducible
articles. Otherwise, similar articles may decide to report about
their scalability with very different choices, defeating or lowering
the purpose of reporting scalability. We do not argue for a total
alignment of research methods but rather to a convergence toward
a consensual set of effort measures, methods to collect them, and
to report them, with flexibility in reporting extra measures or using
alternative, hopefully, improved methods.

With sufficient maturity, these comparisons should become
benchmarks. Proper benchmarking and comparison between vi-
sualization contributions are important to drive research in our
community [72], [73]]. While these are relevant in general, they
lead to specific challenges for scalability research because they
need to include variations in problem size and properly control
the assumptions. There are a number of (implicit) benchmarks
in our community, for example, including the Contests at IEEE
InfoVis, VAST, SciVis, and the Graph Drawing conference, but
these usually rarely consider scaling the problem size. A related
problem is the comparison of the resulting efforts. While this is
doable for individual measures (for example, comparing overall
compute times), it might be harder for cases that come with multiple
measurements (for example, for different components of a complex
system; or when assessing several facets such as speed, accuracy,
readability, etc.). This leads to considering multiple efforts or
multi-criteria efforts, mentioned by Duboc et al. [9] but new in
visualization.

7.3 Role of Scalability in Future Research

A quite fundamental question is the extent to which we—as a
community—should consider scalability in future research. Should
a majority of papers address scalability as a relevant aspect to
characterize visualization contributions? Or is it more appropriate
to restrict the discussion of scalability to research in core subfields?

The SciVis community has been involved for many years
with HPC where scalability is central. In-situ visualization [[74]]
is strongly concerned with scalability but in the sense of not
interfering with HPC code while providing useful visualizations
and sometimes steering. The VAST and InfoVis communities
have no identified subfield addressing scalability explicitly, except
progressive visual analytics [[75].

The community should keep track of its advancements in
scalability and report its progress in a more structured way.
Exposing progress in scalability would be an incentive and a
useful asset for our community.


https://beliv-workshop.github.io/
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TABLE 3: Coding examples using excerpts from our corpus to illustrate each component of our model.

Input — Outputs

Screen resolution/units — User performance

Data size, Compute nodes

User/User session, Compute nodes — Compute time
Screen resolution/units — Compute time, Error/Quality

Data size, Data characteristics — Compute time
Data size — Clutter/Readability

“We evaluate the scalability limits of large, high-resolution, immersive displays [... ] Our main
metrics concerned user performance, specifically elapsed time.” [56]

“[...] is scalable with respect to both large data sets as well as future graphics hardware.” [57]
“Our framework should support many remote user sessions simultaneously. The performance should
scale under an increased rendering load as hardware resources are added. [. .. ] our performance

metric is the turnaround time.” [58)]
“Our approach efficiently scales to projector arrays of arbitrary size without sacrificing alignment

accuracy.” [59|]

“[...] we evaluate our system to assess scalability in data size and data dimension.” [60]
“After reordering, adjacent tasks are aggregated to form a single task block, which will significantly

reduce the clutter in visualization and actually make the schedule visualization more scalable.” [|61|]

Meaning

Better performance
Extend domain

Function shape

“[...] we find that Protovis provides up to 20xhigher frame rates than prefuse [...]” [62]

“Our study was designed to investigate the perceptual scalability of node-link diagrams for graph
connectivity tasks, identifying the graph complexity and size beyond which they cease to be useful for
such tasks.” [63|]

“[...] the frame times show a favorable sublinear scaling instead of linear scaling as the number of
render sessions increase.” [58|]

Expression & Reasons

Plots/Table

Asymptotic function
Case study

Experimental validation

Asymptotic function, Theoretical validation

“As shown in Table 1, Protovis consistently has frame rates an order of magnitude higher, up to 20
times faster for large graphs.” [|62]

“Overall bound: O(nlog(n)+Na(N)+ g x NS).” [50]

“We demonstrate a case study with 276 samples which is considered a large study of mRNA-seq data
by current standards [...]” [64)]

“[...] we describe additional experiments to evaluate the scalability of Dis-Function in a controlled
manner. Specifically, we examine the performance of Dis-Function as the dataset grows in size (in
terms of number of rows) and in complexity (in number of dimensions) independently.” [60]

“These fields can be computed in linear time on the GPU and queried in constant time. Therefore,

the complexity of the algorithm is reduced from quadratic to linear.” [|65|

7.4 New Scenarios

With our quite flexible conceptual model, we want to keep scalabil-
ity open for further interpretation and scenarios. In particular, we
want to specifically avoid boxing-in any future research; that is why
we did not aim to define scalability but instead, we provide a generic
framework. We envision that new scenarios, or even a new set of
scenarios, and best practices will be developed by our research
community. This could even include new strategies to improve
scalability, for example, new paradigms in computing, alternative
ways to deal with various trade-offs, or novel representations.

One challenging problem relates to summarization techniques
in visualization, such as Scagnostics [76] or “Accordion Draw-
ing” [77]], designed to remain readable by selectively showing
specific aspects of the data. This approach reduces the problem size
drastically, using clustering, sampling, or aggregation techniques,
to address the display resolution bottleneck for instance. We think
this is a specific case of scalability claim, as it corresponds to a
trade-off between the level of information shown and the problem
size. More work is needed to properly characterize the scalability
of these multi-aspect techniques; it will require improving how
assumptions are reported in addition to identifying the meaningful
measures.

8 CONCLUSION

We presented a conceptual input—output model that allows us
to characterize different scenarios of scalability in visualiza-
tion research. We used the model as a lens to systematically
analyze existing research on scalability in visualization, derive
recommendations for communicating scalability across different

subcommunities, and highlight the open issues for scalability in
the community. We hope that our work will help others, especially
in the information visualization and HCI communities, to more
easily and precisely characterize their scalability claims, and also
to inspire them to conduct more research into scalability definition
and associated evaluation methods. After all, the increase of data
will most likely continue and we, as a community, will need to
keep pace by ensuring that our contributions “scale” along.
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