
A Framework for Pervasive Visual Deficiency Simulation
Christoph Schulz* Nils Rodrigues* Marco Amann Daniel Baumgartner Arman Mielke

Baumann, Christian Michael Sedlmair* Daniel Weiskopf*

University of Stuttgart

ABSTRACT

We present a framework for rapid prototyping of pervasive visual
deficiency simulation in the context of graphical interfaces, virtual
reality, and augmented reality. Our framework facilitates the emula-
tion of various visual deficiencies for a wide range of applications,
which allows users with normal vision to experience combinations
of conditions such as myopia, hyperopia, presbyopia, cataract, nycta-
lopia, protanopia, deuteranopia, tritanopia, and achromatopsia. Our
framework provides an infrastructure to encourage researchers to
evaluate visualization and other display techniques regarding visual
deficiencies, and opens up the field of visual disease simulation to a
broader audience. The benefits of our framework are easy integra-
tion, configuration, fast prototyping, and portability to new emerging
hardware. To demonstrate the applicability of our framework, we
showcase a desktop application and an Android application that
transform commodity hardware into glasses for visual deficiency
simulation. We expect that this work promotes a greater understan-
ding of visual impairments, leads to better product design for the
visually impaired, and forms a basis for research to compensate for
these impairments as everyday help.

Index Terms: Human-centered computing—Visualization—
Visualization systems and tools; Human-centered computing—
Accessibility—Accessibility systems and tools

1 INTRODUCTION

There are various approaches to visual disease simulation [3] and
compensation [20]. While these provide computational models for
various aspects of the visual system, they are not openly accessible or
difficult to adapt to new emerging hardware due to technical limitati-
ons. Specifically, for deficiency emulation, immersive technologies
such as augmented and virtual displays offer a great opportunity for
more realistic simulated experiences that are likely to outperform
existing approaches for grasping differences in perception [1, 19].

When exploring these new technologies, we encountered several
technical limitations of existing approaches: Most research prototy-
pes focus on one deficiency at the time. However, a person might
suffer from multiple visual deficiencies at the same time. Even
if there is support for multiple aspects of human vision, technical
hurdles can impede portability.

To overcome these limitations, we have developed an open source
framework for visual system simulation in Rust, a modern systems
programming language. Our framework does not require any virtual
machine environment and has full GPU support without imposing
hard dependencies on platform-dependent APIs such as DirectX or
OpenGL. While omitting GPU support would have simplified the
software design considerably, virtual reality scenarios would have
suffered from low frame rates that quickly lead to dizziness [15].
Depending on the research focus, the application area, and the de-
sired properties of a software system for visual system simulation,

*e-mail: firstname.lastname@visus.uni-stuttgart.de

requirements may vary widely. Nevertheless, we have identified se-
veral non-functional requirements across many application domains:
ease of use, performance, extensibility, and portability.

Thus, we consider our framework more reusable and exceeding
the possibilities of simple research prototypes. Our intention is to
simplify the creation of content for researchers and the general pu-
blic by providing real-time-rendered images to explain differences in
perception. Moreover, we expect to facilitate research and develop-
ment of visual deficiency simulation and compensation. In this spirit,
we provide an augmented reality application as design aid along
with our framework that allows users to experience visual deficien-
cies, so that individuals with good vision may be able to recognize
these impairments and take them into account, e.g., when designing
products. Our implementation of the framework and applications
are publicly available on GitHub1.

2 RELATED WORK

Here, we only deal with physiological and technical aspects of
our framework, since there are already other works that focus on
lowering the barrier for replication and evaluation of visualization
techniques in general [2, 14].

Visual System Simulation For designing our simulator, we
relied on computer graphics and medical literature: The book by
Patzelt [17] provides a comprehensive overview of ophthalmology.
Fink et al. [9] successfully ray traced high ametropia as early as
1996. The first comprehensive framework for visual eye disease
simulation known to us was developed by Banks and McCrindle [3].
Their framework depends on Microsoft-specific technology and thus
lacks first-class support for widespread mobile devices and the web
platform in general, i.e., HTML5. Hence, their simulator is neither
portable nor open source. One year later, Truscott [18] investigated
alternatives to blurring to simulate presbyopia. Nießner et al. [16]
realized a simulation of human vision through eyeglasses. We have
taken these considerations as a basis for ray tracing the entire process,
i.e., from light hitting the eye all the way through the retina.

Deficiency Compensation Even though visual deficiency com-
pensation is not the focus of this work, we discuss the topic here
since it concerns the application of our framework. Liou [13] defined
a model to predict eye performance depending on parameters such as
contrast and defocus in 1996. Therefore, a quantitative comparison
of healthy and defective vision seems possible.

With the release of new head-mounted displays, several groups
have already built systems as every-day help: For example, Lauseg-
ger et al. [11] build a smart-glasses-based system to support color-
blind people. Essentially, their system shifts color computationally—
similar to what EnChroma glasses do physically [7]. Huang [10]
developed a HoloLens application that aids people in navigation
tasks by detecting small text and re-rendering it at appropriate sizes.
One of the most radical, non-intrusive examples we know is Third
Eye [20]. This system aids in shopping by translating vision into
vibrations that can be felt with a glove.

1https://github.com/UniStuttgart-VISUS/visual-system-simulator



Core-Layer

Application-
Layer

vss-web

Remote (WebSockets)ColorGaze Depth

config devices pipeline passes

vss-androidvss-desktop

vss-mobile

vss

Figure 1: UML component diagram showing the core and application
layers with various interfaces in between.

Simulator Sickness Due to the Android application, we also
looked into simulator sickness, since we wanted to avoid that users
become unnecessarily sick. Barrett [5] and Lawson [12] assess in
their reviews that more than two-thirds of participants experience
adverse symptoms. Moss and Muth [15] conclude that occluding
peripheral vision seems to be an important factor for triggering
simulator sickness. Therefore, we decided to implement a hand-held
mode as well as a head-mounted mode, although the latter seemed
to be more promising for immersion.

Moreover, we looked into actively combating simulator sickness.
One idea was to adapt the intensity of the simulation depending
on additional measurements. Unfavorably, there seems to be no
connection between non-intrusive measurements such as eye mo-
vement and simulator sickness [4]. However, strategic and automatic
modification of the field of view during a session is a promising
approach [8].

3 SIMULATION SYSTEM

Based on the observed limitations and desired applications above,
we have inferred a set of high-level requirements:
R1 Accessiblity Developers, researchers, and users want a low bar-
rier to entry so that they can easily benefit from our framework.
R2 Flexiblity Developers want easy integration, extensibility, and
portability to keep costs low.
R3 Validity Researchers want a simulation that reflects reality to
make valid claims.
R4 Responsiveness Users want to experience low-latency simula-
tion to prevent dizziness and foster immersion.

While we can achieve accessibility (R1) and flexibility (R2) si-
multaneously, there are also competing requirements that need more
consideration: On the one hand, the simulation should be valid in the
physiological sense (R3), which implies modeling and computation
of inherently complex aspects such as light. On the other hand, the
simulation should be responsive (R4), which imposes tight latency
budgets. The compromise we found here is that we leverage the
power of GPUs and only simulate the relevant aspects of light. The
technical basis for efficient and reusable GPU-based software lies in
good software design, i.e., zero cost abstractions and well-defined
interfaces. To this end, we have divided our software system into
multiple layers (Figure 1): At the core layer, there is a reusable,
platform-independent package that contains components for configu-
ration, remote control, input-output devices, the simulation pipeline,
and its rendering passes. At the application layer, which builds on
the core layer, there are platform-dependent packages for integration
into the respective platforms.

3.1 Core Layer
The core layer is bundled into a library that defines interfaces for
the simulation while providing common functionality such as con-
figuration. This ensures easy setup for user studies, better repro-
ducibility, and thus is useful for testing and research in general.

 

2
1

3 4

Conversion

Cataract

Lens

Retina

Color Depth

Output

...

Figure 2: Physiological pipeline of the human visual system and the
corresponding simulator pipeline. In human eyes (left), light passes
the lens system (1), and then hits cells on the retina (2). These
cells translate light into nerve signals that are propagated through the
visual pathway (3), all the way to the visual cortex (4). Our simulation
pipeline (right) approximates this process.

Additionally, our remote-control protocol allows for inspection and
reconfiguration of the simulation during operation. This is useful
for cross-device setups where an operator monitors and controls the
experiment. Another important factor is documentation—not just
for developers, but also for users. That is why we decided to keep
configuration and description of visual deficiencies closely coupled
to form a kind of knowledge base.

Implementation-wise, vss is a Rust library that depends on gfx2

for platform-independent graphics and other libraries. For configu-
ration, we use a JSON-based format that describes which device
(image, video, camera) should be used and which simulation as-
pects (passes) should be applied and how (parameters). The remote-
control protocol is realized using WebSockets. The simulation pi-
peline is composed of multiple rendering passes that are arranged
to match the processing stages of the visual system (Figure 2). We
opted to design the communication between these passes as swap-
chain, i.e., we only require two intermediate render targets.

Color-space conversion At the beginning of the pipeline,
there is a pass for color-space conversion: While we usually have
8-bit sRGB color and depth textures for image devices, the situation
is completely different for video and camera devices where we have
to combine three independent 8-bit YUV textures, each representing
one channel. Then the actual simulation passes follow; currently
cataract, lens, and retina.

Lens simulation In general, we simulate aspects of the lens
system using ray tracing. The cataract pass plays a special role and
thus is split apart as a pre-processing step. The lens pass has various
1D and 2D parameters such as overall lens geometry and a cornea
map. Note that the cornea is not part of the lens but part of the lens
system and thus implemented in this pass. The corneal map is used
to simulate deformations of the cornea, e.g., to give an impression
of corneal diseases regarding deflection of light. Next, the light rays
hit the retina.

Retina simulation We have kept this pass relatively simple for
now—conceptually more similar to a CCD sensor—with parameters
such as tint and a retina map. The retina map describes the distri-
bution and sensitivity of rod and cone cells. We provide procedural
functions to pre-compute this map for simulating glaucoma, macular
degeneration, and achromatopsia. However, it is possible to specify
a hand-drawn retina map.

At the end of the pipeline, the result is then displayed or written to
a file by the device. If new aspects should be added to the simulation,
a developer may either modify existing passes or add a new one.

2https://github.com/gfx-rs/gfx



Figure 3: Simulation of macular degeneration in Google Cardboard
mode using the back camera to achieve video-see-through.

3.2 Application Layer

To guide the development and demonstrate the usefulness of our
framework, we envisioned multiple application scenarios: (1) A
desktop application that is useful for research and development of
the framework. (2) A mobile application as portable looking-glass
demonstrator. (3) A generic post-processing-hook that can be in-
jected into other applications for usability testing. (4) An interactive
web application for the general public. All of these options are
potentially compelling for users. However, we wanted something
less technically complicated, easy to test, and with potential support
for augmented or virtual reality hardware. Thus, we selected the
first two scenarios, as the third one is technically difficult and the
fourth one implies cross-browser testing.

Desktop App Our primary goal was to demonstrate how easy it
is to set up prototypes, e.g., for studies. Thus, the desktop application
only features a command line interface and relies on the generic web
interface vss-web for interactive reconfiguration. Note that having
the configuration out-of-process turned out to be an advantage during
development since the configuration is not lost if the application
restarts. All in all, the code boils down to a few lines of code for
configuration, device creation, event processing, and some platform-
specifics. We hope this conveys a low entry barrier.

Android App Our goals for mobile simulation were more ambi-
tious: We wanted a fully-fledged application to publish on Play Store
for inexperienced users with video-see-through, a native-looking
user interface, and a knowledge base for educational purposes. Furt-
hermore, we have implemented a Google Cardboard mode (Figure 3)
so that users can experience visual deficiencies with a low-cost head
mounted display—this usually requires drilling a small hole into the
smartphone mount so that the light from outside reaches the camera.

The Android application is considerably more complex because
of performance requirements on mobile devices and required non-
negligible effort to achieve a native user interface. A particular
engineering hurdle was the foreign function interface between Rust
and Java to achieve zero-copy access to the camera data. In contrast,
we were able to generate the integrated knowledge base directly
from the documentation without duplicated work.

4 EXAMPLES

In this section, we demonstrate multiple visual deficiencies and com-
binations thereof that we can simulate using our framework. We list
various off-the-shelf examples in this section and show the simula-
tion results in Figure 4 and Figure 5. The physiologically motivated
passes of our framework (cf. Section 3) allow for simulation of
more deficiencies by simply adjusting the configuration. Thus, the
following examples are just a coarse sampling of all possible con-
figurations. For tracing implementation details and reproducibility,
all configurations can be found on GitHub.

4.1 Cataract
Denatured proteins in the eye’s lens become less transparent, leading
to clouding. In pronounced cases, this can be seen externally, making
the lens appear milky. The clouding not only hinders light on its
way through the lens but also scatters it. The results are faded colors,
blurred vision, increased sensitivity to strong light sources (glare),
and difficulties in dark surroundings [6, p. 338].

We start with an original unchanged image (Fig. 4a). It shows the
scene as it would look like without any defects. The cataract pass of
our simulation framework applies blurring as well as color fading to
this input image. Both effects are adjustable using parameters that
subjectively represent ranges from weak to severe defects. Weak
settings lead to a mostly blurred image (Fig. 4b), whereas more
severe cases also exhibit faded colors Fig. 4c.

4.2 Myopia and Hyperopia
Refractive errors (ametropia) are the most common deficiencies with
1–2 billion people being affected world wide [6, p. 926]. Widely
known among them are near- (myopia) and farsightedness (hypero-
pia). Both result from a mismatch of the eye’s length and too strong
or weak refraction along the light path, for instance in the cornea
or lens. Thus, the focal point moves in front of or behind the retina.
This offset varies strongly with the distance of viewed objects.

Our lens pass requires three inputs to simulate both deficiencies:
(1) The output image of the cataract pass. We use the artificially
rendered Fig. 5a as an example and assume that there were no
cataracts. (2) A depth map to obtain the distance corresponding to
each color pixel. We can produce such a map from the artificial scene
for demonstration purposes (Fig. 5b). In practice, users could also
import depth maps from external systems such as stereo cameras.
(3) The degree of near- and farsightedness in units of diopters. This
information is readily available to any wearer of glasses, making it
an easily adjustable parameter. Users of our framework can simulate
their sight intuitively and compare with one another due to the well-
known unit system.

Fig. 5c shows the result for nearsightedness with -2 dpt. Far-
sightedness makes objects appear less sharp, the closer they are.
Simulating it with +2 dpt leads to the result in Fig. 5d. Myopia
and hyperopia are opposing effects of the same cause. They are
mutually exclusive and the framework does not allow for a combina-
tion of both. Therefore, the parameter sign indicates what defect to
simulate.

4.3 Presbyopia
With increasing age, the human eye gradually loses the ability to
accommodate for different focal distances. This is due to protein
changes in the lens, making it less flexible [18]. The closest focu-
sable distance (near point) increases, making closer objects appear
blurred. Everything beyond the near point is still projected normally
onto the retina.

Our framework simulates presbyopia similarly to near- and farsig-
htedness. It requires a scene image and a depth map. The adjustable
near point serves as an external parameter and decides what portions
of the image become affected. Parts that are closer suffer from blur,
while farther segments remain unchanged. Using the near point as
a parameter is very intuitive as users can easily measure it themsel-
ves by simply positioning objects—such as a finger—as close as
possible while still seeing it sharply.

As presbyopia is caused by stiffness of the lens, it can appear in
combination with near- and farsightedness. Our framework allows
combining both refractive errors, as well as other additional defects.

4.4 Nyctalopia
Night blindness can have various causes that lead to slightly different
effects. They all have in common that sensitivity to low light is
reduced, leading to darkness in insufficiently lit areas in the visual



(a) Original image (b) Weak case of cataracts (c) Severe case of cataracts (d) Severe nyctalopia

(e) Protanopsia (f) Deuteranopsia (g) Tritanopsia (h) Achromatopsia

(i) Weak macular degeneration (j) Stronger macular degeneration (k) Weak glaucoma (l) Severe glaucoma

Figure 4: Simulation of non-refractive defects on an original unchanged image (a). Cataracts (b, c) showcase the first pass of our simulation.
Various retinal maps in the last pass can simulate other vision disorders (d–l).

field. Depending on the cause, for instance, loss of peripheral vision,
the affected area of the visual field might vary from person to person.

Our framework accounts for this by using a map of the retina in
its retina pass. This input is either supplied by external sources or
generated by setting a strength parameter in percent. To provide an
example, we use the original picture in Figure 4 and assume there are
no other deficiencies. The input image does not contain dark areas
but the output in Fig. 4d shows that people with strong nyctalopia
are still affected.

4.5 Protanopia, Deuteranopia, Tritanopia, and Achroma-
topsia

A healthy retina has cone cells as detectors for short (blue), medium
(green), and long (red) wavelength light. Anomalies in their functi-
onality, numbers, or distribution cause deficiencies in color vision.
For instance, partial or full loss of function in red detector cells leads
to protanomaly and protanopia (Fig. 4e) respectively. Loss of sig-
nals from green cells causes deuteranomaly and deuteropia (Fig. 4f).
Both deficiencies hinder the distinction of red and green color in the
human visual system, prompting the common name of red-green
blindness. The defects result in similar color perception but are still
distinguishable through subtle differences. Anomalies concerning
receptors for blue light cause tritanomaly or tritanopia (Fig. 4g),
also known as blue-yellow blindness. Missing or non-functioning
detectors for all three wavelengths removes all color information,
leaving only a monochromatic sensory impression (achromatopsia
or color blindness). As shown in Fig. 4h, having no functioning
color receptors in the eye’s macula affects not only color perception
but also visual acuity.

The retina pass handles all these deficiencies simultaneously. Co-
lor information from the input picture is transformed according to
a retinal map. This map is either supplied externally or generated
from three parameters that correlate to each color channel. The para-
meters allow for constant deficiencies between 0 and 100 percent of
impairment. External maps are better suited for simulation of ano-

malous cone cell distributions that might result from measurements
with real humans.

Our framework allows for simulating a combination of all types
of night and color blindness with a single retinal map: We encode
the three cone cell types into RGB-color channels and rod cells into
the transparency channel. Thus, regions of the retina with too little
cells can be subject to loss of color (cones cells) and blurring (rod
cells).

4.6 Macular degeneration

Progressive degeneration of the eye’s macula leads to blurring and
color-fading in the center of the visual field. Peripheral vision re-
mains unaffected. We can simulate this defect with our framework
by using the same retinal map as for color deficiencies (cf. Sub-
section 4.5). Blending multiple maps onto a single texture combines
deficiencies and thus results in an efficient simulation.

The retinal map either comes from an external source or the fra-
mework generates it according to one of two schemes: The advanced
method requires the adjustment of two parameters: A radius that de-
fines the affected area and a strength factor that indicates how many
cells will be removed. The simple method derives both parameters
from a single severity setting in percent.

Fig. 4i is an example of weak macular degeneration. The center
part only shows a loss of acuity and color. A stronger case, as in
Fig. 4j, has a blind spot with a complete lack of visual information.

4.7 Glaucoma

Glaucoma is a loss of vision from damage to the optic nerve that
itself can have various root causes. It presents as blindness in the
outer visual field. Although the causes of glaucoma do not have to
lie within the eye, the framework can simulate its effects using the
retinal map. Whether the signals got lost during transmission (in the
nerve) or were never generated (in the receptor cells), the result is
always the same: the image does not arrive in the brain.



(a) Original color map (b) Original depth map (c) Nearsightedness at −2 dpt (d) Farsightedness at +2 dpt (e) Presbyopia (n. p. at 60 cm)

Figure 5: Simulation of refractive errors. Our lens pass requires an original image (a) and a depth map (b) as input. It is then able to simulate
adjustable degrees of near- (c) and farsightedness (d), as well as presbyopia (e).

Our simulation framework provides automatic methods for ge-
nerating a retinal map similar to the one for macular degeneration
(cf. Subsection 4.6), although this time it is inverted. An example
for a weak setting is in Fig. 4k, while Fig. 4l is more severe. As
previously noted, blending this deficiency with existing retinal maps
also allows for efficient simulation.

5 DISCUSSION

In comparison to previous approaches, our framework is open source
under a very liberal license (Apache 2.0), robust, and fast because
of Rust’s safety and zero-cost guarantees, easily extensible and
portable because of our overall software design. However, the Rust
ecosystem was still massively evolving during development, i.e., we
had to adapt to changing APIs. The promise of Rust “if it compiles,
it should not crash” compensated for such issues quite well.

Validation and Evaluation We left it open to future work to
fully validate our simulation with real users for multiple reasons:
(1) We wanted to split implementation, evaluation, and validation
as proposed by Lücke-Tieke [14]. (2) Our framework is meant to
be used by other researchers. (3) Validating our simulations and (4)
evaluating the usefulness of our framework within applications in
everyday life are two different things that would go beyond the scope
of this work. Nevertheless, we partially succeeded in validating our
simulation results through reference literature. During that process,
it quickly became clear that real users might get nauseous from
experiencing such a simulation in immersive environments. Thus,
conducting a larger user study could present an ethical problem
because of the risk-benefit ratio. Moreover, neither people with eye
diseases nor those with normal vision would be able to tell if the
simulation is correct since they lack a common reference. What
complicates validation more, are possible interactions between visual
deficiencies. For instance, strabismus and bad target stabilization
both impact depth perception. Ideally, we could collect real-world
usage data through the Android application.

There are also some physiological aspects that we omit in our
simulation, such as the refraction of light at the cornea since we
could not find any information about that parameter space in lite-
rature. Similarly, we had to learn some parameters using a particle
swarm optimization algorithm—the resulting image looks correct
but individual parameters are not always physiologically plausible.

Technology Another difficulty lies in physical quantities and
measurement: What is measured on a camera sensor is rarely a
perfect representation of light in sRGB color space. Usually, the me-
asurement is represented using some proprietary RAW color space,
already neglecting uncertainty of the measurement (accuracy and
precision). This representation is then subject to lossy conversion
into sRGB, introducing even more uncertainty with respect to the
light that hit the camera sensor.

In particular, we hope that HDR images might help to better
represent sources of light in image space, which is important for
glare effects. Furthermore, we expect that in the near future stereo

cameras and eye trackers will become part of commodity augmen-
ted and virtual reality hardware. This would allow us to simulate
even more aspects correctly due to the measured depth and gaze
information. Furthermore, we envision validation and illustration of
foveated rendering techniques as an application for our framework.

Compensation Now that we have a computational model for
various visual deficiencies, the next step would be to develop and
improve techniques for compensation. Such techniques allow for
research questions that can be meaningfully evaluated by checking
for benefits in everyday life. Additionally, this type of research is
less ethically problematic due to its better risk-benefit ratio.

6 CONCLUSION

We have presented a framework that allows rapid prototyping of
visual deficiency simulations in pervasive computing environments.
The primary motivation behind our framework is to foster the deve-
lopment and research of such simulations. To showcase this aptitude,
we have developed two applications: A simple desktop application
and a fully-fledged Android application. To demonstrate the applica-
bility, we showcased several visual deficiencies that can be simulated
using our framework.

In future work, we want to incorporate support for stereo-cameras,
eye trackers, and more aspects of the human visual system. Regar-
ding the simulation, we would like to add support for processes that
tend to happen in the brain. For example, we would like to imple-
ment a target stabilization pass at the end of the pipeline for simula-
ting an impaired vestibuloocular reflex (VOR) to better understand
the influence of vision on body balance. Simulating brain-related
processes would allow users to get a glimpse of the visual-ants syn-
drome, alcohol consumption and the vision-related issues of the
Parkinson syndrome. We expect that this framework will help rese-
archers to conduct studies: While it is obvious that not everyone has
perfect sight, we see also applications for deficiency compensation,
vision training, and validation of visualization techniques.

ACKNOWLEDGMENTS

This work was funded by the German Research Foundation (DFG,
Deutsche Forschungsgemeinschaft) within projects A01 and B01 of
SFB-TRR 161 (ID: 251654672). We also thank Jingxi Zhang, Kanan
Allahyarli, Maximilian Korn, Noel Schäfer, and Simon Braitsch for
their contributions to the academic project that led to this frame-
work.

REFERENCES

[1] R. Addison. Detour: Brain deconstruction ahead. IEEE Compu-
ter Graphics and Applications, 15(2):14–17, 1995. doi: 10.1109/38.
364998

[2] W. Aigner, S. Hoffmann, and A. Rind. EvalBench: A software library
for visualization evaluation. Computer Graphics Forum, 32(3pt1):41–
50, 2013. doi: 10.1111/cgf.12091



[3] D. Banks and R. McCrindle. Visual eye disease simulator. In 7th
International Conference on Disability, Virtual Reality and Associated
Technologies (ICDVRAT 2008), pp. 167–174, 2008.

[4] K. Barajas. Do Individual Differences in Eye Movement Scanning
Predict Simulator Sickness? PhD thesis, Florida State University,
2014.

[5] J. Barrett. Side effects of virtual environments: A review of the litera-
ture. Information Sciences Laboratory, p. 54, 2004.

[6] A. K. O. Denniston and P. I. Murray, eds. Oxford Handbook of Op-
hthalmology. Oxford University Press, mar 2018. doi: 10.1093/med/
9780198804550.001.0001

[7] EnChroma Inc. EnChroma color blind glasses. https://enchroma.
com/, 2019. Accessed 2019-02-01.

[8] A. S. Fernandes and S. K. Feiner. Combating vr sickness through subtle
dynamic field-of-view modification. In IEEE Symposium on 3D User
Interfaces, pp. 201–210, 2016. doi: 10.1109/3DUI.2016.7460053

[9] W. Fink, A. Frohn, U. Schiefer, E. Schmid, N. Wendelstein, and
E. Zrenner. Visuelle abbildung bei hohen ametropien - computer-
gestützte simulation mittels strahlenoptischer rechnungen. Klinische
Monatsblätter für Augenheilkunde, 208(06):472–476, 1996. doi: 10.
1055/s-2008-1035266

[10] J. Huang. A hololens application to aid people who are visually impai-
red in navigation tasks. Technical report, Dartmouth College, 2017.

[11] G. Lausegger, M. Spitzer, and M. Ebner. OmniColor a smart glasses
app to support colorblind people. International Journal of Interactive
Mobile Technologies (iJIM), 11(5):161, 2017. doi: 10.3991/ijim.v11i5.
6922

[12] B. D. Lawson. Motion sickness symptomatology and origins. In
Handbook of Virtual Environment: Design, implementation, and appli-
cations, pp. 532–587. 2014. doi: 10.1201/b17360-29

[13] H.-L. Liou. Optical modelling of visual performance. PhD thesis,
University of Melbourne, 1996.

[14] H. Lücke-Tieke, M. Beuth, P. Schader, T. May, J. Bernard, and J. Kohl-
hammer. Lowering the barrier for successful replication and evaluation.
In Proceedings of the Beyond Time and Errors on Novel Evaluation
Methods for Visualization - BELIV ’18, 2018.

[15] J. D. Moss and E. R. Muth. Characteristics of head-mounted displays
and their effects on simulator sickness. Human Factors: The Journal
of the Human Factors and Ergonomics Society, 53(3):308–319, 2011.
doi: 10.1177/0018720811405196

[16] M. Nießner, R. Sturm, and G. Greiner. Real-time simulation and visua-
lization of human vision through eyeglasses on the gpu. Proceedings of
the 11th ACM SIGGRAPH International Conference on Virtual-Reality
Continuum and its Applications in Industry - VRCAI ’12, p. 195, 2012.
doi: 10.1145/2407516.2407565

[17] J. Patzelt. Basics Augenheilkunde. Elsevier, Urban & Fischer, 2005.
[18] R. J. Truscott. Presbyopia. Emerging from a blur towards an under-

standing of the molecular basis for this most common eye condition.
Experimental Eye Research, 88(2):241–247, 2009. doi: 10.1016/j.exer.
2008.07.003

[19] J. Väyrynen, A. Colley, and J. Häkkilä. Head mounted display design
tool for simulating visual disabilities. In Proceedings of the 15th
International Conference on Mobile and Ubiquitous Multimedia, pp.
69–73, 2016. doi: 10.1145/3012709.3012714

[20] P. A. Zientara, S. Lee, G. H. Smith, R. Brenner, L. Itti, M. B. Rosson,
J. M. Carroll, K. M. Irick, and V. Narayanan. Third Eye: A shopping
assistant for the visually impaired. Computer, 50(2):16–24, 2017. doi:
10.1109/MC.2017.36

https://enchroma.com/
https://enchroma.com/

	Introduction
	Related Work
	Simulation System
	Core Layer
	Application Layer

	Examples
	Cataract
	Myopia and Hyperopia
	Presbyopia
	Nyctalopia
	Protanopia, Deuteranopia, Tritanopia, and Achromatopsia
	Macular degeneration
	Glaucoma

	Discussion
	Conclusion

