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 A B S T R A C T

Human–robot collaboration (HRC) offers promising potential for more flexible and sustainable production 
practices in architecture and construction. This requires HRC setups to scale up from light-payload collaborative 
robots to conform with the scale of building construction while considering the safety and teamwork culture 
for workers. This research proposes a system for large-scale multi-user HRC using head-mounted augmented 
reality (AR) devices. To achieve this, we contribute three methods that work in conjunction: (1) an AR system 
that enables multiple users to share tasks and work together with robots; (2) a dynamic human task allocation 
engine that reacts to the changing production teams and task types; and (3) a safety zone generation and 
allocation method to configure human collaboration in shared space with large-scale robots. The system is 
evaluated using a case study of prefabricated timber cassettes combining discrete event simulations, a user 
study and a fabrication process demonstrator with an industry partner.
1. Introduction

In building construction, automation and robotics offer promising 
solutions for the productivity and labour challenges facing the indus-
try today [1]. The off-site prefabrication sector is particularly suited 
to benefit from robotic automation and has seen several decades of 
development in this area. However, most of these applications are 
focused on product-based building solutions, while the batch-size-one 
paradigm of the broader architecture and construction market still 
presents many challenges for assembly-line automation due to the need 
for high flexibility [2]. Meanwhile, human workers, with the ability to 
execute a variety of tasks and react to unexpected events, continue to 
play a pivotal role during production.

Recent research on human–robot collaboration (HRC) in construc-
tion explores many possible reconfigurations of the fabrication design 
space to leverage the strengths of human and robotic actors [3,4]; 
shared-space HRC has been shown to achieve more flexible and effi-
cient work processes and open new creative possibilities for design [5–
8]. However, the interaction scenarios often focus on light-payload col-
laborative robots, which have distinctly different spatial relationships 
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and interactivity requirements compared to larger, high-payload (above 
100 kg) robots needed for prefabrication.

To address this gap, this research develops a large-scale HRC system 
for robotic building prefabrication. We implement such a system using 
augmented reality head-mounted displays (AR HMDs) as the human–
machine interface (HMI). Compared to mobile- and screen-based HMIs, 
HMDs augment the physical world intuitively in three-dimensions and 
afford hands-free interactions situated around physical referents [9,10]. 
To facilitate an AR-based HRC approach for building prefabrication, we 
outline three key requirements that motivated our design.

First, the AR interface needs to effectively present information 
from a highly coordinated technical system to users, i.e., craft work-
ers, who have rich construction knowledge but limited programming 
skills. The interface also needs to provide support for interactions 
within the constraints of prefabrication, e.g., maintaining control over 
production speed and quality. Second, as construction environments 
involve teams of human workers and potentially unexpected events, the 
aforementioned communication and interaction requirements need to 
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be synchronised and adaptive to a changing environment and support 
the involvement of multiple workers in a team. Lastly, the system needs 
to cope with physical separations due to the safety requirements of 
heavy-payload robots. Safety design therefore must be integrated, and 
relevant interaction features should be provided in the AR support 
system.

Drawing from existing research on human–robot interaction that 
has contributed to these areas (communication, safety, synchronisation, 
and adaptation), an integration of these aspects for robotic building 
prefabrication is proposed. We focus particularly on timber building 
prefabrication due to (1) the relatively light weight of timber com-
ponents, which makes them suitable for manual handling, and (2) a 
mature ecosystem of automation technologies that already exist in this 
sector [11], which makes HRC a timely and relevant topic for the 
community. The research questions guiding this work are summarised 
as follows:

1. How to provide suitable information and interaction support for 
collaborative robotic prefabrication using AR HMDs?

2. How to synchronise and adapt the production execution among 
multiple humans and industrial robots in response to dynamic 
factors?

3. How to integrate safety design for collaborative fabrication with 
heavy-payload robots?

In the following chapters, we present the methods developed and 
evaluate the integrated HRC system in a case study for producing 
prefabricated timber cassettes. The HRC system includes (1) an AR-
HMD application that provides information and interaction support 
for humans to work alongside industrial robots, (2) a human-centred, 
multi-user allocation engine (worker pool) that interfaces human com-
munication with the automated system and orchestrates the AR visual-
isations, (3) a safety zone generation and control method to configure 
HRC with large-scale robots. In addition to demonstrating the workflow 
in the prefabrication process of a segmented timber shell [12], we 
include simulation-based approaches and a user study to evaluate the 
system performance.

2. Related work

In this section, we provide a summary of existing work that con-
textualises our design decisions for large-scale HRC. We first review 
current approaches on safety mechanisms and human–robot task al-
location, followed by a summary of AR applications in collaborative 
digital fabrication and the use of AR HMDs in this context.

2.1. Safe human–robot collaboration

Smaller-payload, collaborative robots (cobots) follow certain design 
principles to safely work simultaneously in the same workspace as hu-
mans. However, the entire robotic application, including end effectors 
and transported masses, must also be safe, often requiring additional 
safety technology. Integration of these safety systems has been pre-
sented in the field for construction tasks with cobots, e.g., Ruttico 
et al. demonstrated an autonomous mobile robot (payload 30 kg) for 
bricklaying with a dedicated safety PLC and AR visualisations of safety 
zones [13].

Compared to cobots, heavy-payload industrial robots present many 
challenges for HRC safety due to (1) significantly higher speed and 
mass, which result in longer stopping distances and the need for greater 
separation; (2) larger working envelopes, which make high-resolution 
tracking methods that work well in smaller spaces more prone to issues; 
and (3) with significantly higher kinetic energy and force, accidental 
contact is potentially catastrophic. As such, most HRC studies in the 
literature focused on cobots [14].

In recent years, many novel safety concepts have been proposed for 
HRC with heavy-payload robots [15,16]. However, real-world reports 
2 
Table 1
Requirements of SRMS v.s. SSM.
 Safety mode Human detection Robot response 
 SRMS Presence Protective stop  
 SSM (Change of) distance Adapt motion  

on the deployment of these concepts remain scarce. Notably, stringent 
regulatory standards require high engineering efforts and associated 
costs, as well as prolonged risk analysis and certification [17]. In the 
context of prefabrication, this also requires the integration of safety into 
early computational design and planning processes. Arents et al. re-
viewed existing shared-space HRC studies and found that 25% did 
not account for safety actions, and over 50% did not address safety 
standards [18]. To this end, our research demonstrates the integration 
of safety design based on relevant standards during the computational 
design and planning process. 

2.1.1. Safety standards
ISO/TS 15066 specifies four types of human–robot collaborative 

modes: ‘‘Safety-Rated Monitored Stop’’ (SRMS), ‘‘Speed and Separation 
Monitoring’’ (SSM), ‘‘Hand Guiding’’ (HG), and ‘‘Power and Force 
Limiting’’ (PFL) [19]. Collaborative robots are designed to work in close 
proximity with humans under HG and PFL modes natively. In contrast, 
heavy-payload robots, unless equipped with safety-rated force-sensitive 
add-ons, are limited to interactions under SSM and SRMS. In addition, 
the use of HG and PFL is difficult in typical timber prefabrication 
processes because processes such as sawing and milling are inherently 
dangerous and require separation from humans. Below, we focus our 
attention on the last two, with a summary of system requirements in 
Table  1. 

SRMS uses safety-rated access control to allow for human inter-
actions, i.e., the robot stops when a person enters the collaborative 
workspace and maintains the protective stop. Both sensor hardware and 
communication networks must be safety-rated for compliant operation. 
SSM provides a more dynamic but also complex strategy whereby 
robot motions are adapted to ensure that the separation distance be-
tween human and robot (𝑆) stays above the protective separation 
distance (𝑆𝑝). The sensing system can be a combination of zone occu-
pancy (e.g., sensor-monitored safety zones [20]) and operator position 
(e.g., computer vision [21]). A large body of work proposed enhance-
ments on sensing and control methods to improve the performance of 
SSM, e.g., by fusing global LiDAR and local camera sensing, real-time 
adaptations based on operator positions showed a 29%–40% efficiency 
increase compared to an SRMS setup during HRC [22].

SSM involves high engineering efforts due to the aforementioned 
challenges around heavy-payload robots (2.1). Therefore, we opted for 
a simpler approach using SRMS based on fenceless zone occupancy 
tracking in this research. Similar to a previous implementation by 
Karagiannis et al., we use sensor-monitored work areas [20] associ-
ated with each prefabrication task for zone planning. The system is 
supplemented by an SSM-inspired function using AR location tracking; 
though this is not implemented on the safetyPLC, the AR alerts act 
as an operator awareness interface to prevent humans from disrupting 
robotic operation.

2.1.2. Design methods
Many guidelines have been proposed for the design of safe human–

robot collaboration [23,24]. In heavy-payload industrial robotic ap-
plications, Bdiwi et al. proposed a categorisation of four interaction 
levels [25] used in a ‘‘level planner’’ when designing manufactur-
ing processes; the levels then result in clusters of operation modes, 
which can be implemented through a dynamic finite-state machine 
using an enhanced set of safety states on the robotic system [16]. 
This approach provides a generalised framework to design collabora-
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tion under safety standards, conduct risk assessments, and generate 
technical specifications needed for declaring conformity for industrial 
applications.

One important design consideration for high-variance, project-based 
building prefabrication is the facility layout constraints at the prefab-
rication site. Compared to on-site construction (fixed-position layout), 
robotic building prefabrication, similar to other small-batch production 
sites, often uses a process-based layout based around manufacturing 
platforms [26]. Optimal spatial distribution of work zones in a process 
constitutes a class of planning problems – Facility Layout Planning 
(FLP) – and is closely linked to the subsequent generation of safety 
zones. Though we do not propose any FLP approach in this research, 
we summarise heuristics applied during the planning process and focus 
on the subsequent generation and allocation of safety zones.

Existing case studies on HRC safety design are often conducted in 
virtual or mixed reality environments [27,28]. In practice, SRMS with 
access control devices is most commonly used in robotic fabrication 
projects. In cases where human participation is occasionally needed in 
the robotic work area, robots can also be run in manual mode under 
operator scrutiny and reduced speed. However, reports on safety details 
are uneven, if not rare, in research papers that involve the use of 
heavy-payload robots in robotic fabrication, echoing the research gap 
highlighted in past reviews [18]. To this end, we contribute a case 
study addressing the integration of safety for large-scale HRC during 
the design and planning of a timber cassette prefabrication project. 

2.2. Human-centred multi-actor task allocation

A critical aspect of HRC design is the allocation of tasks to individual 
actors. In this research, we drew from a combination of skill-based, 
static allocation and human-centred, dynamic allocation approaches. 
Below, we briefly review existing literature on these methods. 

2.2.1. Human–robot task allocation
Static and dynamic allocation methods in HRC respectively address 

the planning process prior to and during production execution [29]. 
Capability- or skill-based task allocation is a prominent approach [30,
31], which can be traced to Fitts’ Men-Are-Better-At/Machines-Are-
Better-At (MABA-MABA) list [32]. This starts by decomposing the 
process into individual tasks and considering the suitability of humans 
or robots for each task based on skill evaluations [33]. The matching 
process can also be automated using a suitability matrix [34], and the 
results can be optimised through simulation to improve productivity 
metrics [35]. 

Small lot-size production processes common in construction have 
high variability and are thus especially prone to unplanned events; 
these could cause run-time deviations that render a theoretically ‘‘op-
timal’’ sequence ineffective.  Dynamic allocation allows the system 
to reactively or proactively adapt to such events [29]. A proactive
approach is ‘‘led’’ by humans, either through explicit decisions or 
intent prediction [36], while a reactive approach relies on a central 
planner to respond to dynamic events, e.g., human factors [37] or 
performance [38]. 

In this research, we first apply a static allocation approach, i.e., 
using the payload and dexterity requirements of the prefabrication 
tasks to inform allocation during process planning, favouring robotic 
execution where possible. The relevant skills for this allocation were 
summarised in a conceptual framework for HRC in timber prefabrica-
tion previously [11]. Second, we apply a dynamic allocation mecha-
nism to support humans in recovering from unplanned issues during 
robotic execution, discussed further in Section 3.3.3. 
3 
2.2.2. Human-centred task allocation
Research on human-centred systems advocates for designers to dis-

pense with the idea of ‘‘magic humans’’ and actively anticipate the 
functions humans need to fulfil; this involves design efforts focused 
on supporting humans to effectively understand, decide, and act in 
the system [39]. In the context of task allocation, this principle calls 
for ensuring situation awareness and empowering humans to control 
the task progress, further supporting collaboration efficiency between 
humans and robots.

Human-centred task allocation also expands the evaluation focus 
from overall system productivity to social sustainability goals, e.g., cul-
tivating skills, diversity, and well-being [40,41].  For instance, Gräßler 
et al. proposed an allocation method optimising for long-term skill 
cultivation, in addition to short-term task efficiency, by including age-
related factors in the skill level representation [42]. Work alloca-
tion can also be optimised to workers’ skill profiles and personal 
characteristics to enhance productivity and job satisfaction [43].

In our approach, we implemented these human-centred principles 
by (1) incorporating a skill-matching function in the worker pool to 
account for diverse skill sets and individual choices in multi-user HRC, 
and (2) allowing flexible handling of unplanned errors through dy-
namic task allocation, supported by an AR system to enhance users’ sit-
uation awareness and ability to act in a complex construction process. 
The current implementation of dynamic allocation is a one-way process, 
i.e., human workers are always the recipients of the re-allocated task 
(see 3.3.3). In other words, the system can support task reallocation 
from human to human, or from robot to human, but not vice versa 
(from human to robot).  Though a fully flexible, two-way allocation 
approach is highly relevant for dynamic construction environments 
and can meet more diverse human-centred objectives [44], it also 
poses high requirements for the safety and robustness of robotic online 
decision-making and control [29]. 

2.3. AR-supported collaborative construction

Flexible HRC relies heavily on an effective communication channel, 
which consists of both input (human-to-machine) and output (machine-
to-human) pathways. AR provides a bidirectional medium and spatially 
anchors the content and interactions to physical objects, e.g., robots.

2.3.1. AR in HRC and digital fabrication
Suzuki et al. reviewed 460 papers on human–robot interaction using 

AR and proposed a taxonomy with eight dimensions, including system 
purpose, interaction techniques, design, and evaluation strategies [45]. 
All system purposes in this taxonomy, except for ‘‘increase expres-
siveness’’, have seen numerous implementations from the construction 
and manufacturing domain: facilitating robotic programming [46,47], 
supporting real-time control including teleoperation [48], enhancing 
safety through visual overlays [49,50], and communicating robot intent 
by displaying trajectories and system status [51]. From a creative 
collaboration standpoint, AR also opens opportunities for interactive 
design during robotic fabrication [6,7,52].

In the digital fabrication community, a review by Song et al. sum-
marised three categories of AR applications [53]: holographic instruc-
tions for assembly and fabrication [54,55], data sharing for immersive 
design and cyber–physical construction [56], and human–computer 
interaction for robotic interaction and programming [51,57]. Our AR 
implementation fits within several categories of these existing works 
— holographic instructions, supporting human–robot interaction by 
communicating robot intent, enhancing safety through overlays, and 
supporting user control of robotic processes.
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Fig. 1. The VIZOR system consists of three groups of components (1) AR-HRC Design elements that support the process design phase for computational designers, (2) Runtime 
Orchestration components that facilitate a safe, multi-device execution process and (3) AR Interface components that interface with the workers. Within the overall multi-actor 
design-to-fabrication workflow [66], the items highlighted in colours are presented in this paper.
2.3.2. Challenges and opportunities of AR HMDs
In a recent review of AR-based construction assembly studies, 

head-mounted displays are the most popular choice for AR visualisa-
tions [58]. AR HMDs indeed offer many advantages, e.g., rendering 
information in three dimensions provides unique benefits for spatial 
assemblies [54]. Compared to mobile- or tablet-based AR, spatial AR 
(projectors and HMDs) has shown higher task efficiency in comparative 
studies [59]. HMDs additionally offer hands-free interaction possibil-
ities, e.g., gaze-based interaction [60], such that users can remain 
engaged in bi-manual physical tasks while interacting with content.

Nevertheless, HMDs still have many issues, such as a limited field-
of-view and ergonomic strains when worn over longer periods. These 
drawbacks are shown by many empirical findings from the literature. 
Hietanen et al. for instance, compared projection and HMDs (HoloLens 
1) for safety zone visualisations and found that the projection variant 
led to faster task execution and was perceived more favourably by 
users [50]. These issues have dwindled with newer generations of 
HMDs — Chan et al. compared HMDs (HoloLens 2) against joystick 
control in carbon-fibre composite manufacturing and found that the AR 
variant resulted in faster task execution and higher robot utilisation, 
though the joystick was perceived to be more dependable [61].

HoloLens 2 improved on many ergonomic aspects compared to 
the first-generation device, e.g., increased diagonal field-of-view (from 
30 to 52 degrees), lighter and more balanced weight (from 579 to 
566 g and moving the battery pack to the back of the headset) and 
more powerful computing resources to ensure a smoother experience 
(from 2 to 4 GB RAM) [62,63]. In the field, an identical application 
running on HoloLens 1 and 2 has shown a 25% increase in projection 
accuracy [64]. 

In this research, we chose to work with HMDs for the benefits above 
and the optimism that as technologies improve, users’ perception and 
trust in using such systems will likely rise alike. We also build upon our 
ongoing investigations in large-scale HRC through AR HMDs, where 
this implementation addresses two issues highlighted in a previous 
exploratory user study: the need for non-dyadic communication support 
and integration of safety systems [65].
4 
3. Methods

In the following sections, we give an overview of the workflow and 
architecture, before we detail the three methods to support multi-user, 
large-scale HRC in prefabrication, including (1) the AR-HMD system, 
(2) the worker pool, and (3) the safety zone system.

3.1. Workflow and architecture

A diagram of the overall system is shown in Fig.  1, where the 
methods presented in this paper are highlighted in colours and grouped 
in three clusters based on the phase of the application.

3.1.1. Design + modelling
The HRC workflow is initialised by the generation and configuration 

of collaborative tasks in a digital modelling environment. During this 
process, the building components and the corresponding geometries are 
converted to discrete fabrication tasks. Static task allocation decisions 
are made based on payload and dexterity requirements of each task and 
favour robotic execution where possible [8]. This preliminary task list 
then informs the design of the safety zones in a process described in 
Section 3.4.

These task data are stored as a series of task objects in a cloud 
database, which allows modifications when designing details of the 
fabrication procedure. Such details include digital instructions for indi-
vidual actors, e.g., path planning and code generation for robots, and 
AR information and safety data for human participation. A Grasshopper 
plugin [67] facilitates the generation of AR information and work 
zones, which are then embedded in the task definitions (Section 3.2).

3.1.2. Cyber–physical execution
Before physical execution, the relevant tasks are accessed by a 

fabrication control system and stored locally to avoid latencies due 
to internet connection. The control system manages the execution of 
tasks by extracting, formatting, and supplying this data to each actor 
and monitoring their progress [66]. Individual control interfaces for 
different physical actors are implemented as virtual actors, which serve 
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Table 2
Summary of AR information provided in the VIZOR interface. The reference scale for levels of automation can be found in 
[11]. (MRTK = Mixed Reality Tool Kit, which provides SLAM and hand tracking on the HoloLens 2 HMD device.)
 Visualisation type Task level of automation Referent

 Category 𝐿𝑜𝐴𝑐𝑜𝑔 𝐿𝑜𝐴𝑝ℎ𝑦 Physical object Tracking  
 ∙ Task geometry I,II [2, 5] [1, 5] Workpiece or Robotic platform QR code  
 ∙ Robot trajectory I [4, 5] [4, 5] Robotic platform QR code  
 ∙ Task instruction II [2, 3] [1, 2] Workpiece or Hand/Head QR code/MRTK 
 ∙ Task list III [1, 2] [1, 2] Hand/Head MRTK  
 ∙ Safety information I, II, III [1, 5] [1, 5] Robotic platform or Head QR code/MRTK 
as moderators between the control system and the physical actors [68]. 
For industrial robots, this involves motion control implemented either 
using proprietary protocols, e.g., EthernetKRL [69], or open-source 
systems, e.g., ROS [70]. Human actors are moderated by the Worker 
Pool, which interfaces with a ‘‘pool’’ of AR devices. This orchestration 
layer deals with dynamic factors in the work team, e.g., requesting help 
from each other, allocating tasks based on each individual’s skill sets, 
which are detailed in Section 3.3.

Each task contains zone occupancy information, which is forwarded 
from the pool to a zone monitoring node (Section 3.4). This node 
receives live locations of each user from the HoloLens SLAM tracking 
system and keeps track of the current danger zones to alert humans 
when they approach such areas. In parallel, safety control integration 
on the PLC receives the zone data from the control system to acti-
vate/deactivate sensors guarding each zone as required. When humans 
enter a guarded zone, SRMS is triggered, and the robot stops.

One technical design consideration of the worker pool and zone 
monitoring node is to manage safety and interactions off-device from 
the HoloLens. Minimising computations on the HMDs prolongs battery 
life and improves the AR runtime performance, e.g., tracking stability 
and interaction latency. The AR-HMD application is thus designed to 
display data with a more lightweight logic (Section 3.2) to improve the 
flexibility for deploying the application without recompilation between 
projects.

3.2. AR system

The AR interface provides workers with information support dur-
ing the prefabrication process and enables them to interact with the 
fabrication process.

3.2.1. Information needs based on task LoA
HRC inherently involves adaptive Levels of Automation (LoA) for 

different work steps, which have both physical and cognitive dimen-
sions [71]. We consider the information needs and interactivity for 
collaboration using a LoA reference scale designed for timber prefabri-
cation tasks [11].

I: Robotic Task (𝐿𝑜𝐴𝑐𝑜𝑔 ∈ {4, 5}, 𝐿𝑜𝐴𝑝ℎ𝑦 ∈ {4, 5}) When the task 
is physically executed by the robot in automatic mode (𝐿𝑜𝐴𝑝ℎ𝑦 = 5) 
or in manual mode (𝐿𝑜𝐴𝑝ℎ𝑦 = 4), humans either are not needed in the 
case of a fully autonomous system (𝐿𝑜𝐴𝑐𝑜𝑔 = 5) or, more often, need to 
supervise the process in anticipation of potential issues (𝐿𝑜𝐴𝑐𝑜𝑔 = 4). 
In this situation, knowledge of the robot’s current tasks and motions is 
useful for monitoring.

II: Manual Task (𝐿𝑜𝐴𝑐𝑜𝑔 ∈ {2, 3}, 𝐿𝑜𝐴𝑝ℎ𝑦 ∈ {1, 2}) When the task 
is physically executed by the human, the cognitive automation level 
is mostly constrained in prefabrication to Action Selection (𝐿𝑜𝐴𝑐𝑜𝑔 =
2) or Intervention (𝐿𝑜𝐴𝑐𝑜𝑔 = 3) because the construction outcome is 
predetermined. This commonly uses Manual power (𝐿𝑜𝐴𝑝ℎ𝑦 = 1) or
Hand-held Power Tools (𝐿𝑜𝐴𝑝ℎ𝑦 = 2). When the worker needs to focus 
on the task at hand, AR visualisations can provide in-situ guidance, but 
detailed visualisations of the robotic systems are likely not necessary. 
Safety information, however, is still needed.

III: Impromptu Task (𝐿𝑜𝐴𝑐𝑜𝑔 ∈ {1, 2}, 𝐿𝑜𝐴𝑝ℎ𝑦 ∈ {1, 2}) When 
humans have higher cognitive autonomy to decide on actions, either 
5 
with full creative control (𝐿𝑜𝐴𝑐𝑜𝑔 = 1) or under some degree of 
system constraints (𝐿𝑜𝐴𝑐𝑜𝑔 = 2), we consider this an impromptu or 
improvisational task. One example is when a failed robotic task needs 
to be repeated under unforeseeable conditions that require a creative 
solution (a broken component that needs to be detached and reassem-
bled). In this case, a more complete understanding of the overall task 
goals for past and future tasks and an option to collaborate with each 
other on a solution should be available.

Type III tasks can also include 𝐿𝑜𝐴𝑝ℎ𝑦 ∈ {3, 4, 5} in case online 
robotic programming or teaching-by-demonstration is possible. Since 
this would require additional safety precautions, we leave this option 
out of scope for this research.

3.2.2. Task-based AR visualisation
The information needs summarised above are then translated to our 

implementations of the AR system with five groups of visualisations, 
summarised in Table  2. A screen capture from the HoloLens in Fig.  2 
provides a visual illustration. The visualisation messages are modelled 
in Rhino and Grasshopper [67], then added to the task objects, and 
subsequently sent from the worker pool to be rendered on the HoloLens 
2 with the respective task.

Robot Trajectory (I): The trajectories of the robot are programmed 
offline and can be monitored by the robotic operator during execution. 
They can either be shown in static form as a trajectory path or using 
a simulated animation (Fig.  2 ∙). Both remain anchored to the robotic 
platforms.

Task Instructions (II): For a manual task step, the interface can 
inform where to carry out an operation, what to do at this location, 
and instructive content to indicate how to carry out the action. The 
last element is especially useful for training workers in the first few 
iterations of the task. These instructions are shown in addition to task 
geometries and could contain text and images on the holographic UI 
(Fig.  2 ∙).

Task Geometry (I, II): The current task information can be conveyed 
using 3D geometries to either provide manual task guidance or pro-
vide context to support process monitoring (Fig.  2 ∙). Depending on 
whether the task is manual or robotic, such content is either attached 
to the workpiece (manual tasks) or attached to the robotic end-effectors 
(robotic tasks).

Task Lists (III): This interface provides access to the current state 
of the HRC system — what tasks are being executed and what is 
coming up next. It gives a general overview of the fabrication process. If 
changes are needed to the task list at run time, e.g., reassignment, the 
interface should also support these actions. The panel is dynamically 
accessible by the user and hidden when not necessary (Fig.  2 ∙).

Safety Information (I, II, III): Safety information is critical for heavy-
payload robots in a fenceless setting. This is shown as highlighted areas 
where humans cannot enter (based on the current robotic task) and 
anchored to the robotic platforms (Fig.  2 ∙). For dynamically triggered 
information, such as audio alerts and pop-ups emitted when humans 
approach the boundaries, the alerts are anchored to the user.
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Fig. 2. Annotated AR-HMD interface captured from HoloLens 2.
3.2.3. AR interactions through the UI
In addition to rendering visualisations, AR headsets also enable 

workers to interact with various elements of the production system. 
We defined three types of interactions, implemented as UI elements 
(e.g., buttons, banners, sounds) tethered to a task panel, which the user 
can call up with their hands as they move around the workspace or set 
to ‘‘follow-me’’ to always have it 1.2 m away from head position.

Task: During manual tasks (II), workers mainly interact with phys-
ical objects in the world, and holographic instructions provide as-
sistance. The task geometries on the workpiece and the UI panel 
containing task instructions are automatically triggered when the AR 
device receives the task. To synchronise these human tasks with the 
digital fabrication system, the user signals task completion with a Done
button on the UI panel and can optionally Reject a task, e.g., when it 
is not feasible.

Team: With multiple users participating in a task sequence, the AR-
HMD provides two communication features for interacting within the 
team: an automatic notification that signals individual task completion 
on one device to others in the work team, and a help button to request 
assistance from another teammate.

Process: To make use of the construction experience and knowledge 
of the workers during fabrication, the interface also provides a means to 
intervene in the robotic process when necessary. The task list provides 
the sequencing information to support these decisions, where past and 
upcoming tasks can be queried and viewed. Reassignment is possible 
through a button next to each list item, i.e., from a robot to a human 
or vice versa.

3.3. Worker pool

The aforementioned visualisation and interaction functions are sup-
ported by a coordination mechanism – ‘‘worker pool’’, which communi-
cates with multiple AR devices through a publisher-subscriber network 
using the ROS protocol. The pool, on the one hand, interfaces multiple 
workers with the fabrication control system and, on the other hand, 
manages the updates of AR visualisations to minimise computations on 
the HMDs. We describe below the implementation of the worker pool, 
which stores the following variables:

• 𝑊 : Set of all workers in the pool
• 𝑆(𝑤): Skill parameter of worker 𝑤 ∈ 𝑊
• 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒(𝑤): Availability of worker 𝑤 ∈ 𝑊
• 𝑇 𝑒𝑎𝑚(𝜏) ⊆ 𝑊 : The team assigned to task 𝜏
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• 𝑇𝑃 : Set of all tasks in the priority queue
• 𝑇𝑁 : Set of all tasks in the non-priority queue
• 𝐴: Hash map of active tasks for the worker pool, with team-task 
pairs 𝑓𝑎 ∶ 𝑇 𝑒𝑎𝑚(𝜏) → 𝜏

• 𝑃 : Hash map of passive tasks for execution by other actors, with 
actor-task pairs 𝑓𝑝 ∶ 𝛼 → 𝜏

3.3.1. Task processing
When the worker pool receives a task from the fabrication control 

system [69], it first checks whether it targets manual or robotic execu-
tion. If the task is assigned to humans, it is added to a first-in-first-out 
task queue, 𝑇𝑃  or 𝑇𝑁 , depending on whether the task has priority. 
These two queues act as buffers to isolate the incoming tasks from actor 
executions, making more dynamic interactions between AR devices and 
the pool possible. Each task has a sequential or parallel designation. If 
the task is parallel, the pool immediately requests the next task from 
the server, allowing multiple actors to carry out tasks simultaneously 
without blocking.

If the task is aimed at robotic execution, the task object is stored 
with the executing actor as the key in a hash map of ‘‘passive’’ tasks 𝑃 :
𝑃 ∪ 𝑓𝑝 ∶ 𝛼 → 𝜏 (1)

Information related to this task is also immediately converted to AR 
visualisations and sent to all active workers as described in 3.2.2. It 
includes the current safety area, work geometries that the robot will 
manipulate, and, if necessary, a simulation of the robotic trajectory.

3.3.2. Human-centred task allocation
If the task is aimed at manual execution, it is allocated to AR 

workers in a background routine using the two queues. This allocation 
decision adapts to explicit user choices for each worker 𝑤 using a skill 
parameter 𝑆(𝑤), where the matching logic from a task 𝜏 to the available 
skill is preconfigured in 𝑀𝑎𝑡𝑐ℎ(𝑆(𝜏), 𝑆(𝑤)). This pre-configured match-
ing function can be extended to incorporate models that account for 
human factors issues, e.g., learning curve models [42], that allow the 
function to consider dynamic skill level adjustments during runtime. 

At the start of the allocation process, a task object is retrieved from 
the relevant task queue (𝑇𝑃  before 𝑇𝑁 ), and an empty list 𝑇 𝑒𝑎𝑚(𝜏)
is created. The pool then iterates through the workers following the 
selection criteria: 
𝑇 𝑒𝑎𝑚(𝜏) ∪ {𝑤 ∣ 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒(𝑤) ∧𝑀𝑎𝑡𝑐ℎ(𝑆(𝜏), 𝑆(𝑤))} (2)
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Fig. 3. Task allocation flowchart. Black denotes an outer loop that processes tasks in 
the queue. Grey denotes an inner loop that allocates the workers for the task.

This selection mechanism allows the task assignment to consider the 
work team’s unique skills, experiences, and potential user preferences. 
If |𝑇 𝑒𝑎𝑚(𝜏)| < 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑(𝜏) at the end of the iteration, the allocation 
routine restarts. If a team of sufficient size is found, the task instructions 
are sent to each worker, and the availability is updated ∀𝑤 ∈ 𝑇 𝑒𝑎𝑚(𝜏) ∶
𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒(𝑤) ← 0 for the team. The task object is then stored in a hash 
map of active tasks 𝐴: 

𝐴 ∪ 𝑓𝑎 ∶ 𝑇 𝑒𝑎𝑚(𝜏) → 𝜏 (3)

Task completion requires all allocated team members to respond 
with a success message, i.e., by the user clicking the ‘‘Done’’ button on 
the AR interface, which sets 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒(𝑤) ← 1. When all members of a 
team become available, we remove the task from the current map of 
active tasks: 

𝐴 ⧵ {𝑓𝑎 ∶ 𝑇 𝑒𝑎𝑚(𝜏) → 𝜏 ∣ ∀𝑤 ∈ 𝑇 𝑒𝑎𝑚(𝜏), 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒(𝑤)} (4)

A summary of the allocation loop is depicted in Fig.  3. One impor-
tant note is that the implementation above relies on proactive human 
action for effective allocation, which has an important implication 
for human factors. For instance, a worker can mark an erroneously 
executed task as correct, or a worker can repeatedly fail tasks but 
not modify their skill setting. These situations can occur in practice, 
e.g., due to fatigue, and would require system-initiated assurance mea-
sures, e.g., error checking or raising alerts. We further discuss system 
designs that can mitigate these issues in the outlook. 
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3.3.3. Adaptation and recovery
The worker pool uses the priority 𝑇𝑃  to adapt to unplanned events 

during fabrication. Extending from previous case studies [8], we pri-
marily consider three types of events that may occur during production.

First, the operator may manually abort the robotic process, or the 
system may return an error during execution. When the pool receives 
the failure status message from actor 𝛼, it removes task 𝜏 from the 
passive tasks 𝑃  and adds it to the priority queue, i.e., the failed task 
is allocated to the work team with priority: 

𝑇𝑃 ∪ {𝜏 ← 𝑃 [𝛼] ∣ ¬𝑆𝑢𝑐𝑐𝑒𝑠𝑠(𝛼)} (5)

Second, a human worker may not be able to complete a task, which 
can be handled in two ways. If the human interacts with a ‘‘reject ’’ 
button, i.e., the pool receives the status message ¬𝑆𝑢𝑐𝑐𝑒𝑠𝑠(𝑤), the 
task is reallocated through 𝑇𝑃 , similar to (5). Alternatively, the task 
information can be shared with another member of the team without 
reallocation. In this case, the user interacts with a ‘‘Help’’ button. All 
active devices receive the assistance request as a popup message with 
data on the worker requesting help, 𝑤𝑟𝑒𝑞 . When a user chooses to accept 
the request, they click ‘‘Accept’’ and the HMD sends the following 
response to the pool (𝑤𝑟𝑒𝑞 , 𝑤). The pool retrieves the task information 
and shares it with the requesting worker: 

𝜏 ← 𝑓𝑎(𝑇 𝑒𝑎𝑚(𝜏) ∣ 𝑤𝑟𝑒𝑞 ∈ 𝑇 𝑒𝑎𝑚(𝜏)) (6)

Lastly, a user can explicitly reassign a task ahead of time. When a 
reassignment request is made from a device, the request is sent to the 
fabrication task control system. The worker pool then receives a re-
sponse from the server containing the tuple (𝜏, 𝛼∗). If the reassignment 
is successful (𝛼∗ ≠ ∅), the pool triggers a task list update in all AR 
devices. In both the first and third cases where a robotic task is taken 
over by humans, the associated safety zones are deactivated to allow 
for manual execution.

3.4. Safety zone integration

The task-based safety zone integration provides the infrastructure 
to ensure the collaborative task flow outlined above can occur safely. 
This consists of zone segmentation based on the layout design, zone 
selection and embedding in robotic tasks, conversion to safety sen-
sor layouts, and hardware connections and configuration on the PLC 
and controller. In the following paragraphs, we present a method to 
generate, optimise, and associate zone definitions for human–robot col-
laboration using a process illustrated in Fig.  4, followed by a description 
of physical implementation through sensors and PLCs.

3.4.1. Layout types and heuristics
Though the number and size of safety zones roughly scale to the 

reachable areas of the robot, they also closely relate to the build-
ing component being fabricated. We distinguish between three types 
of layout strategies based on the relationship between the building 
component (BC) and robotic reach (RR):

• 𝐵𝐶 > 𝑅𝑅: If the component’s global geometry exceeds the 
robot’s reach, local geometric features within the component need 
to be clustered for each execution stage, followed by manual 
workpiece transportation between stages. The internal geometries 
have a high impact on zone segmentation, as seen in the project 
from [69].

• 𝐵𝐶 ≈ 𝑅𝑅: For components with a similar size as the robot’s reach, 
the zone segmentation is directly based on robot reachability. 
Capability maps can inform this process [72]. In the case of a 
robot mounted on a stationary base, the most frequent solution 
is a radial arrangement around the robot, as seen in the project 
from [26].
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Fig. 4. Work zone generation flowchart.

• 𝐵𝐶 < 𝑅𝑅: For components much smaller than the full reach 
of the robotic system, multiple elements can be arrayed in the 
workspace and batched to improve efficiency. The array of these 
elements determines the zone segmentation. An example of this 
layout is the case study we use later on.

The overall facility layout, including initial positions and sizes of 
the equipment and assembly stations, is often co-designed with the 
relevant industry partners. In the scope of this paper, this information 
is considered an a priori input to the zone generation steps that follow.

3.4.2. Work zone generation
The aim of the work zone generation process is to find for each 

robotic task 𝜏 an optimal zone constraint 𝑍(𝜏)∗ to maximise the spatial 
flexibility of designing human tasks for parallel execution.

Given the defined positions and sizes of equipment and assembly 
stations, we simplify the initial zone segmentation by constraining each 
zone to have rectilinear borders and iteratively placing the largest cell 
until the workspace is full. The output is an initial graph structure 𝐺
containing a set of safety zones 𝑍 as nodes and the adjacency of zones 
as edges.

• 𝑍: Set of all zones in the workspace.
• 𝑍(𝜏): One set of viable zone constraints for task 𝜏.
• 𝜁 (𝜏): All sets of viable zone constraints for task 𝜏.

The task definitions are then used to extract motion goals, providing 
a set of zones that must be reached for a given task, e.g., a robotic pick 
and place task may have 𝑍𝑅(𝜏) = {𝑧𝑃 𝑖𝑐𝑘, 𝑧𝑃 𝑙𝑎𝑐𝑒}. The trajectory linking 
the required zones passes through a series of possible zones 𝑍(𝜏), which 
can be found using a depth-first search in the zone graph. However, 
some of these solutions will contain circuitous paths, which are unde-
sirable in production, and can be filtered with a preset maximum zone 
count per task (𝐶𝑚𝑎𝑥). 

𝜁 (𝜏) = {𝑍(𝜏) ∈ 𝐷𝐹𝑆(𝐺,𝑍 (𝜏)) | |𝑍(𝜏)| ≤ 𝐶 } (7)
𝑅 𝑚𝑎𝑥
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The filtered 𝑍(𝜏) can then be verified using a motion planning 
pipeline (e.g., MoveIt) to check for path feasibility based on the robot 
kinematics model, end-effector and environment collision geometries. 
Only the viable zone constraints are added to the final set 𝜁 (𝜏), 
i.e. where reasonable and collision-free paths are feasible: 
𝜁 (𝜏) = {𝑍(𝜏) | 𝑃 𝑙𝑎𝑛(𝑍(𝜏), 𝜏) = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠} (8)

Lastly, we optimise the robotic paths and zone usage in the set 𝜁 (𝜏)
to minimise the number of zones occupied and the number of zone 
changes between sets. The relative importance of the first objective 
compared to the second can be weighted by a parameter (𝜆). Addition-
ally, each zone can also be given weights to prioritise certain zones to 
remain free, e.g., zones where manual tasks are dense, or vice versa, 
e.g., zones that are occupied by end-effector stations. 

𝑍(𝜏)∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
∑

𝜏𝑖∈𝑇
|𝑍(𝜏𝑖) 𝛥 𝑍(𝜏𝑖+1)| + 𝜆 |𝑍(𝜏𝑖)| (9)

We use a dynamic programming approach to iterate through the 
tasks with associated zones and solve for the optimal zone set 𝑍(𝜏)∗. 
Generating this work zone information provides the constraints to 
design human task execution safely, i.e., only using the zones which 
are free.

3.4.3. Physical configuration
The robot controller and safety sensors must be configured to mon-

itor all hazard zones. With SRMS, it is necessary for a human entering 
the danger zone to trigger an emergency stop of the robot. Safe sensor 
systems based on various measurement principles, such as lasers, light 
barriers, or radar, can be used to safeguard these hazard areas. The 
sensors must be connected to the safety PLC, and the arrangement of 
the sensors must safeguard the hazard zones in accordance with the 
relevant standards.

Common robot controllers from various manufacturers also offer 
advanced safety features that enable safe monitoring of the Cartesian 
workspace, e.g., FANUC’s Dual Check Safety (DCS) and KUKA’s Safe 
Operation, which can define up to 16 rectangular Cartesian work areas 
constraining its motion [73]. The bounding volume of the robot geome-
try and end effectors is additionally defined using spheres. The individ-
ual Cartesian constraints can be activated or deactivated via safe out-
puts of the safety PLC. This makes it possible to include the previously 
defined work zones in these Cartesian workspace constraints.

The geometric relationship between work zones, Cartesian con-
straints and the protective fields used to protect the danger zones is 
established during setup. If a work zone needs to be accessed by hu-
mans, the safety sensors in that area are muted, and the corresponding 
Cartesian work area restrictions are activated instead, preventing the 
robot from entering the work zone. Ensuring that the Cartesian work 
area restrictions are linked to each task provides additional redundancy 
to the safety system.

3.4.4. AR safety zone monitoring
In addition to the safety zones configured through the PLC, we 

included a ‘‘warning’’ zone, defined with a 2 m offset from the ‘‘danger’’ 
zones. The offset can be reconfigured based on the robot’s operating 
speed and the resulting stopping distance. The differences between the 
two zones are:

• Danger Zone: sensor-guarded limits which, upon entry, the safety 
PLC stops the robotic task, i.e., SRMS. The zone is considered 
active when the safety sensors are activated on the PLC (reaction 
time: e.g., ≤100 ms [74]).

• Warning Zone: soft limits which, upon entry, the AR system emits 
an alert informing the human to move away from the area. The 
zone is triggered using SLAM tracking on the HoloLens (reaction 
time: e.g., 500 ms, based on programming).
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Fig. 5. Elements for prefabrication in the livMatS Biomimetic Shell.
This, on the one hand, minimises potential disruption of robotic 
processes by pre-empting workers from moving close to sensor-guarded 
areas, and on the other hand, helps humans stay out of areas that are 
theoretically safe but may be too close to the robot’s motion trajectory 
and cause psychological discomfort. For applications where psycholog-
ical comfort is essential, further calculations on the separation distance 
can be used to reduce the robot’s speed (SSM) when warning zones are 
triggered. The hard limits are displayed in boundary lines.

A zone monitoring node in the system checks the current robotic 
zone against the human position at a frequency of 2 Hz. If the human 
enters the warning zone, an alert repeatedly appears in front of the user 
(every 1.5 s). Since entering the danger zone requires the operator to 
restart the robot after stopping, the soft limits further help to prevent 
unwanted disruptions, which are detrimental to time-critical processes 
such as adhesive applications.

4. Case study

The methods described above were applied and tested in a case 
study for the prefabrication of timber cassettes. In this section, we first 
introduce the project setting and demonstrate the workflow for HRC 
planning.

This is followed by two evaluations which were conducted outside 
of the live production runs: (1) discrete event simulation, focusing 
on the production performance metrics as a result of various pa-
rameters of multi-user HRC, and (2) a user study, focusing on the 
experience of carpenters and their qualitative feedback on the inter-
face and interactions. Lastly, we describe the physical implementation 
demonstrated over three production batches of prefabrication tasks at 
müllerblaustein Holzbauwerke GmbH, a timber construction company 
in southern Germany.

4.1. Project background

The Living, Adaptive and Energy-autonomous Materials Systems 
(livMatS) Biomimetic Shell is an extension of the FIT Center for In-
teractive Materials and Bioinspired Technologies at the University of 
Freiburg. It is a segmented timber shell structure inspired by sea urchin 
skeletons. This lightweight timber construction spans a floor area of 
200 m2, with a free span of 16.5 m, and is composed of 127 uniquely 
shaped hollow cassettes, each 14 cm thick [12].
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The lightweight cassette system comprises upper and lower layers 
of three-layer spruce boards and spruce edge beams, customised in size 
according to local load requirements. These cassettes serve as the pri-
mary load-bearing structure and incorporate integrated acoustic panels 
and lighting elements. They are prefabricated off-site and assembled 
on-site using cross-screwed joints, creating a form-active structure.

This research demonstrator provided a unique opportunity to serve 
as a case study for the HRC system for two reasons. First, the electrical 
components in the cassettes required manual installation; this meant 
that human tasks needed to be synchronised in between robotic assem-
bly steps. Second, the project was the first initiative to use the newly 
developed robotic prefabrication platforms, which enabled the parallel 
assembly of four cassettes with a 13 m long workspace around the 
heavy-payload industrial robot. This required a flexible and large-scale 
HRC setup. 

4.2. Static task allocation

The initial task sequence is generated based on the geometry of 
the timber cassettes. Each timber cassette consists of building elements 
such as beams, bottom plates, and top plates, as shown in Fig.  5. The 
main robotic actor is a 7-axis robot platform (KUKA KR420-R3330 
mounted on a 10.7 m long linear axis). A quick-change system at the 
flange of the robotic arm supports four different end-effectors: a large 
vacuum gripper for plates, a small vacuum gripper combined with a 
nail gun for gripping and fixing beams, a glue end-effector for adhesive 
application, and a spindle for all subtractive manufacturing steps. The 
human workers at the prefabrication site are a combination of digital 
fabrication researchers and carpenters from the industry partner.

The HRC planning process starts with the initial static allocation 
of actors to the cassette assembly tasks based on skill considerations. 
Picking and placing the timber plates and beams, as well as glueing, 
nailing, and subsequent milling operations, require high precision and 
payload, for which robotic automation is more suitable and efficient. 
The cassettes contain embedded electrical components, which require 
dexterous manipulations of thinner materials (LED strips and wires) and 
manual checking that the circuits are operational before the cassettes 
are closed. These tasks are executed by humans prior to the glueing 
of the beams and the placing of the top plates. Due to the need for 
moisture control in the timber beams for glue adhesion, the beam 
magazine also needs to be loaded by humans shortly before robotic 
pick-and-place. This initial task list with actor assignments informs the 
subsequent process design steps.
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Fig. 6. Fabrication layout.

4.3. Prefabrication layout

At the centre of the prefabrication workspace was a newly devel-
oped, transportable 7-axis robotic platform, capable of fabricating four 
elements up to 3.5 metres in length. The work area also needed to 
include a work table for assembling the cassettes, multiple stationary 
and movable material input/output stations for plates and beams, tool 
stations for storing the end effectors, a milling cutter station, and a glue-
ing machine. All these components were housed within a cell monitored 
by a safety system with operable doors, ensuring dust protection during 
subtractive processes and maintaining worker safety. As shown in Fig. 
6, the robotic platform was centrally located, with material stations 
arranged radially around the linear platform for robotic access. 

An analysis of the required process and tasks was used to address 
the spatial and functional demands of the robotic systems. Collabora-
tive workshops with engineers and planners from the research team 
and the partnering wood construction company facilitated requirement 
gathering, focusing on operational needs and spatial constraints. For 
instance, the cell needed to be integrated within a larger fabrication 
hall. Some material stations needed to be accessible by crane, forklift, 
or cart for efficient material feeding without interfering with other 
projects. This process of negotiating the reachable robotic space and 
external requirements from individual production sites can be similarly 
applied to robotic systems with alternative form factors, e.g., robots 
mounted on a 2D gantry instead of a 1D linear axis. 

Leveraging empirical knowledge, different stations were arranged 
around the central robot to ensure workflow efficiency and ease of 
access. During the conceptual phase, boundary conditions and edge 
cases were simulated using the VirtualRobot Plugin for Rhino3d/
Grasshopper. This process allowed for the pre-verification of layout 
and reachability, as well as the generation of geometric requirements 
necessary for effector development. The layout maximised available 
space in the hall, with clear entry and exit points for material supply 
and worker movement.

4.4. Safety zone generation

The layout design described above is represented in a 3D model 
specifying the positioning of the robotic platform and various material 
input/output stations. The initial segmentations (𝑍) based on these 
inputs are illustrated in Fig.  7. Option A contains 10 zones, but due to 
the low width of a single cassette zone, we included a simplified seg-
mentation option B by collapsing two cassettes into one zone, resulting 
in 8 zones (Fig.  7b).

The motion goals from each robotic task in the task list are con-
verted to a list of tuples containing the target zone numbers in each 
task, e.g., for picking up from material supply zone to cassette number 
3, in zone graph A would be 𝑍𝑅 = {4, 3} and 𝑍𝑅 = {4, 2} in graph B. We 
then sample the possible paths between these required zones filtered 
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by an upper limit 𝐶𝑚𝑎𝑥. Results of this sampling process are illustrated 
in Fig.  7a1 and b1 respectively. With a maximum of 4 zones per task 
(𝐶𝑚𝑎𝑥 = 4), the sampling process returned an average of 4.8 solutions 
for each motion with a standard deviation of 1.99.

The feasibility check is then run through the MoveIt pipeline using 
the Pilz industrial motion planner, and the remaining feasible zones are 
optimised based on the objective laid out in Eq.  (9). The optimal results 
for segmentation A and B are shown respectively in Fig.  7a2 and b2. 
Assigning 𝜆 = 1.0 takes into account the preference for occupying as 
few zones as possible; compared to the alternative assignment where 
𝜆 = 0.0, the latter occupied more zones that are not strictly necessary 
for the task.

The subsequent sensor configuration was based on segmentation B. 
The free zones are then used for designing human tasks in parallel, 
and the final fabrication task and zone occupancy map for HRC are 
shown in Fig.  8. The robot always occupies zone 7, whereas zones 1, 2, 
and 6 require access control to coordinate safe entries by the humans. 
The zones assigned to each human task are inserted into the relevant
task objects, and the PLC tasks that modify the monitored zones and 
Cartesian constraints are added to the task list.

4.5. Safety sensor configuration

Following the zone definitions, the safety sensors are installed. 
The safety sensors used in this implementation are safe radar sensors 
(Inxpect LBK-S01) with a guaranteed reaction time of ≤100 ms and 
safety integrity level 2 [74]. The sensors have a range of up to 4.00 m. 
The sensor area can be configured with a horizontal aperture angle 
of either 110◦ or 50◦ and a vertical aperture angle of either 30◦ or 
15◦. This allows adaptations to the specific working environment. The 
effective range can be categorised into two fields: warning fields and 
protective fields. Warning zones are used to slow down the robot when 
activated, while protective zones cause a safety stop. The sensors also 
allow automatic resumption of movement when the protective field and 
danger zone are cleared.

A total of 12 sensors are installed at different workstations around 
the robotic platform, covering the various work zones described above, 
and are connected to the safety controllers via CANopen. Each safety 
controller can handle up to 6 sensors, which means that each platform 
has two safety controllers connected to the PLC that runs the safety 
program using ProfiSAFE. The physical layout of the sensors is shown 
in Fig.  8 with a horizontal cone angle of 110 degrees. When human 
movement triggers the sensor fields, the reaction speed is guaranteed 
by the industrially certified sensor and PLC protocol; we report no 
perceivable latency in the field. 

4.6. Task instruction detailing

The exact task instructions for each actor are then detailed by 
different members of the project team. For robotic tasks, fabrication 
data, such as tool frames, are generated within the design model and 
then oriented in the specified fabrication environment. Each task is 
digitally simulated using the VirtualRobot plugin in Grasshopper to 
check for reachability and collisions. The frame represents the target 
position for the Tool Centre Point (TCP) of the robotic end effector.  The 
target frame’s position is used to calculate the robot’s overall position 
and the individual axis values through inverse kinematics. Each axis 
is then verified to ensure it remains within its physical movement 
range, preventing singularities and potential fabrication interruptions. 
Along with additional task information like offset and speed values, this 
data is used to parametrise robotic skills implemented in KUKA robot 
language (KRL).

The human task instructions are generated similarly based on the 
design model. For the LED installation task, the lighting elements and 
respective labels are converted to geometry messages in a coordinate 
system with the robotic platform as the origin. For the task of loading 
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Fig. 7. Work zone generation process for two segmentation options. (a1) and (b1) show the sampled paths for a given task, e.g. pick-and-placing a timber plate. (a2) and (b2) 
shows the results after optimisation with 𝜆 = 1.0, resulting in a cleaner result than the alternative (a3) and (b3) where 𝜆 = 0.0. * The occupancy map in (b2) was used in the 
fabrication.

Fig. 8. Safety zone setup and HRC tasks in relation to the safety zones.
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Fig. 9. Gantt chart of the HRC process simulation at different success probabilities. (a) 100% for both actors (b) Robot has 20% error likelihood (c) Human has 20% error 
likelihood (d) A scenario without HRC, i.e., robots are paused when humans are working. (A 20% error likelihood was chosen here referencing the threshold stated in the Pareto 
Principle — 20% of the causes account for 80% of the consequences [75]. This threshold can also be chosen based on individual project criteria or past performance data.)
the beam magazine, each beam is first converted to a wire frame and 
then combined with the label information into geometry messages. 
Additionally, the robotic tasks contain low-resolution meshes of the 
elements for AR visualisation in case a human needs to take over 
the operation, along with TCP values used for trajectory simulations. 
The information above is converted to a format compatible with the 
HoloLens app using the Vizor plugin [67].

5. Discrete event simulation

Simulation is a critical component of evaluation and validation due 
to the financial, time and human resources required to evaluate during 
physical fabrication at the industry partner’s site. Based on the defined 
prefabrication tasks, we applied discrete event simulation (DES) to 
examine system performance metrics under various dynamic factors in 
the worker pool. The two performance metrics are total task completion 
time and percentage of robot utilisation.

Since the full prefabrication sequence also included tasks that were 
not relevant for HRC, e.g. milling and sawing operations that are too 
dangerous for humans to be in close proximity, we only used a subset 
of these tasks, which required human collaboration, for the simulation. 
For a quantitative understanding of the robotic task sequence, we refer 
readers to the paper [66].

5.1. Simulation setup

The process definition was first exported in a comma-separated 
values file containing the tasks, target actors, and an estimation of du-
ration for each task referencing methods-time measurement estimates.

We also make the following assumptions for the simulation: (1) skill 
selection by each worker does not change during execution, i.e., we 
assume that the worker does not lose/acquire skills in the course of 
a production sequence; (2) if a human task fails, the re-execution 
takes the same amount of time, i.e., we assume that similarly skilled 
workers can complete tasks in a similar amount of time; (3) if a robotic 
task fails, the re-execution takes double the time it would a robot, 
i.e., we applied a constant multiplier to account for the time needed to 
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notice a failure, access the materials, and conduct the same task.  We 
applied a multiplier of 2 based on our estimation from past experience, 
which modelled an adequately strong penalty effect when evaluating 
the performance time. However, given the inherent variability of how 
re-execution is carried out, this multiplier should ideally be dynamic 
and backed by empirical data, if available. 

Below, we present a scenario exploration by varying several param-
eters in the DES and comparing it against a baseline scenario (Fig.  9a). 
The baseline has two human actors and one robotic actor with a 100% 
success rate in all actions.

5.2. Worker team composition

Given an input task distribution, the simulation can provide an 
estimate of the optimal worker team size to participate in the pro-
cess. With an increase in team size (|𝑇 𝑒𝑎𝑚(𝜏)|), the duration of task 
completion decreases and plateaus when the team reaches a size of 
3, as seen in Fig.  10 left. In other words, assigning a team larger 
than three would have diminishing rewards for this particular set of 
tasks. This plateau would likely occur with more or fewer workers in 
different construction scenarios. For instance, if there are more robotic 
resources, e.g., a dual-robot setup was used to conduct the same tasks, 
increasing the team size beyond three will likely continue to reduce 
task execution time. Vice versa, if fewer human tasks were needed for 
the building component, e.g., the timber cassettes required no electrical 
installations, the plateau may be reached at a lower team size. 

Another factor is the probability of success for the worker task 
(𝑃𝑤𝑜𝑟𝑘𝑒𝑟). A lower value here can be understood as either (1) higher 
task difficulty or (2) lower skill/experience level of the worker with 
the task, both of which can result in a lower chance of success at the 
first attempt. A ‘‘failed’’ task leads to a re-allocation of the task in the 
worker pool if another worker is available, or the system must wait 
until another worker becomes free. This results in longer wait times for 
the robot and consequently a performance reduction. In Fig.  10 right, 
𝑃 = 80% shows a 10% drop in the robot utilisation rate.
𝑤𝑜𝑟𝑘𝑒𝑟
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Fig. 10. Task duration and robot utilisation variations based on (a) Team size (𝑁) 
(b) Worker success probability (𝑃𝑤𝑜𝑟𝑘𝑒𝑟) (c) Robot success probability (𝑃𝑟𝑜𝑏𝑜𝑡), and (d) 
Safety interruptions (𝑃𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡).

5.3. Reaction to robotic system events

Intuitively, the robustness of robotic tasks, i.e. the probability of 
task success (𝑃𝑟𝑜𝑏𝑜𝑡), will have a high impact on the production system 
performance. Compared with the influence of 𝑃𝑤𝑜𝑟𝑘𝑒𝑟, this shows a 
strong negative effect on the execution time and robot utilisation rate 
(Fig.  10 right), due partly to the proportion and speed of robotic tasks.

When humans accidentally enter a guarded safety zone, the robotic 
action is interrupted and needs to restart. The likelihood of such events, 
i.e. the probability of task interruption (𝑃𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡), can also be modelled 
in the simulation. Given a mild safety interruption, a recovery period 
involves three steps: the operator must wait for the worker to exit the 
area, acknowledge the emergency stop error on the robot pendant, and 
resume the robot programme. This recovery time is estimated as a fixed 
duration in the simulation (𝑇𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡 = 15 s), after which the robot 
resumes the task.

More severe safety interruptions, e.g., if the worker sustained in-
juries or caused hardware damages, would result in longer recovery 
times. These rarer but more severe interruptions were outside the scope 
of this simulation. As shown in Fig.  10, when 80% of robotic tasks are 
interrupted under the described conditions, the task duration increases 
by less than two minutes.

5.4. Summary and limitations

Simulation tools allow designers to test different task sequences 
and validate design decisions, e.g., whether a team size is appropriate 
and identify bottlenecks in a sequence. Results of the discrete event 
simulation can be visualised as Gantt charts to examine the different 
scenarios. Fig.  9 shows the differences between the ideal baseline 
scenario where both humans and robot execute tasks with a 100% 
success rate (a), and when either actor has occasional errors (b and 
c). The redistribution of tasks as a response to a failed first attempt is 
shown in yellow.

We highlight two insights that can be gained from the simulations. 
First, the results validated the performance benefit of parallel HRC 
processes for this task sequence.  Compared to a non-collaborative 
process where humans and robots cannot work in parallel (Fig.  9d), 
i.e., eliminating overlapping portions in the Gantt chart, the simulation 
shows around 30% reduction in task execution time with the baseline 
HRC scenario (Fig.  9a).
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Second, we found that the probability of robotic task success has 
by far the largest influence on the production system performance, 
followed by the success probability of the workers, with task interrup-
tions showing the least influence (Fig.  10). This indicates that, under 
the defined simulation condition (1 robot and 2 humans), the robot 
presents a bottleneck for this sequence. 

It is important to note that the accuracy of the simulation depends 
heavily on user-defined simulation assumptions. This means the results 
above only provide a relative comparison but do not produce accurate 
performance projections. In particular, we note two limitations under 
these assumptions. First, we applied certain simplifications, excluding 
unlikely events such as severe interruptions or changes in worker skills 
during production. These cases are, however, important from a human 
factors perspective. Second, given limited real-world data during the 
design phase, we estimated the performance times, e.g., 2x penalty of 
a worker executing a robot task.  This simplification of reality is a 
shortcoming we address further in the outlook 8.2, where data-driven 
approaches are suggested. Nevertheless, in the case of re-executing 
tasks, using a higher penalty, e.g., 3x or 4x, would not affect the con-
clusions of the simulation, but rather emphasise the robot bottleneck 
that was already evident under the 2x assumption.

6. User study

Since conducting user studies concurrent to production incurs risks 
for the project partners, we conducted an evaluation using AR sim-
ulations around the real robotic platforms as a proxy for the real 
environment (see Fig.  11). The study has two goals: (1) to attain a 
usability benchmark of the AR-based collaborative system, comple-
mented by observations and qualitative feedback from carpenters, and 
(2) to understand user preferences and acceptance levels with regard 
to the three types of AR interactions (task, team, and process) during 
human–robot collaboration.

6.1. Participants

We aimed at a high degree of ecological validity and, as such, 
invited 8 workers from the industry partner to take part in the study. 
The participants were between 21 and 63 years old (Mean = 43, SD 
= 16.3). Their work experience in carpentry ranged from 3 months 
to 48 years; two were apprentices, and six were carpenters. None of 
the workers had extensive experience with AR, but three had used a 
HoloLens 2 before.

6.2. Materials

We compiled the AR application on four HoloLens 2 units for the 
study. We alternated using different pairs of devices to minimise the 
risk of low battery or device overheating, even though each device has 
a 2-3 h battery life [63]. A 20 × 20 cm marker was fixed on the metal 
profile in the centre of the robotic platform to localise the AR overlay. 
The position of the marker was pre-calibrated in the AR application 
before the participants put on the HoloLens.

We conducted a spatial mapping of the fabrication hall on each 
headset prior to running the study to ensure tracking stability. We 
did not experience tracking loss that disrupted the study, though we 
occasionally noted a slight shift (1–2 cm) in the holograms during 
movement over long distances. However, this effect subsided when 
one approached the object (regardless of its position in space). The 
observed deviation between the physical and virtual robot was in the 
range of 1–4 cm. This did not affect task execution, because all tasks 
were carried out in the simulated AR environment. 
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Fig. 11. Simulated environment for the user study at the Large Scale Construction Robotic Laboratory (LCRL) in Waiblingen. Robotic simulation (white), cassette table (grey), 
cassette plates (blue) and beams (green) are visualised (image through the HoloLens 2 headset).
6.3. Study design

Each study involves a single trial followed by a questionnaire and 
a semi-structured interview. The tasks in the trial resemble the real 
cassette prefabrication tasks but are adapted for completion without 
physical elements over a shorter duration. The physical robot remains 
stationary, and robotic tasks are shown using an AR simulation overlay. 
The tasks are carried out in one session without breaks.

Each participant wore a HoloLens and had an assisting ‘‘teammate’’ 
with whom to do the tasks. The teammate was a member of the research 
team who was aware of the task procedures and conducted similar 
tasks with the participants in tandem. All participants had the same 
teammate. We decided against pairing two new users in one team 
because the influence one user has on another introduces irrelevant 
complexity and confounding factors.

6.4. Measurements

In addition to demographics (age and work experience in timber 
construction), we collected three measurements from each participant: 
(1) task duration, (2) System Usability Scale (SUS), and (3) results of 
the semi-structured interviews.  The SUS questionnaire was translated 
into German from Brooke’s 10-item SUS scale [76]. The semi-structured 
interview included four topics:

AR-supported Task Sharing: What is your overall experience and 
impression about this process?

Task Interactions: How did you find the task interface? What was 
challenging for you?

Team Interactions: How did you find the process of requesting 
help/rejecting a task? What was challenging for you?

Process Interactions: How did you find the process of overtaking 
a failed robot task? What was challenging for you? 
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6.5. Task design

To gather user feedback on the interactive features in the AR system, 
we created opportunities for these interactions by pre-programming 
‘‘errors’’ during task completion. Each user performed the following 
tasks (marked T1–T9): Pick two wires with correct markings out of four 
and place them on the cassette in AR (T1). Move to the second cassette 
zone (T2). Pick and place another set of wires, but the markings are 
intentionally incorrect; the user can either reject the task or request 
help from their teammate (T3). Move to the magazine zone (T4). Pick 
two beams out of four that are correct in length and place them on 
the magazine in AR (T5). Pick and place another set of beams, but one 
input beam is missing; the user can again either request help or reject 
the task (T6). Move to the monitoring zone and oversee robotic pick 
and place procedures (T7). One procedure ‘‘fails’’, requesting the user 
to overtake the execution (T8). The same overtake task is repeated (T9). 
Dynamic task allocation was used during T3, T6 (from the worker to 
their partner) and T8, T9 (from robot to the worker). 

While T1 and T5 familiarise the user with task interactions in 
AR, T3 and T6 expose the user to the team interaction features with 
intentional errors. After the monitoring task (T7), T8 and T9 simulate 
an automation failure event and require the user to interact with the 
task list by overtaking a failed robotic task. T2, T4, and T7 are shared 
sequential tasks where the ‘‘teammate’’ (research assistant) and the 
participant need to both acknowledge completion of each task, while all 
other tasks are sent in parallel to both users for independent execution 
(see Fig.  13).

6.6. System performance

During the study, we observed a response time of around one second 
on the AR devices (from the moment of a button press to receiving new 
task visualisations). To understand this in more detail, we performed 
a post-hoc performance analysis replicating the study conditions. The 
same PC (2.6 GHz CPU, 32 GB of RAM), HoloLens 2 device, and 
wireless network configuration (5 GHz router, with only the PC and 
HoloLens connected to the network) were used.



X. Yang et al. Advanced Engineering Informatics 67 (2025) 103475 
Fig. 12. Task durations for main tasks in the user study. (a) Manual installation of electrical wires: T1 under normal execution, T3 under intentional error condition. In T3, all 
users used the help function. (b) Manual placement of beams in the magazine: T5 under normal execution, T6 under intentional error condition. In T6, 4 users rejected the task, 
5 users requested help. (c) Human overtaking failed robotic tasks: T8 first-time execution, T9 executing for a second time.
Fig. 13. System Usability Scale (SUS) results of the AR user study (N = 8). The numbers 
on the left correspond to question numbers in the SUS questionnaire; the top five 
questions are agreements, and the bottom five are disagreements [76].

The time required for performing dynamic allocation, from detect-
ing a task in the queue to deciding on the worker team, averaged 
𝛥𝑎𝑙𝑙𝑜𝑐 = 42 ms. From the task completion event, i.e., button press on the 
HoloLens, to receiving the task visualisation, i.e., objects were shown 
on the HoloLens, the average total response time was 𝛥𝑡𝑜𝑡𝑎𝑙 = 792 ms. 
Because the study included two humans executing in parallel, this 
total duration also included the processing time of a parallel task for 
the human partner 𝛥𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 = 100 ms. The average time for sending 
visualisation only, e.g., for robotic tasks and tasks completed by another 
worker, was 𝛥𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ = 6 ms. Table  3 presents a complete list of 
recorded response times.

The HoloLens application remained at 59–60 fps during use. The 
maximum CPU time per frame observed was 17.9 ms. The peak memory 
use was 774.7 MB out of 2048 MB available (38%). 

6.7. Study results

The SUS score of the AR system has a mean of 72.7 and a stan-
dard deviation of 12.7. Pearson’s correlation coefficient between the 
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Table 3
Response time of system components. (In this setup, the worker pool contained two 
workers executing tasks in parallel.)
 Response time μ (ms) 𝜎 (ms) 
 Pool computation 450 165  
 Parallel task process 100 42  
 Network (Roundtrip) 68 31  
 Allocation decision 42 30  
 Task server response 35 21  
 Dispatch visualisation 6 4  
 Total 792 31  

participant’s age and SUS rating showed a strong negative relationship 
𝑟 = −0.68, that is, the older a participant, the more negative the SUS 
score.

The overall SUS ratings were similar to those of an existing ex-
ploratory user study (N = 16, age 25–35) employing a similar system 
without team and process interaction features (Mean = 73.5, SD =
12.2) [65]. Similar to this previous study, the item that performed 
worst was question 4: ‘‘I think I would need the support of a technical 
person to be able to use this’’. Between a score of 1–5 (5 being the worst), 
the mean score for this question was 3.0 with a standard deviation of 
1.41.

The task durations for the key human tasks are summarised in 
Fig.  12. Between the tasks without error (T1 and T5) and those with 
intentional errors (T3 and T6), the latter took roughly 50% longer for 
users who requested help of the partner to complete. Three users in T6 
rejected the task, resulting in a much shorter task duration, as logged 
by the system. When overtaking the robotic task, the second execution 
(T9) showed a clear improvement in task speeds from T8, likely due to 
the learning effects.

6.8. Qualitative feedback

At the end of the study, we conducted a 15-min interview with the 
participants. The transcriptions are translated from German to English 
and summarised below. The results are grouped into the following four 
categories:
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AR-supported Task Sharing: 5/8 used the HoloLens for the first 
time, and the system ‘‘took some getting used to, but once you get it, it is 
very easy ’’. Most users found the visualisation easy to understand. One 
user who was a carpentry machine operator saw this as a ‘‘change in the 
profession of machine operators’’ and with the robot ‘‘silly repetitive tasks 
don’t have to be always done by hand’’.

Team Interactions: Most participants chose to use ‘‘Help’’ instead 
of ‘‘Reject’’ for the problematic tasks and made similar comments that 
they would not use the reject function in reality because it would lead 
to problems for the task and would be inappropriate in a professional 
setting. Most would prefer either to ask for help or to have an option to 
set aside the task temporarily. All users found the help function useful 
and noted that this meant they did not have to leave their workspace 
to ask for help and that it was more practical when the partner is far 
away and calling out by voice in a loud hall is not desirable.

Task Interactions: The task instructions were found to be simple 
and straightforward, but the simulated nature of the manual tasks made 
some users feel it ‘‘was like a videogame’’. The most prominent usability 
issue is the limited field of view on the HoloLens 2 which led to users 
needing to ‘‘look around a lot for the elements’’. One user also commented 
that once one knows the task process, the descriptions will no longer 
be needed, but it is useful when one starts a new process.

Process Interactions: During the robotic monitoring task, the task 
list provided an overview of the process. Some commented that during 
manual task execution, this task list was useless, which matched our 
design assumptions. Most users found the process of overtaking a 
robotic task to be easy, but several found it very boring to stand next 
to the robot just ‘‘doing nothing and observing’’ during the monitoring 
process. Since the robot did not make physical motions, we did not 
evaluate workers’ perception of safety when overtaking these robotic 
tasks. However, one participant hinted at the impact of working in pairs 
on safety perception – ‘‘I generally think that when you work with robots, 
you have to be in pairs because one always has an eye on the other one ... 
I can be alone only when the robot is not moving ’’.

7. Fabrication demonstrator

Finally, we summarise the physical execution process implemented 
during three batches of timber cassettes for the livMatS Biomimetic 
Shell and present the feedback from workers participating in the 
project. Using the multi-user HRC system, two humans and one robot 
worked in collaboration to complete the assembly of timber cassettes.

7.1. Robotic execution

Four different end-effectors were used for the robotic fabrication 
steps, and the tool change was managed through the fabrication control 
system — each task was linked with the respective tool number, which 
ensured the correct tool selection and execution of the corresponding 
KRL subroutines.  The implementation of safety frames at each bay 
ensured accurate end-effector orientation, while the pre-simulation of 
the manufacturing process using Virtual Robots (see 4.6) enhanced 
workflow reliability and efficiency by identifying potential fabrication 
errors prior to physical production.  Encapsulation of related informa-
tion into executable tasks enabled mostly error-free execution of the 
machine code throughout the manufacturing process.

During the three batches where AR was integrated, the robotic 
execution did not encounter errors. Throughout the entire 6-week fab-
rication process, robotic errors that occurred were primarily hardware-
related or due to material heterogeneity. Specifically, when nailing 
wooden nails, which were used for temporary fixation of the compo-
nents during the assembly process, there were occasional nail breakages 
if a knot was present at the nail position. These nail breakages some-
times led to a blockage in the nail gun and required humans to resolve 
the hardware issue and re-insert the wood nails. During these instances, 
the operators stopped the robot and resolved the issues manually with 
hand tools. 
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7.2. AR-supported human–robot collaboration

Two HoloLens 2 units were used in the demonstration and were 
connected via WiFi to the worker pool. The worker pool connected 
via the same WiFi to the fabrication server running on a different PC. 
The AR view from the HoloLens is illustrated in Fig.  2. In addition 
to coordinating the collaboration, the interface supported two manual 
tasks in AR, which were executed using paper documentation in all 
other production batches.

First, the light installation required a worker to install two linear 
rails on the cassettes, affix the LED strips to each rail, and connect 
the two in the centre. Two workers were connected to the system at 
one time and worked respectively on two different cassettes in the 
same work zone. A comparison of the execution of this task with paper 
documentation v.s. AR is shown in Fig.  14(a, b).

The second task is refilling the material storage at the back of 
the robotic platform. Due to the need to control the wood moisture 
content before placing and glueing, the wood was taken out of the 
moisture-control chamber and loaded into the beam magazine shortly 
before they were placed. In addition to preparation outside of the main 
working area, this task involved the identification of a beam by a sticker 
on the material and placing it in the correct slot of the material supply 
station as indicated in Fig.  14(c, d).

To understand the ergonomics of this process, we highlight the 
implications of the AR headset’s field of view (FOV) during these two 
tasks. The HoloLens 2 provides a horizontal FOV of 43 degrees and 
a vertical FOV of 29 degrees [77]. Since the light installation task 
required the user to affix the strips manually, the user mostly remained 
at arm’s length from the object. At an average length of 75 cm, the 
AR projection would cover 0.95 m diagonally (0.6 m horizontal, 0.4 m 
vertical). Since the LED strips ranged from 0.85 m to 2.1 m (average 
length 1.625 m), this meant that the users almost always had to rotate 
their head to capture the entire object. 

During the magazine refill task, the beams ranged from 0.5 m to 
2.2 m (average length 1.09 m). The beam magazine bay was 1.3 m 
deep, so when placing the beam, the user stood roughly 1.5 m away 
from the inside edge of the refill station. This provided a 1.9 m 
projection coverage diagonally (1.2 m horizontal, 0.8 m vertical). For 
most beams, the AR visualisation can cover the entire object. 

7.3. Results and feedback

The fabrication demonstration was conducted during three batches 
of cassette prefabrication over one day. The system enabled two hu-
mans equipped with HoloLens 2 headsets to work alongside the in-
dustrial robot. The worker pool dynamically allocated tasks among the 
two workers, allowing them to work in parallel with each other on two 
different cassettes.

The headsets displayed corresponding task instructions, safety zone 
information, and robot visualisations during each task. Similar to the 
user study 6.2, we did not experience battery issues or tracking loss 
during production and observed a similar response time and accuracy of 
the overlay. Positional deviations between the real and virtual objects 
fell in the 1–4 cm range, which was noticeable during the manual tasks 
but did not affect overall task execution. 

The workers participating in the prefabrication process found the 
AR application most useful for two tasks. First, the magazine refill 
task originally required back-and-forth references to a stack of paper 
documentation to identify the correct beam and place it in the correct 
location and orientation. Because some beam geometries were very 
similar, they required multiple rounds of checking by two workers. The 
in-situ AR display allowed a much more efficient alternative.

Second, since the prefabrication area was protected from the rest 
of the hall with a temporary enclosure, there was no visibility of the 
robotic process unless the worker physically entered the workspace. 
The AR simulations of the robotic tasks allowed users to visualise the 
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Fig. 14. Paper documentation and AR interface used for the LED installation task (a, b) and magazine (material storage) refill task (c, d).
live process while standing outside of the enclosure, and this ‘‘X-ray 
vision’’ allowed an easy overview of fabrication — seeing the steps that 
are already completed makes it easier to plan tasks while the robot is 
working.

The LED installation task, on the other hand, was not favoured by 
some — though the in-situ marking removed the need to refer to paper 
records, the task needed to be carried out at a close distance to a 
relatively large object. The field of view issue of the HoloLens became 
prominent in this scenario. The posture of this task also requires the 
user to kneel and face downwards, where the weight of the HoloLens 
device was not very comfortable compared to the standing posture for 
the magazine task.

8. Discussions and outlook

In this paper, we present the implementation of a multi-user system 
for large-scale human–robot collaboration using AR HMDs. The system 
enables multiple workers to safely work and collaborate alongside 
industrial robots to complete the prefabrication of timber cassettes. 
The user study and digital simulations provided insights into human- 
and system-related metrics resulting from the introduction of the HRC 
system.

While the prefabrication of timber cassettes represents a specific 
use case, the proposed methods address three fundamental elements 
– interface, task allocation, and safety – that are broadly applicable 
in HRC workflows. The interface facilitates intuitive communication 
between human workers and machines, lowering entry barriers and 
enhancing the adoption of automation technology. Dynamic task allo-
cation is particularly relevant for ensuring flexibility, while safety is 
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a critical concern not only in the AEC industry but in other contexts 
where humans and industrial robots operate in shared space.

Although these approaches are generalisable to other prefabrication 
and construction scenarios, adapting them to more dynamic settings, 
such as on-site construction, may require modifications. For instance, 
the current development, driven primarily by timber prefabrication, 
relies on predefined task lists. On-site processes, however, may demand 
ad-hoc tasks, necessitating higher robot autonomy and new task allo-
cation strategies. By providing an end-to-end demonstration of how 
these methods integrate into a prefabrication project, this research 
offers a general implementation framework, supporting future efforts to 
adapt and extend these methods to more diverse construction scenarios. 
Below, we outline the limitations of the current research and suggest 
directions for future work. 

8.1. Limitations

The current implementation of our AR system based on the
HoloLens 2 faces several limitations. First, we used one large marker to 
localise the robotic platform, and thus, the system could only provide 
wide-tolerance guidance to the workers. Given the distance to the 
robot and the nature of manual tasks in the study, this did not cause 
major issues, though for applications requiring high-precision tasks, the 
marker calibration process should be improved. Recent work has shown 
that the overlay accuracy increases with a dense array of markers, 
e.g., 0.98 mm accuracy can be achieved with a distance increment 
of 38.1 cm between markers [78]. Manual task precision can also be 
augmented with feedback-based guidance or dynamic tolerance allo-
cation approaches [41,79].  Second, we alternated different headsets 
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between sessions to mitigate low battery or overheating issues. In real-
world applications where the systems need to be used continuously 
without breaks, the current capacity of the headsets can present a 
challenge. However, we remain optimistic given the rapid evolution 
and improvements in new AR headsets. 

For simplicity, the simulations of the HRC process used an event-
based solver instead of time-based simulations. The DES approach is 
less time-consuming and allows rapid feedback during process design, 
but the latter is more appropriate for capturing more detailed dynamics. 
Incorporating time-based simulation can enhance the temporal resolu-
tion of the results and provide more granular insights on human–robot 
interaction dynamics. Furthermore, digital human modelling tools can 
be included to emulate human behaviours to greater detail [80]. The 
current simulation results are also heavily dependent on assumptions 
for task durations, for which data-driven predictive approaches should 
be used to inform these assumptions [66].

During execution, the dynamic task allocation by the worker pool 
was a critical function that enabled the system to coordinate mul-
tiple users and facilitate process interactions. However, the current 
allocation process mainly serves as a ‘‘failsafe’’ for unexpected situ-
ations, where human workers receive the re-allocated task. Dynamic 
reassignments to robots would be important for more advanced human–
robot teaming, though they may be more difficult or risky to test 
in production environments. Additionally, if not enough workers, or 
appropriately skilled workers, are available in the pool, the system will 
not be able to progress. Since being able to test the system during 
live production was a precious opportunity, we did not allow this to 
occur. If the system was used over a longer period, such events, whether 
due to technical issues or human factors, may become a source of 
failure and need to be mitigated. Additional functions can be incor-
porated here to raise alerts when detecting these issues, e.g., worker 
fatigue, unexpected errors, or inactivity, and automatically modify the 
configuration. 

In the current safety zone generation process, each workstation was 
large, and the layout was rather constrained; the segmentation problem 
was therefore fairly trivial. For larger search spaces, the segmentation 
algorithm would need to be improved to generate good solutions. For 
crowded environments with many possible collisions, computing path 
feasibility may also take a long time, which we avoided by having 
relatively sparsely populated work areas and a short task sequence.

A critical aspect of industrial human–robot collaboration is the 
safety certification and declaration of conformity that the distributor 
of the machines and systems must carry out and provide each time the 
system is reconfigured or adapted. According to IEC 62061 and ISO 
13849 [81,82], risk and hazard analysis are required for the entire 
system and its processes, and appropriate measures to be taken to 
protect against hazards need to be identified. The implementation of 
this currently manual certification process requires expert knowledge 
and is very time-consuming. This is especially true for the use case 
described above, where reconfigurable, transportable robotic systems 
are used to prefabricate timber components at different locations, as the 
process must be repeated for each reconfiguration. In this respect, the 
prospect of semi-automated certification procedures supported by soft-
ware, e.g. in simulation environments, is promising in order to reduce 
the effort in the described application and thus enable such systems.

In addition to external safety systems, workers’ perception of safety 
and trust in the robotic system are equally important for the successful 
deployment of human–robot collaboration in the workplace. Our user 
study focused on evaluating the AR interface, but did not focus on 
capturing safety perception in the measurements. Recent studies have 
shown that a separation of work areas increases workers’ perceived 
safety by promoting trust and team identification  [28]. Systems that 
can enhance the perception of trust and safety should be investigated 
in future work. 
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8.2. Outlook

Designing for human–robot collaboration for timber prefabrication 
needs to account for system, human, and design-oriented factors [11]. 
The implementation above focused mainly on the first two. Whether 
the results can be extrapolated to applications in other design vari-
ants, e.g., using more dexterous joining techniques [83], or dealing 
with more dynamic material behaviours [54], where the length and 
proportion of human and robotic tasks will likely be very different, is 
left to future work.

The HRC simulation process will greatly benefit from data-driven 
approaches for estimations of both human and robot task durations 
[84]. Machine learning methods for lead time predictions are widely 
explored in the manufacturing literature [85] and would be an im-
portant next step to enhance the simulation quality and inform better 
HRC designs. It is important to note that such automated predictions 
should remain transparent, steerable, and understandable to the users, 
thus empowering them to design based on real-world data rather than 
fully automating the design process.  Evaluating an HRC system in a 
real production setting is both risky and resource-intensive, but it also 
provides better ecological validity of the results. With the increasing 
proliferation and standardisation of HRC, we expect that there will be 
more opportunities for such field studies ‘‘in the wild’’ [86].

More advanced safety features using human sensing and intent pre-
diction can also be incorporated to support more intelligent adaptations 
during HRC [87,88]. This would open the possibility to extend the 
safety zone visualisation beyond statically defined information to more 
dynamic and predictive information to enhance collaboration fluency. 
However, such intelligent systems should always allow humans to un-
derstand the decisions transparently and remain in control. Facilitating 
user control keeps humans effectively in the loop to ensure smooth 
collaboration [89] and has important implications on the perception of 
agency and psychological needs [90,91].  With the increase in adoption 
of automation in construction industries, safe, transparent, and flexible 
systems that effectively facilitate closer collaboration of human and 
robotic actors are highly important for the well-being of the workers 
and the productivity of the industry.

9. Conclusion

This research presents a cohesive HRC implementation for large-
scale building prefabrication, integrating interdisciplinary knowledge 
from contributors in architecture, computational design, visualisation, 
manufacturing, and human–robot interaction disciplines. Given the 
multitude of information in digital construction processes and a large 
body of existing work on AR implementations for HRC [45], our 
design efforts contribute (1) a systematic organisation of AR interface 
elements based on the level of automation (LoA) in construction tasks 
and (2) an empirical evaluation with construction workers on various 
task and process interaction possibilities. Moving beyond single-user, 
homogeneous collaboration setups, the AR system is driven by a worker 
pool that enables multi-user coordination under dynamic production 
conditions. Building on a skill-based approach for HRC in timber con-
struction [11], the worker pool formalises the task allocation process 
and facilitates adaptation to unexpected events by the multi-human–
robot team, e.g., requesting help from/delegating tasks to one another. 
A zone-based safety workflow enables human collaboration with heavy-
payload industrial robots that do not have advanced safety features. 
Using sensor-monitored zones to regulate the shared space between 
humans and robots over time, the proposed method optimises spatial 
constraints during computational design and planning, ensuring that 
safety is addressed early on. Combining a physical demonstration, 
digital simulations, and a user study, the results of our mixed-methods 
evaluation contribute empirical and practical insights on various facets 
of adopting the HRC workflow. Lastly, by outlining current limita-
tions and outlook for improvements, we hope to inform future re-
search efforts towards more flexible, fluent, and safer human–robot 
collaboration workflows for prefabrication and construction.
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