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Figure 1: Photos of the Study. Left: user inserting screws while the robot holds the beam. Centre: two users discussing how to
intervene in the robotic task. Right: two users collaboratively assembling a timber beam during human-human collaboration.

Abstract

As robots are introduced into construction environments, situations
may arise where construction workers without programming exper-
tise need to interact with robotic operations to ensure smooth and
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successful task execution. We designed a head-mounted augmented
reality (AR) system that allowed control of the robot’s tasks and
motions during human-robot collaboration (HRC) in timber assem-
bly tasks. To explore workers’ feedback and attitudes towards HRC
with this system, we conducted a user study with 10 carpenters.
The workers collaborated in pairs with a heavy-payload industrial
robot to construct a 2 x 3 m timber panel. The study contributes an
evaluation of multi-human-robot collaboration along with qualita-
tive feedback from the workers. Exploratory data analysis revealed
the influence of asymmetrical user roles in multi-user collaborative
construction, providing research directions for future work.
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1 Introduction

In manufacturing and construction domains, human-robot collab-
oration (HRC) can combine the strengths of robots and human
workers to enhance production processes. Augmented Reality (AR)
provides an intuitive interface to support HRC in these environ-
ments, with recent research demonstrating its efficacy in task alloca-
tion, instruction conveyance, and robot intent visualisation [8, 21].
In timber construction specifically, the high individuality of the
parts and the relative light weight of the components make HRC a
highly relevant method for production processes [22].

In this paper, we present an exploratory user study on an HRC
system for timber construction using AR head-mounted displays
(HMDs). The main objective is to elicit user feedback and contribute
insights for future work on the use of AR to support HRC in timber
construction practice. Building upon prior work that evaluated
multi-user collaboration with a heavy payload industrial robot [23],
we (1) extended the collaboration possibilities with AR control of
the robot’s tasks and motions, and (2) focused on evaluating the
system with industry users.

The design of this study aimed to capture three aspects of HRC
that are highly relevant in construction settings, but remain under-
addressed in existing work. First, we examine how human-human
collaboration (HHC) relates to multi-user HRC. In real-world
construction practices, workers operate as teams rather than indi-
viduals, making it critical to understand how HHC impacts HRC
in construction tasks. This type of interaction is non-dyadic, i.e.,
involving more than one human and one robot. Research on this
topic has grown in recent years but mostly focused on humanoid
or zoomorphic robots, instead of robotic arms in industrial or man-
ufacturing settings [17]. On the one hand, HHC constitutes an
important dimension in non-dyadic HRC, e.g., Pelikan et al. [14]
found that the presence of a robot increased the physical and sen-
sory distances between human team members. On the other hand,
examining HHC is valuable from a technology evaluation and adop-
tion perspective, providing a baseline to evaluate the strengths and
weaknesses of HRC [12].

The second aspect is understanding the influence of asymmet-
rical roles and responsibilities in multi-user situations. Since
robot control always requires prior training to ensure production
safety and quality, this implies asymmetry in the worker team (be-
tween those who can control the robot and those who cannot).
This asymmetry can result in different perspectives and user confi-
dence in interactions with the robot. Existing work has shown that
an asymmetrical distribution of robot attention or asymmetrical
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user roles in a team can impact interpersonal dynamics among
humans [6, 20]. To shed light on this issue in the context of tim-
ber construction, we enforced an asymmetrical role division in the
study and incorporated bio-signal recordings to further understand
the differences between user roles.

Lastly, we examine workers’ attitudes towards collaborating
with robots. In real-world industrial settings, many factors can
influence the acceptance of HRC [9]. Attitudes are a key predictor
of technology adoption and use in general [3] as well as behaviour
towards robots [10]. Research on human-robot interaction suggests
that attitudes towards robots affect the time spent talking with
and touching robots [11], as well as prosocial behaviour towards
robots [19], among others. The human operator’s attitude can thus
be viewed as a driver of optimal HRC, where the human engages
the robot for all tasks it is designed to perform. To capture attitudes
towards robot collaboration, we rely on the tripartite model of
attitude [18], which posits that attitudes consist of cognitive (beliefs
about the robot’s usefulness), affective (emotional responses to
robots), and behavioural components. The aim of integrating these
three components into one measurement is to provide a precise
prediction of actual collaboration behaviours in applied settings.

Guided by these objectives, we conducted a user study with
10 workers from a timber construction company. The study con-
tributes (1) an evaluation of an AR-based HRC system in timber
construction and (2) exploratory findings on the influence of user
attitude, construction role, and human team collaboration in multi-
human-robot construction.

2 Study Design

To elicit relevant feedback from the workers, we designed a task
environment matching a timber construction assembly setup. This
included the use of large-scale construction components for the
assembly tasks, and a heavy-payload industrial robot for the col-
laboration.

2.1 Setup and Tasks

The study was set up in the large-scale robotic laboratory over an
area of 6 x 5 m (Figure 2, left). The space was vertically divided by
a timber wall, where components should be assembled. A KUKA
KR210-R3100-2 industrial robot (reach of 3.1 m and a rated payload
of 210 kg) was positioned in front of one side of the wall.

The participants were tasked with assembling timber beams on
this wall under two collaborative scenarios: the first scenario in-
volves two humans and a heavy-payload industrial robot (HHRC)
and the other with only two humans (HHC). Each user was ran-
domly paired with another and participated in both construction
scenarios with an assigned role, A and B. User A acted as the as-
sembler and user B acted as the installer.

HHC Task Scenario: A and B assembled three vertical beams
with each other. B placed and held the beam on the wall while A
screw-fixed it from the opposite side. The positions for the place-
ment and screws were displayed in AR.

HHRC Task Scenario: A and B assembled six horizontal beams
with the robot. B supervised the robot and fed it with timber beams
to place. The robot placed and held the beam in position for A to
screw-fix.
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Figure 2: Study Setup. Left: physical layout of the workspace. Right: beam assembly tasks on the wall.

Out of of the six robotically placed beams in HHRC, four beams
were programmed with intentional errors (Figure 2 right, magenta
and purple), requiring users to correct the issue using the AR inter-
face. Beam 2 and 6 were placed 10 cm lower than intended (position
error), and beam 3 and 5 included beams that needed to be replaced
(material error). When an error triggers, the system emits a mes-
sage to both users “Something doesn’t look right, can you help?”. We
instructed the users to discuss and decide on the action together.
The functions to control the robot however was only available for
user B.

2.2 System Implementation

The multi-user HRC system coordinated the construction process
by distributing tasks to the humans (AR devices) and robots (robot
control programmes). In prior work, the AR interface included
task instruction, task list, task geometries, robot trajectories, and
safety information [23]. We extended the system with a multi-user
interface and robot control interface, described below.

2.2.1  Multi-user Interface. Since multiple users are involved in the
process, we added alerts to inform each user of the other’s task
status. We also visualised each user’s head as a sphere for other
team members to enhance collaborator awareness in case the line
of sight is blocked by obstacles. During robotic tasks, we included
two modes for the motion visualisation to support users: (1) a look-
ahead mode showing the position of the robot one step ahead, and
(2) a real-time mode displaying a digital twin of the physical robot,
allowing users who cannot directly see the robot to be aware of its
movements.

2.2.2 Task and Motion Control. When robotic tasks encounter an
error, the interface enables users without programming experience
to intervene in the robotic tasks to ensure smooth execution. For
this purpose, we implemented three task and motion controls -
adjust, takeover, or restart — summarised in Figure 3 (a).

The adjust option (motion control) allows the user to “nudge”
the robot into position, guided by the visualised task target. This
triggers the gesture detection loop on the headset, and an adjust-
ment menu appears in front of the user, illustrating the gestures
they can perform. The pointing gesture triggers a planning request
for linear motions in the direction of pointing, and the trigger ges-
ture actuates the robot.

The takeover option (task control) allows the user to replace
the robot by executing its task manually. Selecting takeover in-
structs the robot to return to its home position, steering clear of the
workspace for human access. Once homing completes, the system
re-distributes the task to the human worker. The restart option
(task control) allows the user to correct material errors or technical
issues by first resetting and then repeating the current task. Select-
ing restart first prompts the robot to revert back to the starting
point. After the user corrects the error, they tap a second restart to
repeat the task.

2.3 Ethics Statement

The study was approved by the university’s ethics commission.
We recruited workers from an industry partner who specialised in
timber construction. No additional monetary rewards were offered
for taking part in the study. Prior to participation, all workers were
provided with an information sheet, which described the study’s
objectives and procedures, as well as the option to withdraw at
any time without consequences. Informed consent was obtained
from all participants. The bio-signal recordings, questionnaires, and
qualitative data are coded prior to processing and analysis to ensure
anonymity.

2.4 Procedure

Two users joined the study as a pair. After informed consent and
safety briefing, we assigned users with roles A and B and provided a
brief introduction of the interface. The pair carried out two rounds
of assembly, and the starting task was alternated to control order



CHI EA °25, April 26-May 01, 2025, Yokohama, Japan

(a) robot control menus
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(c) human task visualisation

Figure 3: AR Interface. (a) robot control flow diagram (b) robot task visualisation, including the trajectory, robot geometry, and
safety zones (c) human task visualisation, refill beam for installer (left) and screw beam location for assembler (right).

effects (pair 1 started with HHRC and pair 2 started with HHC, etc.).
The initial task was conducted under the guidance of a research as-
sistant, who explained the possible actions on the interface, and the
rest were conducted independently. After the tasks were completed,
users filled in the questionnaires, and we concluded the session
with a 20-minute interview.

2.5 Measurements

We collected four types of data: questionnaires, collaboration record-
ings, task performance, and exit interviews during the study. The
questionnaires included (1) System Usability Scale (SUS), (2) physi-
cal and mental workload (from NASA-TLX), (3) custom questions
on the perception of teamwork and safety with the robot, and (4) the
Attitude Toward Robot Collaboration (ARC) scale. The ARC scale,
which consists of 5 cognitive, 5 affective, and 5 behavioural items,
was developed for this study, showing a high reliability of .77 [24].
All questions were provided on a scale of 1 (strongly disagree) to 5
(strongly agree).

Eye-tracking, heart rate and video recordings were collected to
complement our understanding of user experience and collabora-
tion behaviours [13]. The duration of each beam assembly step was
recorded to measure task performance. At the end of the question-
naires, we collected responses to “I can imagine using this system
for my profession in timber construction” using a score from 1 to
5 along with a written response on the reasons for this answer.
This is followed by a semi-structured interview with each pair of
participants.

3 Results

10 workers from a construction company participated in the study.
Due to the limited availability of female workers at the company, we
only had male participants in the study. Workers were aged between
21 and 66 years old (¢ = 34.6,0 = 14.7), and their experience in
timber construction ranged from 1 to 48 years (u = 14.7, 0 = 14.6).

3.1 Questionnaire Data

The average SUS was 73.8 with a standard deviation of 9.5 (assem-
bler: g = 72.5,04 = 10.6, installer / controller: ug = 75.0, og = 9.2).
Users agreed with the statement T collaborated with the robot on
this task"” with an average score of 4.2 out of 5 (g = 3.6,04 = 1.67,
up = 4.8, 0 = 0.45). For the statement ‘T collaborated with my part-
ner on this task”, the agreement averaged 3.9 (ug = 3.2,04 = 1.79,
up = 4.6, 0g = 0.55). In both collaboration questions, the assembler
rated collaboration lower on average.

The perception of safety around the robot was rated 4.4 out
of 5 (assembler: yy = 4.4,04 = 0.89, installer / controller: g =
4.4,0p = 0.89). Self-rated mental demand of the tasks averaged
2.3 (ug = 2.0,04 = 0.71, ug = 2.6,0 = 0.89). Self-rated physical
demand averaged 1.4. All assemblers strongly disagreed that the
task was physically demanding (u4 = 1.0, 04 = 0) while only 2 out
of 5 installers disagreed strongly.

3.2 Task Performance

Total task duration for the HHRC tasks averaged 26.9 minutes and
HHC averaged 6.4 minutes. Figure 4 summarises task performance
time per beam. A learning effect can be observed in the average
durations - the first execution of the task (darker shade) took longer
than subsequent ones (lighter shade). Comparing normally executed
HHRC assembly (beam 1 and 4) with beams in the HHC assembly,
HHC was faster on average: pgpc = 2.08, ogrc = 1.19, pggrc =
3.03, oggRrc = 1.10; Pearson’s r showed low correlation between
how each pair performed the two (r = 0.21).

For the HHRC beams with material errors, three pairs used
takeover (once in each pair) and restart was used in all other cases.
For the beams with position errors, two pairs used takeover (once in
each pair) to resolve the issue and the remainder used adjust. Each
pair of workers used takeover exactly once during the fabrication.

On average, beams with position errors (2 and 6) required a
longer task duration than beams with material errors. There was
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Figure 4: Task performance during HHRC and HHC tasks.
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Figure 5: Sum of fixation durations (dwell times) for HHC and HHRC tasks by Areas of Interest (AOI).

a moderate correlation between performance time in HHRC tasks
that were normally executed v.s. those with errors (r = 0.69).

3.3 Bio-signal Recordings

We conducted an exploratory analysis on the recordings to shed
light on potential differences between user roles and HHC/HRC
teams.

3.3.1 Gaze Data. We collected 9 complete eye tracking recordings
(30Hz) with one incomplete (installer user in pair 3). We analysed
these data by examining fixation durations (dwell times) on different
Areas of Interest (AOIs). A summary of fixation durations on the
AOIs for each pair of participants can be seen in Figure 5. The dwell
times on the Partner AOI (dark blue) are high in the HHRC and HHC
plots, especially for the assemblers (A). The Mann-Whitney U-Test
showed that there is a significant difference between the fixation

durations on the partner AOI for the assembler (A) and installer (B)
in HHRC (pg = 459.35ms, ug = 351.48ms, p < 0.05,U = 65414.5).

We can also observe that in HHC, the installer (B) has longer fixa-
tion durations on the tasks than the assembler (A) (4 = 199.61ms, up
425.3ms, U = 125226.0, p < 0.01). The same holds for the fixation
durations in the HHRC tasks (ug = 417.87ms, ug = 475.22ms,U =
1351117.0, p < 0.01). However, here we can notice that the assem-
blers (A) fixation duration on the tasks is much higher in contrast
to the HHC tasks. The fixation duration on task 2 and task 6 are
also longer in HHRC for both roles, since the tasks involved motion
adjustment. Overall, AOI with the highest fixation duration during
HHRC is the UL, followed by the robot visualisations.

3.3.2  Heart Rate. We collected 9 complete heart rate recordings
(1Hz) with one incomplete (assembler in pair 3). These recordings
are then split into 3 + 6 = 9 segments corresponding with each
beam assembly task, resulting in 81 segments for 9 participants.
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Table 1: Summary of the Study Participants, A = Fixation Count on the Robot, B = Average Duration of Fixations on the Robot,
C = "I can see myself using this system in my profession in timber construction” (1 = strongly disagree, 5 = strongly agree).

ID | Pair Role Experience (years) | A (#) | B (ms) | C (1-5) | SUS (0-100) | ARC
P1 | Pair 1 | Assembler 26 337 426.3 3 77.5 -1.12
P2 | Pair1 Installer 20 257 411.2 5 75 0.83
P3 | Pair 2 | Assembler 48 787 511.9 5 80 0.41
P4 | Pair 2 | Installer 14 449 327.3 3 60 -1.39
P5 | Pair 3 | Assembler 5 506 397.6 4 55 -0.85
P6 | Pair3 | Installer / / 5 85 0.05
P7 | Pair4 | Assembler 6 578 294.9 5 80 0.05
P8 | Pair4 | Installer 20 359 396.1 5 77.5 0.83
P9 | Pair 5 | Assembler 286 300.6 2 70 -0.85
P10 | Pair 5 Installer 5 378 354.5 2 77.5 -1.12

We extracted mean and standard deviation from each segment as
indicators of cardiac activity and variability. These results are then
compared between different user roles (assembler v.s. installer) and
task scenarios (HRC v.s. HHC).

The analysis revealed that the assemblers had a lower average
heart rate than installers (uy = 77.1, ugp = 83.5,U = 515.0,p =
0.002). Average heart rates during HHC were higher compared to
HRC (ugre = 79.0, ugpc = 83.7,U = 546.0,p = 0.04). Standard
deviation was higher in HRC than HHC (uggrc = 4.85, ugHc =
3.98,U = 1006.0, p = 0.015). No significant differences in standard
deviation were found between the user roles.

3.4 Attitude Toward Robot Collaboration (ARC)

The participants’ ARC scores and backgrounds are summarised in
Table 1 along with the SUS and gaze fixations on the robot. For the
current sample, attitudes toward robot collaboration showed sub-
stantial variation - the Rasch analysis [1] showed that participants’
attitudes ranged from -1.39 to 0.83. This range indicates that while
some individuals are highly collaborative and likely to engage with
robots, others are far less inclined to do so. The scores are based on
a logarithmic transformation of response probabilities in the Rasch
model, meaning that differences in scores are not linearly spaced
but reflect a probabilistic measurement of attitude. Theoretically,
the values can range from negative to positive infinity, however,
in practice, most scores fall within a more limited range. A score
of 0 would reflect a neutral stance toward collaboration, demon-
strating that some participants exhibit attitudes that deviate from
neutrality—either positively or negatively.

ARC showed a positive correlation with behavioural intention to
use the robot (column C in Table 1), r = .85, p = .002, indicating that
individuals with a more positive attitude toward collaboration were
also more willing to integrate the robot into their work. Additionally,
there was a moderate but insignificant correlation between ARC
and usability perception (SUS) (r = 0.52,p = .12), suggesting a
trend where users with a more positive collaboration attitude also
rated the HRC system as more usable.

3.5 Qualitative Feedback

Can you see yourself using this in timber construction? : 7 out
of 10 users responded positively but provided additional constraints,

e.g., “in the hall yes, outside no” (P4), “for repetitive work” (P3), “this
is conceivable in high degree of prefabrication, but everything concern-
ing renovation and individual solutions would be difficult” (P3). 3 out
of 10 users believed the system is not ready for use in construction
and provided reasons related to accuracy and ergonomic issues —
“at some point, when it works more accurately” (P1), “The system is
currently too imprecise and the glasses are not suitable for permanent
work” (P10).

Which aspects of the system need improvement? : The
most frequently mentioned issue is the accuracy of the overlay (6
out of 10 users) — “better calibration for virtual / real”(P9), “more
accuracy”(P6). This is followed by interaction issues (5 out of 10)
- ‘confirming (pressing the buttons) could react a little better”(P8). 2
users mentioned the balance of physical objects and virtual overlays
- “Visualisation should not overlay the real objects so much”(P10) —
and 2 users mentioned the ergonomics of the HoloLens device —
“Blind spot when wearing glasses, the field of vision is restricted”(P7).

Collaboration Experience : All users responded positively to-
wards the collaboration with robots, finding it “fascinating”, “fun”,
“innovative”. 3 out of 5 pairs commented along the lines of — “it
is surprising that this actually works.”(P1). Pairs 1 and 3 proposed
including a second robot: ‘Tt is strange if you stand around a lot
waiting for the robot ... when this robot is working I can already start
with the second one” (P2); “could have a second robot to screw ... why
does the human have to do this?” (P6). P5 and P6 also mentioned feel-
ing like “the ’little man’ working” while the production process has
been pre-programmed; instead, they would prefer to programme
the robots themselves.

4 Discussion and Conclusions

This paper presented an exploratory study with construction work-
ers on the use of an AR-HMD system for multi-user HRC. Below,
we summarise key usability barriers we found in the study and
highlight findings related to the three dimensions of multi-user
HRC outlined in the introduction.

The usability of the system was found to be good by the workers
(73.8 out of 100, given a benchmark average of 68 [15]). The AR in-
terface coordinated the collaboration and allowed users to visualise
the robot either in anticipation of its next movement or in real time,
depending on their roles. The reported perception of safety with the
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robot was high for both roles (4.4 out of 5). The most notable issues
were the positional accuracy of the overlay (6 out of 10 users) and
the balance of virtual and real objects during physical work (2 out
of 10 users). Given the nature of construction tasks, we highlight
accuracy and visual balance between virtual/real objects as
two critical usability factors to consider for future designs.

Correlation between the teams’ performance in HHC and HHRC
was low. Therefore, we are not certain whether the performance
of human teams can predict the performance of the same team
with a robot. However, we noted that HHC tasks showed lower
standard deviations in heart rates than HHRC (p<0.01), which can
be explained by larger fluctuations in activity levels when users had
to “stand around a lot waiting for the robot” (P2) and resume work
when needed. Additionally, the participants’ mean heart rate was
higher during HHC (p<0.05), indicating consistently higher effort.
This aligns with the result that HHC assembly was faster on average
than HHRC. Though previous studies have found dyadic HRC to
be faster than HHC in wood assembly tasks [7], we highlight that
reduced fluency of collaboration in non-dyadic HRC may
challenge the performance gains.

The asymmetrical study setup meant that only the installer (B)
had authority to control the robot through AR. This led to several
differences. During HHRC, the assembler fixated significantly more
on the visualisation of their partner (p<0.05). One interpretation
of this effect is that the assembler has a stronger reliance on their
partner than vice versa. Other interpretations, such as a lack of
engagement or boredom, are also possible, though we have no
further support for a decisive interpretation. The assembler also
rated both questions ‘T collaborated with my partner / robot” lower
on average. When taken in combination with the fixation difference,
we believe this indicates a risk that the user without robot control
authority can become ostracised in a non-dyadic setup. This
aligns with prior work on uneven distribution of robot attention,
which can compromise relationship quality in human teams [6].

Importantly, robot control authority may have different impacts
depending on the team composition. For instance, in a three-human-
one-robot setup, Sebo et al. [20] reported that the robot liaisons, i.e.,
users who took up the robot control role, reported a lower percep-
tion of group inclusion than their peers. Additionally, Haripriyan
et al. [5] found that a robot manager, i.e., user in charge of in-
structing the robot to perform tasks, naturally emerged without
any intentional assignment of such a role in the study design. As
human-robot teams in construction environments may be complex
and dynamic, future work needs to carefully consider this aspect.
One potential way to address this is to design robot behaviours
which positively shape the interactions between multiple people [4]
or can better support individual users’ experiences [2].

Alternative designs for the AR control interface may also allevi-
ate these issues. We reference the non-dyadic interaction framework
proposed by Schneiders et al. [16] to illustrate such alternatives.
For instance, strategies of coaction can be applied through either
“merging” the simultaneous use by multiple users, e.g., first polling
inputs from different users and then executing the decision, or us-
ing “division” to separate the artefact into sections, e.g., allowing
each user to control a different type of robotic action. The user roles
can also be rotated during sequential episodes of interaction, where
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the customisation strategy can be applied towards supporting users
with different levels of training.

Lastly, our findings showed substantial variability in work-
ers’ attitudes towards robot collaboration, highlighting the
importance of taking these differences and their potential impact
on collaboration behaviour into account. This is supported by the
correlation between collaboration attitude and intention to use
the system in practice. However, given the small sample size, the
strength of this relationship should be interpreted with caution.
3 workers in our study believed the system is not yet ready for
practical use due to accuracy and ergonomic reasons. These users
(P1, P9, P10) also had negative ARC, indicating initial evidence of
the efficacy of the scale. Future studies should examine whether
the variability observed in attitudes translates into real-world be-
haviour, such as the frequency or success of collaboration with
robots. A larger and more diverse sample could help confirm such
a relationship and explore the connection between users’ attitudes
and the success of training programs aimed at optimizing human-
robot collaboration.

Acknowledgments

This research was supported by the Deutsche Forschungsgemein-
schaft (DFG; German Research Foundation) under Germany’s Ex-
cellence Strategy — EXC 2120/1 - 390831618 and BBSR as Zukunft
Bau Project “MRK II Projektnr. 10.08.18.7-22.22”. The authors thank
Dennis Bartl and Tim Stark for their support on end-effector inte-
gration, as well as the student assistants Alexander Fenyk, Yuma
Shimizu, and Clara Blum for assisting during the study. We would
also like to thank the industry partners miiller blaustein HolzBauW-
erke for their continuous support and BEC robotics for their help
in setting up the safety sensors and PLC systems used in the study.

References

[1] Trevor G.Bond and Christine M. Fox. 2013. Applying the Rasch Model. Psychology
Press. doi:10.4324/9781410614575
[2] Huili Chen, Sharifa Alghowinem, Cynthia Breazeal, and Hae Won Park. 2024.
Integrating Flow Theory and Adaptive Robot Roles: A Conceptual Model of
Dynamic Robot Role Adaptation for the Enhanced Flow Experience in Long-term
Multi-person Human-Robot Interactions. In Proceedings of the 2024 ACM/IEEE
International Conference on Human-Robot Interaction (Boulder, CO, USA) (HRI
’24). Association for Computing Machinery, New York, NY, USA, 116-126. doi:10.
1145/3610977.3634945
Sara J Czaja, Neil Charness, Arthur D Fisk, Christopher Hertzog, Sankaran N
Nair, Wendy A Rogers, and Joseph Sharit. 2006. Factors predicting the use of
technology: findings from the Center for Research and Education on Aging and
Technology Enhancement (CREATE). Psychology and aging 21, 2 (2006), 333.
doi:10.1037/0882-7974.21.2.333
Sarah Gillet, Marynel Vazquez, Sean Andrist, Iolanda Leite, and Sarah Sebo.
2024. Interaction-Shaping Robotics: Robots That Influence Interactions between
Other Agents. J. Hum.-Robot Interact. 13, 1, Article 12 (March 2024), 23 pages.
doi:10.1145/3643803
Arthi Haripriyan, Rabeya Jamshad, Preeti Ramaraj, and Laurel D. Riek. 2024.
Human-Robot Action Teams: A Behavioral Analysis of Team Dynamics. In 2024
33rd IEEE International Conference on Robot and Human Interactive Communication
(ROMAN). 1443-1448. d0i:10.1109/RO-MAN60168.2024.10731176
Malte F. Jung, Dominic Difranzo, Solace Shen, Brett Stoll, Houston Claure, and
Austin Lawrence. 2020. Robot-Assisted Tower Construction—A Method to Study
the Impact of a Robot’s Allocation Behavior on Interpersonal Dynamics and
Collaboration in Groups. ACM Transactions on Human-Robot Interaction 10, 1
(Oct. 2020), 1-23. doi:10.1145/3394287
Xiaoyun Liang, Usman Rasheed, Jiannan Cai, Bastian Wibranek, and Ibukun Awo-
lusi. 2024. Impacts of Collaborative Robots on Construction Work Performance
and Worker Perception: Experimental Analysis of Human-Robot Collaborative
Wood Assembly. Journal of Construction Engineering and Management 150, 8
(Aug. 2024). doi:10.1061/jcemd4.coeng-14390

[3

—_
=t

[5

G

—
=


https://doi.org/10.4324/9781410614575
https://doi.org/10.1145/3610977.3634945
https://doi.org/10.1145/3610977.3634945
https://doi.org/10.1037/0882-7974.21.2.333
https://doi.org/10.1145/3643803
https://doi.org/10.1109/RO-MAN60168.2024.10731176
https://doi.org/10.1145/3394287
https://doi.org/10.1061/jcemd4.coeng-14390

CHI EA °25, April 26-May 01, 2025, Yokohama, Japan

[8] Rasmus S. Lunding, Mathias N. Lystbeek, Tiare Feuchtner, and Kaj Grenbeek. 2023.

AR-supported Human-Robot Collaboration: Facilitating Workspace Awareness
and Parallelized Assembly Tasks. In 2023 IEEE International Symposium on Mixed
and Augmented Reality (ISMAR). 1064-1073. doi:10.1109/ISMAR59233.2023.00123
Antonia Meissner, Angelika Triibswetter, Antonia S. Conti-Kufner, and Jonas
Schmidtler. 2020. Friend or Foe? Understanding Assembly Workers’ Acceptance
of Human-robot Collaboration. J. Hum.-Robot Interact. 10, 1, Article 3 (July 2020),
30 pages. doi:10.1145/3399433

Verena Nitsch and Thomas Glassen. 2015. Investigating the effects of robot behav-
ior and attitude towards technology on social human-robot interactions. In 24th
IEEE International Symposium on Robot and Human Interactive Communication
(RO-MAN). IEEE, 535-540. d0i:10.1109/ROMAN.2015.7333560

Tatsuya Nomura, Takayuki Kanda, Tomohiro Suzuki, and Kensuke Kato. 2008.
Prediction of human behavior in human-robot interaction using psychological
scales for anxiety and negative attitudes toward robots. IEEE Transactions on
Robotics 24, 2 (2008), 442-451. doi:10.1109/TRO.2007.914004

Chinedu Okonkwo, Xiaoyun Liang, Usman Rasheed, Ibukun Awolusi, Jiannan
Cai, and Bastian Wibranek. 2023. Construction Worker Workload Assessment for
Human-Human versus Human-Robot Collaboration in Wood Assembly. 322-330.
doi:10.1061/9780784485248.039

Nelusa Pathmanathan, Tobias Rau, Xiliu Yang, Aimée Sousa Calepso, Felix
Amtsberg, Achim Menges, Michael Sedlmair, and Kuno Kurzhals. 2024. Eyes
on the Task: Gaze Analysis of Situated Visualization for Collaborative Tasks.
In 2024 IEEE Conference Virtual Reality and 3D User Interfaces (VR). 785-795.
doi:10.1109/VR58804.2024.00098

Hannah R. M. Pelikan, Amy Cheatle, Malte F. Jung, and Steven J. Jackson. 2018.
Operating at a Distance - How a Teleoperated Surgical Robot Reconfigures
Teamwork in the Operating Room. Proc. ACM Hum.-Comput. Interact. 2, CSCW,
Article 138 (Nov. 2018), 28 pages. doi:10.1145/3274407

[15] Jeff Sauro and James R Lewis. 2012. Quantifying the user experience: Practical

statistics for user research. Morgan Kaufmann. doi:10.1016/C2010-0-65192-3
Eike Schneiders, EunJeong Cheon, Jesper Kjeldskov, Matthias Rehm, and Mikael B.
Skov. 2022. Non-Dyadic Interaction: A Literature Review of 15 Years of Human-
Robot Interaction Conference Publications. J. Hum.-Robot Interact. 11, 2, Article
13 (feb 2022), 32 pages. doi:10.1145/3488242

Yang et al.

Sarah Sebo, Brett Stoll, Brian Scassellati, and Malte F. Jung. 2020. Robots in
Groups and Teams: A Literature Review. Proc. ACM Hum.-Comput. Interact. 4,
CSCW?2, Article 176 (oct 2020), 36 pages. doi:10.1145/3415247

Alfred N Smith. 1971. The importance of attitude in foreign language learning.
The Modern Language Journal 55, 2 (1971), 82-88. doi:10.2307/321854

Nicolas Spatola and Olga A Wudarczyk. 2021. Implicit attitudes towards
robots predict explicit attitudes, semantic distance between robots and humans,
anthropomorphism, and prosocial behavior: From attitudes to human-robot
interaction. International Journal of Social Robotics 13, 5 (2021), 1149-1159.
do0i:10.1007/512369-020-00701-5

Sarah Strohkorb Sebo, Ling Liang Dong, Nicholas Chang, and Brian Scassellati.
2020. Strategies for the Inclusion of Human Members within Human-Robot
Teams. In Proceedings of the 2020 ACM/IEEE International Conference on Human-
Robot Interaction (Cambridge, United Kingdom) (HRI °20). Association for Com-
puting Machinery, New York, NY, USA, 309-317. doi:10.1145/3319502.3374808
Ryo Suzuki, Adnan Karim, Tian Xia, Hooman Hedayati, and Nicolai Marquardt.
2022. Augmented Reality and Robotics: A Survey and Taxonomy for AR-enhanced
Human-Robot Interaction and Robotic Interfaces. In Proceedings of the 2022 CHI
Conference on Human Factors in Computing Systems (New Orleans, LA, USA)
(CHI °22). Association for Computing Machinery, New York, NY, USA, Article
553, 33 pages. doi:10.1145/3491102.3517719

Xiliu Yang, Felix Amtsberg, Michael Sedlmair, and Achim Menges. 2024. Chal-
lenges and potential for human-robot collaboration in timber prefabrication.
Automation in Construction 160 (2024), 105333. doi:10.1016/j.autcon.2024.105333
Xiliu Yang, Aimée Sousa Calepso, Felix Amtsberg, Achim Menges, and Michael
Sedlmair. 2023. Usability Evaluation of an Augmented Reality System for Collabo-
rative Fabrication between Multiple Humans and Industrial Robots. In Proceedings
of the 2023 ACM Symposium on Spatial User Interaction (Sydney, NSW, Australia)
(SUI °23). Association for Computing Machinery, New York, NY, USA, Article 18,
10 pages. doi:10.1145/3607822.3614528

Sarah Zabel, Nicolas Neef, Xiliu Yang, Cheryl Heinze, and Siegmar Otto. 2025.
Assessing Attitudes Toward Collaboration with Robots in the Workplace — One
Element of Optimizing Robot Engagement (in press). In Proceedings of the HCI
International 2025, Communications in Computer and Information Science (CCIS).
Springer.


https://doi.org/10.1109/ISMAR59233.2023.00123
https://doi.org/10.1145/3399433
https://doi.org/10.1109/ROMAN.2015.7333560
https://doi.org/10.1109/TRO.2007.914004
https://doi.org/10.1061/9780784485248.039
https://doi.org/10.1109/VR58804.2024.00098
https://doi.org/10.1145/3274407
https://doi.org/10.1016/C2010-0-65192-3
https://doi.org/10.1145/3488242
https://doi.org/10.1145/3415247
https://doi.org/10.2307/321854
https://doi.org/10.1007/s12369-020-00701-5
https://doi.org/10.1145/3319502.3374808
https://doi.org/10.1145/3491102.3517719
https://doi.org/10.1016/j.autcon.2024.105333
https://doi.org/10.1145/3607822.3614528

	Abstract
	1 Introduction
	2 Study Design
	2.1 Setup and Tasks
	2.2 System Implementation
	2.3 Ethics Statement
	2.4 Procedure
	2.5 Measurements

	3 Results
	3.1 Questionnaire Data
	3.2 Task Performance
	3.3 Bio-signal Recordings
	3.4 Attitude Toward Robot Collaboration (ARC)
	3.5 Qualitative Feedback

	4 Discussion and Conclusions
	Acknowledgments
	References

