
This is the author’s version of the work. It is posted for your personal use. Not for redistribution. The definitive version was published in Proceedings
of the 9th IEEE Working Conference on Software Visualization (VISSOFT 2021), pp. 65–75, 2021, doi: 10.1109/VISSOFT52517.2021.00016.

TransVis: Using Visualizations and Chatbots for
Supporting Transient Behavior in Microservice

Systems
Samuel Beck∗, Sebastian Frank∗, Alireza Hakamian∗, Leonel Merino† and André van Hoorn∗

∗University of Stuttgart, Germany
†Pontifical Catholic University of Chile, Chile

Abstract—In a microservice system, runtime changes such as
failures, deployments, or self-adaptation can trigger the system to
transition from one steady state to another, i.e., exhibiting tran-
sient behavior. To assess a system’s quality, it is imperative that
this transient behavior is specified in non-functional requirements
and that stakeholders can analyze whether these requirements
are met. Yet, there is little support for either specifying transient
behavior as a non-functional requirement or analyzing how such
a requirement is met in production. We aim to make these
two tasks more accessible by utilizing novel human-computer
interaction methods. To this end, we developed TransVis, an ap-
proach for specifying and analyzing transient behavior based on
chatbot interactions and visualizations of the systems’ resilience.
We examined the effectiveness of our approach by conducting an
exploratory expert study on a prototypical implementation. The
study revealed that the developed visualizations are effective for
specifying and exploring transient behavior. Participants found
especially helpful the feature to compare specifications with the
actual behavior. However, the integration of a chatbot did not
prove effective for our use cases. In conclusion, our approach
is capable of supporting stakeholders in the exploration and
specification of transient behavior.

Index Terms—transient behavior, microservices, requirements,
software quality, visualization, chatbots

I. INTRODUCTION

Modern software systems are complex, highly distributed,
and subject to frequent change during runtime. To uphold their
service quality is a great challenge under these circumstances.
Nonetheless, a multitude of software systems is highly critical,
and failures can cause enormous harm and costs [1]–[3]. For
this reason, non-functional requirements for various quality
attributes of software must be specified and continuously
assessed during the runtime. However, the numerous changes
that a system must endure complicate this task. For instance,
DevOps [4] enables developers to deploy new software re-
leases frequently. Microservice systems [5] are susceptible to
service failures that can propagate through the system. To
prevent them, resilience mechanisms such as circuit breakers
can automatically change the service behavior. Furthermore,
systems are exposed to unpredictable workloads and attacks
from malicious users.

All these sources of change imply that microservice systems
are almost continuously in a state of transient behavior, i.e.,
in a transition from one steady state to another (see Sec-
tion II). For that reason, to ensure a system’s reliability and

performance, this behavior must be specified in non-functional
requirements, which stakeholders continuously evaluate. How-
ever, due to the complexity of this transient behavior and
the lack of specifications, these demanding tasks are often
restricted to experts. Czepa and Zdun [6] recently found
evidence that both textual and graphical formal specification
languages are difficult to use for novice developers. This serves
as an incentive to create novel solutions for capturing non-
functional requirements for transient behavior. Methods and
technologies from human-computer interaction (HCI) have
successfully been applied to problems in other domains to
increase user performance and user experience. For instance,
Merino et al. [7] created CityVR, an interactive software visu-
alization tool that visualizes software in virtual reality as a city
metaphor. They observed that developers felt immersed and
excited when interacting with the visualization. To name an-
other example, Toxtli et al. [8] deployed a chatbot to help users
create, assign, and keep track of tasks in their team. Study
participants mostly reported increased productivity due to the
chatbot. Current requirement models such as the approach by
Yin et al. [9] do not leverage such methods to boost their
effectiveness. Consequently, we hypothesize that these benefits
of HCI methods such as chatbots can be transferred to transient
analysis and help to address the challenges of comprehending
and capturing the transient behavior of software systems.

To this end, we created the TransVis approach proposed
in Section III that utilizes visualizations and a chatbot to
support software architects and DevOps engineers in the
specification and analysis of transient behavior. To examine its
effectiveness, we developed a prototypical implementation of
the approach and conducted an expert study that is presented
in Section IV. The study revealed that the TransVis approach
is effective for specifying and analyzing transient behavior and
is easy to learn and use. Especially the included visualizations
are helpful in these tasks. We discuss the results of the study
in detail in Section V.

Supplementary material, like code and the study results, is
publicly available online [10].

II. TRANSIENT BEHAVIOR

The term transient behavior has its origin in electrical
engineering. Steady-state and transient are two possible so-
lutions to the state-space system model. The transient analysis

https://doi.org/10.1109/VISSOFT52517.2021.00016
https://doi.org/10.1109/VISSOFT52517.2021.00016

captures the time-dependent behavior of the system’s quality
of service (QoS) [11]. Formally speaking, transient analysis
is concerned with the probability of being in a specific
state at time t. On the contrary, in steady-state analysis, the
notion of time disappears, and the probability distribution of
being in each state independently of the initial distribution
converges to a unique probability distribution [12]. Venikov
defines that transient behavior or a transient state “occurs
[in an electrical power system] when the system is changing
from one steady state to another” [13]. Software systems are
subject to frequent change while operating in production and
experience similar transitions between steady states. Frequent
deployments, failures, and self-adaptation disrupt the QoS
provided by a microservice. Accordingly, the phenomenon of
transient behavior can be adopted from electrical engineering
to the software domain.

A. Modeling Transient Behavior

Before transient behavior can be specified in non-functional
requirements, this abstract concept must be quantified by
concrete metrics. To this end, we utilize the resilience triangle
proposed by Bruneau et al. [14], illustrated in Figure 1,
in an approximated form as presented by Zobel [15]. A
resilience triangle visualizes the recovery of a system from
a disruption [9]. We propose the use of this visualization to
illustrate transient behavior in software systems.

Thereby, transient behavior can be quantified by an initial
loss of QoS, the time to recovery from the behavior, and the
resulting loss of resilience that the system suffers during the
period of transient behavior. To compute these properties, a
QoS function Q must be defined. Suitable functions could
be the response time or success rate of a service. Also, it
is necessary to declare an expected value Qe for the QoS
function based on which the other metrics are computed. The
initial loss X denotes the loss of quality at the beginning of the
occurrence of transient behavior and is given by Equation 1.
Qe(t0) is the expected QoS and Qa(t0) the actual QoS at t0.

X = Qe(t0)−Qa(t0) (1)

Resilience
loss

Q(t)

time

100

t₀ t₁

In
iti

al
lo

ss

Time to recovery

Fig. 1: Bruneau’s resilience triangle model [14] on a resilience
curve, adopted from Yin et al. [9].

The time to recovery describes a transient behavior’s dura-
tion and is defined in Equation 2, where t0 is its start time
and t1 its end time.

T = t1 − t0 (2)

The area of the triangle formed by these metrics approxi-
mates the loss of resilience suffered during the behavior. It is
given by Equation 3.

R =
X · T
2

(3)

Subsequently, we use the initial loss, the time to recovery,
and the loss of resilience to quantify transient behavior.

B. Transient Behavior in Practice
In previous work [16], we reported on five expert interviews

with experienced software architects in the software consulting
business. We investigated how developers, architects, and
operators handle transient behavior in practice. We observed
that transient behavior is not a well-known concept among
many software architects and developers. Furthermore, most
companies in the enterprise application domain do not specify
transient behavior in non-functional requirements. The reasons
are (i) the specification of transient behavior is seen as unnec-
essary for most projects, and (ii) business stakeholders often
lack knowledge about transient behavior and its consequences.
With regards to the analysis of transient behavior, faced with
an overwhelming amount of data, the interviewees lamented
ineffective tooling that lacks filtering of incidents. Motivating
this work, they miss a model and visualizations for transient
behavior and its consequences.

III. TRANSVIS APPROACH

We propose the TransVis approach to support software ar-
chitects and DevOps engineers in the specification and assess-
ment of transient behavior in microservice systems. First, we
introduce four use cases that the approach covers. Afterward,
we propose a set of visualizations for the introduced metrics
and use cases. We also present how they can be combined into
a dashboard and detail a prototypical implementation.

A. Use Cases
We propose four use cases for our TransVis approach that

build on our previous work [16]. Consequently, they are
based on the findings of the expert interviews about transient
behavior described in Section II-B.
UC1: Specify the acceptable transient behavior of a service

from the software architect’s viewpoint.
UC2: Find occurrences of transient behavior in a service from

the DevOps engineer’s viewpoint.
UC3: Verify the compliance to the requirements for transient

behavior of a service from the DevOps engineer’s view-
point.

UC4: Analyze the impact of transient behavior on dependent
services from the DevOps engineer’s viewpoint.

In the following, we describe each use case and detail the
metrics that need to be captured to fulfill them.

1) UC1: Specifying Transient Behavior: Transient behav-
ior’s complexity makes its specification via formal require-
ments difficult. This is aggravated by a lack of knowledge
of transient behavior among business stakeholders and its
perceived low priority. Indeed, our previous expert inter-
views [16] have revealed that such requirements are usu-
ally not captured in a majority of projects. Facilitating their
specification through modern human-computer interfaces and
suitable visualizations might reduce the effort to a level where
this practice becomes increasingly implemented in real-world
software projects.

The quality of a system might be impacted by multiple
causes that differ in severity and duration. We expect a
different behavior after a service instance failure than during
deployment. To take this into account, a specification is always
created for a specific cause of transient behavior and one
service.

Furthermore, we use the metrics defined in Section II-A to
specify what can be considered acceptable transient behavior.
For this reason, a specification is given by the acceptable
initial loss, the acceptable time to recovery or duration, and the
resulting acceptable loss of resilience. These values are defined
for a chosen QoS function and the expected QoS value.

2) UC2: Finding Transient Behavior: In line with our
previous findings [16], we consider the identification of critical
transient behavior that impacts the user experience to be
essential. Also, to verify whether a service’s transient behavior
stays within a defined specification, it is necessary to identify
occurrences of transient behavior within the performance
measurements of the service. To this end, a QoS function
is chosen to illustrate the behavior of the service. Temporary
degradations of this metric indicate the occurrence of transient
behavior. The bounds of the exhibited transient behavior are
marked by the time point t0 of the initial loss and the time
point t1 at which the QoS completely recovers from the
disruption.

3) UC3: Verifying Transient Behavior: Specifications are
only valuable if they can be verified. For this reason, another
important use case is to verify whether a service complies
with its requirements for transient behavior. The precondition
of this use case is that we have identified instances of transient
behavior in the performance measurements, as described in
Section III-A2. Once transient behavior has been detected,
whether it complies with the specification is not trivial to
answer. The reason for this is that our quantification of
transient behavior comprises multiple aspects.

When analyzing transient behavior, the difference between
the actual and specified initial loss, time to recovery, and loss
of resilience should be considered. If any of these attributes ex-
ceeds the specification, the requirements could be considered
to be violated. On the other hand, one could argue that only
the violation of all three attributes constitutes non-compliance
with the requirements. Therefore, the question of requirement
violation should be clarified in advance to avoid confusion.

4) UC4: Analyzing the Impact of Transient Behavior: The
services of a microservice system are usually interdependent.

Because of this, transient behavior manifesting in one service
can propagate and cause transient behavior in dependent
services, which is of interest to architects and engineers [16].

It is essential to have an overview of the system architecture
to answer how transient behavior impacts the behavior of
other services. Knowledge about the number of instances, the
endpoints, and the dependencies of each service is required. To
investigate whether transient behavior in one service leads to
transient behavior in dependent services, one needs to observe
the QoS of each dependent service precisely at the time the
original transient behavior occurs. If an instance of transient
behavior coincides in a dependent service, they might be
correlated.

B. Visualizations

We consider that software architects and DevOps engineers
would benefit from visualizations of the transient behavior of
microservices in their daily work. Consequently, we present
various visualizations for different aspects of transient be-
havior designed to support them in the four use cases. For
this purpose, we combine the visualizations into a transient
behavior dashboard.

1) Architecture Visualization: In our approach, we follow
the information-seeking mantra by Shneiderman [17], and
consequently, first present the user with an overview of the
state of the system. Then, we provide details for single ser-
vices on demand. The view contains the system’s architecture
and encodes information about the compliance of observed
transient behavior to its requirements, facilitating UC2.

The architecture of a microservice system forms a
graph [18] with the services as vertices and the dependencies
as edges. A common visualization for graphs is the node-
link diagram [19], which we have chosen for our architecture
visualization. Figure 2 shows how the visualization looks like
for a small example system. The diagram shows the names
and interdependencies of the services. The yellow color of the
Passenger Management service represents a potential
violation of the requirements for transient behavior in this
service. This makes the state of each service visible at a glance.
The visualization allows the selection of single services to
show further details about their transient behavior. A selected
service is represented by a red frame, such as the Payment
service in the example.

2) Transient Behavior Visualization: When a service is
selected, additional visualizations are displayed that support
the user in analyzing transient behavior (UC3) and creating

Web UI

Passenger
Managament

Driver
Management

Payment

Fig. 2: Architecture visualization.

0

25

50

75

100

0 200 400 600
Time (s)

Q
oS

 (
%

)

Fig. 3: Transient behavior visualization.

specifications for it (UC1). The main view is the transient
behavior visualization, an area chart that represents the chosen
QoS function for a selected service endpoint. The user can
change the displayed endpoint. It is plotted on the y-axis on a
scale from 0% to 100%, where 100% is the expected QoS. The
x-axis represents time in seconds. The resulting visualization
is illustrated in Figure 3. An instance of transient behavior can
be recognized by a decrease in QoS, marking the initial loss.
The time that it takes until the QoS returns to a stable 100% is
the time to recover. The white area between the QoS function
and the expected QoS (100%) is the loss of resilience.

3) Specification Visualization: In Section II-A we intro-
duced our quantification of transient behavior via resilience tri-
angles. We use this visual mapping to represent specifications
for transient behavior in the transient behavior visualization to
satisfy UC1. As Figure 3 shows, the initial loss is represented
by the left-hand side of the triangle, the time to recovery by
the length of the side at the top, and the loss of resilience by its
area. To assess the compliance of a service to the requirements
for transient behavior, each aspect of transient behavior must
be compared with the specification. The visualization allows
this by placing a resilience triangle, representing the specifi-
cation, on top of each occurrence of transient behavior. Now,
the initial loss can be compared by comparing the decrease
of the QoS function with the side of the triangle. Similarly,
the duration of the behavior can be compared by examining
whether the QoS function returns to a value of 100% before the
plotted specification does. In the example shown, the system’s
behavior exceeds all three aspects of the specification.

Although the visualization is effective to identify deviations
of a system’s behavior from its specification, we observe that
comparing the loss of resilience is difficult as the visualization
offers little support to compare the size of the two areas.
Consequently, we designed a visualization of the loss of
resilience as a separate chart.

4) Loss of Resilience Visualization: The visualization for
the loss of resilience suffered during transient behavior is
depicted in Figure 4. The x-axis of the chart represents the
time, the y-axis the loss of resilience. It is only plotted
when transient behavior is detected, during which the loss of
resilience increases until the QoS returns to its expected value
and the system reaches a new steady state.

To enable comparison of the loss of resilience with the

0

2000

4000

6000

8000

0 200 400 600
Time (s)

Lo
ss

 o
f R

es
ili

en
ce

Fig. 4: Loss of resilience visualization.

specification, facilitating UC3, a red line represents the ac-
ceptable loss of resilience in the chart. If the loss of resilience
exceeds this line, as illustrated, this aspect of the specification
is violated. In this case, the service is highlighted with an
orange background color in the architecture visualization. This
allows the user to identify services that may have violated their
specifications quickly.

5) Dashboard: The presented visualizations are integrated
into an interactive dashboard that is illustrated in Figure 5.
The architecture visualization (1) at the top provides the
user with an overview of the system’s services and indicates
those that experience transient behavior that is potentially
outside the requirements’ limitations. When the user selects
a service, more details are displayed. The transient behavior
visualization (2) shows a QoS function over time for a single
service endpoint. The visualized endpoint can be changed in
a selection box above the chart. Furthermore, the user can
examine the transient behavior exhibited by the endpoint by
interacting with the chart, i.e., hovering over single data points
and geometric zooming. Specifications can be created directly
in the dashboard by selecting the cause of the behavior and
entering the acceptable initial loss and time to recovery. The
resulting acceptable loss of resilience is calculated by the tool.
We consider three causes of transient behavior: (i) failures,
(ii) deployments, (iii) and load balancing (self-adaptation).

To enable users to interact with the visualizations through
natural language, we integrated a chatbot in the dashboard.

C. Chatbot

We observed that engineers can benefit from getting insights
about their system through easy-to-use tooling [16]. Using
a visualization approach requires users to be familiar with
the employed encodings, techniques, interactions, and config-
urations. Bieliauskas and Schreiber [20] propose the use of
conversational interfaces to aid the interaction with complex
visualizations. They name accessibility to new users and more
natural interaction as benefits of such a combination. Indeed,
natural user interfaces, which aim to provide smooth user ex-
periences where technology is becoming invisible to the user,
are growing in popularity as they mature [21]. Furthermore,
the combination of multiple interaction modes into multimodal
interfaces potentially increases task efficiency and enables
humans to process information faster and better [22]. For these

Fig. 5: Screenshot of the dashboard showing transient behavior fulfilling a specification. (1) Architecture visualization,
(2) transient behavior visualization, (3) loss of resilience visualization, (4) collapsible chatbot window.

reasons, we decided to extend our interactive visualizations
with a chatbot.

Developers already interact frequently with bots [23], they
are employed to speed up coding, testing, and deploy-
ments [23]. They simulate written or spoken conversations
and give the impression of interacting with another human
being [24]. Besides answering questions and providing infor-
mation, they can act as a conversational interface to a more
extensive service [25]. Unsurprisingly, they also start to find
their way into software engineering [26], [27].

Chatbots rely on natural language processing methods to
understand user input. The two main concepts employed are
intents and entities. A chatbot classifies each user input as
an intent, i.e., what the user wants to do or know. This is
achieved by training a machine learning model with training
phrases mapped to the respective intents. Later, this model
allows the chatbot to classify similar input phrases to the
correct intent. Entities can be thought of as the parameters
of an intent. Each entity has a type, such as duration, date,
or location. The chatbot is trained to recognize entities in the
input by annotating training phrases. It can prompt the user for
an entity that is missing from an input phrase [28]. Figure 6
shows how an intent is structured and how a conversation with
a chatbot takes place.

We designed our chatbot to enable interaction with the
visualizations through natural language. Users can interact
with it through a collapsible chat window on the right side

Intent: Show Specification

Entities: Service, Cause

Training phrases:

"Show me the specification for
Payment in case of failure."

"What's the specification for User
during deployments?"

"What behavior is acceptable for
Driver Management after load
changes?"

Show me the specification
for the Web UI service.

Sure, what's the cause of
the transient behavior?

The cause is a failure.

Showing the specification
for transient behavior in
the Web UI service
caused by failures.

Fig. 6: Intent definition on the left, exemplary chatbot conver-
sation on the right.

of the dashboard. As a result, the chatbot is always readily
available while not being obstructing. Furthermore, the chatbot
can be used to create, edit, or delete specifications for transient
behavior. It supports the following intents.

1) Select Service: Makes it possible to select a service
in the architecture visualization to show its endpoints and
their transient behavior. It has one entity: the name of the
service that the user wants to select. An example phrase would

be “Please select the Payment service”.
2) Show Specification: Enables the user to ask the chatbot

to show the transient behavior specification of a specific
service caused by a specific cause. It has two entities: the
name of the service and the cause of the transient behavior.
An example phrase would be “Show me the specification for
the Web UI service for transient behavior caused by failures”.
The definition of this intent and an example conversation are
depicted in Figure 6.

3) Add Specification: Permits the creation of a new speci-
fication for transient behavior through the chatbot. It has four
entities: the name of the service for which the specification will
be created, the cause of the specified behavior, the acceptable
initial loss, and the acceptable time to recovery. An example
phrase would be “During a deployment, the initial loss in the
Driver Management service should not exceed 30% and the
duration should not be longer than three minutes”.

4) Edit Specification: Similarly, the acceptable initial loss
and time to recovery of an existing specification can be
changed. The intent has three entities: the name of the service,
the cause of the specified transient behavior, and either the
updated acceptable initial loss or time to recovery. An example
phrase would be “Change the acceptable initial loss for
transient behavior caused by a failure in the Web UI service
to 20%”.

5) Delete Specification: Makes it possible to delete a
specification for transient behavior. It has two entities: the
name of the respective service and the cause of the specified
transient behavior. An example phrase would be “Remove the
specification for transient behavior in the Payment service
caused by load changes”.

6) Help: Gives advice to users who need help to use the
chatbot and its functionality. This intent has no entities. An
example phrase would be “What can I ask you?”.

D. Implementation

We implemented a prototype1 to evaluate the feasibility
of the proposed approach. For this purpose, we decided to
develop a web application with the architecture illustrated
in Figure 7. The prototype consists of three components: a
central backend component, the dashboard component, and the
chatbot component. The Python backend provides Representa-
tional State Transfer (REST) interfaces for the dashboard and
the chatbot. Furthermore, the components can communicate
via WebSockets to allow the backend to issue messages to the
dashboard. This is needed to enable interaction between the
chatbot and the visualizations.

The backend component is implemented with Django2,
a popular web framework. The QoS data and architectural
information about the subject systems used in our expert study
are stored in a relational database. The services and their
dependencies were entered manually. The QoS data contained
information such as success rate and response time for each

1https://transient-bot.github.io/transient-chatbot-viz/
2https://www.djangoproject.com/

<<component>>
TransVis

<<component>>
Dashboard

<<component>>
Chatbot UI

<<component>>
Visualizations

<<component>>
Backend

<<component>>
Chatbot Engine

Interaction

Intent
Classification

Webhook

QoS Data &
Specifications

Chat
Interactions

Fig. 7: The architecture of the developed prototype.

service endpoint. When the application starts, the dashboard
component requests the architectural information from the
backend to display the architecture visualization.

The dashboard is realized as a Hypertext Markup Language
(HTML) site that uses JavaScript and the D3.js3 library to
create the visualizations. When a service is selected in the ar-
chitecture visualization, the component requests the QoS data
for this service and presents it in the transient behavior and
loss of resilience visualizations. Additionally, the dashboard
provides users with the functionality of specifying transient
behavior for selected services. For this purpose, it provides
a user interface where the cause, acceptable initial loss, and
time to recovery that constitute a specification can be defined.
The resulting loss of resilience is calculated automatically.
Created specifications are also stored in the database. When
the dashboard finishes loading, it establishes a WebSocket
connection to the backend and listens for messages.

The user can also interact with the dashboard via the chatbot
component. The chatbot is implemented with the Dialogflow4

framework by Google. The framework comes with a free
version, provides an easy-to-use web interface for training,
and allows webhooks that process intents. Moreover, it offers
a chat interface that can conveniently be integrated into an
existing website. When natural language input is entered into
the chatbot, it is classified by Dialogflow. If an intent is de-
tected, Dialogflow forwards it and all recognized entities to the
backend via a webhook. The chatbot will automatically prompt
for required entities and only forward input that contains all of
them. The backend acts on the intent, for example, by creating
a new specification and returns a natural language response
containing the requested information to the chatbot, which is
displayed to the user. If the intent requires interaction with the
visualizations, the backend will send a WebSocket message to
the dashboard, which adapts the visualizations accordingly. For
example, this is the case when the chatbot is used to select a
service or display a specification.

The specifications of transient behavior are drawn directly
on top of occurrences of transient behavior in the data. To
achieve this, we created an algorithm that detects significant
transient behavior in the QoS data. The algorithm iterates over
all data items of an endpoint and looks for cases where the
QoS drops below the expected value. If this is the case, we
must verify whether this is only a minor variance or significant

3https://d3js.org/
4https://cloud.google.com/dialogflow/

https://transient-bot.github.io/transient-chatbot-viz/
https://www.djangoproject.com/
https://d3js.org/
https://cloud.google.com/dialogflow/

transient behavior. To this end, the algorithm computes the
median QoS value of the subsequent five data items and checks
if it falls short of a defined threshold. If this applies, the data
item is marked as the beginning of transient behavior, i.e.,
as the time of the initial loss. Next, the algorithm identifies
the end of the behavior by searching for the next data item at
which the QoS returns to the expected value without deviation.
If the specified time to recovery surpasses the duration of
the located transient behavior, the algorithm will assign the
specified time to recovery as the duration of the behavior to
prevent overlapping specifications in the plot.

IV. EXPERT STUDY

We conducted an exploratory expert study to evaluate the
effectiveness of the presented TransVis approach. In this
section, we will detail the goals and design of the study,
the selected participants, and the procedure that we followed
during the study.

A. Study Design

Using the template by Wohlin et al. [29], the goals of our
study can be summarized as:

Analyze the TransVis approach for the purpose of
supporting software architects and DevOps engi-
neers in the specification and verification of transient
behavior concerning its effectiveness and usability
from the point of view of software architects and
DevOps engineers.

We formulate the following research questions to address
these goals:
RQ1: How effective is the TransVis approach in supporting

architects and engineers in the specification of transient
behavior (UC1)?

RQ2: How effective is the TransVis approach in supporting
architects and engineers in assessing specifications for
transient behavior (UC2 and UC3)?

RQ3: How good is the usability of the TransVis approach?
RQ4: How helpful is the integration of a chatbot in the

TransVis approach?
We decided to conduct an exploratory expert study as our

research questions require to involve experienced software
architects and DevOps engineers. Not only had the participants
to be well acquainted with the architecture, quality require-
ments, and performance monitoring of the test system, but
they also needed to be familiar with the concept of transient
behavior, which limits the number of potential candidates.
Furthermore, Isenberg et al. [30] identified a trend towards
experts studies among publications at renowned visualization
conferences to examine the value that solutions create for
domain experts. A small number like three to five highly
knowledgeable participants is sufficient to produce meaningful
results. Greenberg and Buxton [31] even warn that quantitative
evaluations can mute innovative visions and lack meaningful
critique, which is essential for an early academic prototype.

We evaluated our approach on the data from two separate
microservice systems. The first is a mockup payroll accounting

system implemented by Frank et al. [32]. They created a
dataset of performance and reliability measurements during a
series of chaos experiments as part of their work on scenario-
based resilience evaluation and improvement of microservice
architectures. The second subject system is SockShop [33], a
demo application that realistically represents a real microser-
vice system [34]. Avritzer et al. [35] provided us with a dataset
of performance measurements collected from the system while
investigating the impact of security attacks on the perfor-
mance of different architecture deployment configurations.
Both datasets contain measurements during normal execution
of the respective system and transient behavior caused by
either chaos experiments or security attacks.

B. Participants

Five experts participated in the study. They were selected
because they were deeply familiar with one of the subject
systems and the concept of transient behavior. Three of the par-
ticipants hold a PhD in computer science and actively conduct
research in the field of performance and reliability engineering.
The two remaining participants were master students that have
previously researched related topics in resilience engineering.
Also, one of the participants was one of the interviewees in
the expert interviews on transient behavior described in our
previous work [16] and works as a software architect at a
large software consulting company.

C. Procedure

We conducted the expert study remotely. To this end, we
hosted the prototype online. Participants shared their screen
that was also recorded while interacting with the prototype to
solve a collection of tasks.

We prepared two tasks for each subject system. Each
task consisted of a short scenario and involved creating one
or two transient behavior specifications using the prototype
and the subsequent analysis of the system’s compliance with
the specifications. To this end, the scenarios contained the
following information: (i) the concerned microservice, (ii) the
cause, (iii) the acceptable duration, (iv) and the acceptable
QoS degradation of the transient behavior to be specified. In
the first task, the specifications are violated by multiple service
endpoints, whereas they are all met in the second one.

Before the tasks, we introduced the participants to the topic
and the prototype. Afterward, we gave each participant ten
minutes to get acquainted with the prototype and resolve all
open questions. Once all open questions were resolved, the
participants started to solve two tasks with the help of the
prototype. They had ten minutes per task and worked on
the tasks that regarded the system that they were already
familiar with previously. After the time was up, we revealed
the solution to the task to them. At the end of each session,
the participants had to answer a short questionnaire and report
their experience with the prototype.

Large parts of the questionnaire consisted of the System
Usability Scale from Brooke [36] and the NASA Task Load

Index [37]. It contained twelve statements about the proto-
type’s usability that had to be rated on a scale from one
(strongly disagree) to five (strongly agree). Furthermore, the
questionnaire contained four questions designed to assess the
participant’s cognitive load during the tasks that were also
answered on a scale from one to five. Last, we asked four
open questions regarding the most and least effective features
of the prototype, the helpfulness of the chatbot, and how the
participants would have solved the tasks without the prototype.
We used the answers to the questionnaire for further discussion
with the participants about the prototype.

V. RESULTS

In this section, we present and discuss the results of our
study regarding the research questions.

A. Specifying Transient Behavior

The participants successfully created the specifications for
all scenarios, which indicates that the approach supports
software architects and DevOps engineers in defining and
specifying transient behavior. However, the study revealed the
limitations of our resilience triangle visualization approach for
transient behavior specifications. Two participants commented
that they would like to see the concrete values of a spec-
ification’s parameters directly in the visualization. Such an
addition would make it easier to understand a specification and
resolve the issue that the parameters of a specification can only
be checked through the chatbot. Furthermore, one participant
stated that the specification of transient behavior through the
three dimensions initial loss, time to recovery, and loss of
resilience is not intuitive and has to be learned before it can
be applied. Nonetheless, the participants quickly familiarized
themselves with the concept. One participant commented that
it was not clear to him which cause he should describe in the
specification of transient behavior. Another addition that would
improve the prototype is an overview of all specifications that
have been created. In its current version, such an overview is
missing, and only one specification can be examined at a time.
Finally, the elicitation of requirements, which our prototype
does not support, appears to be the biggest challenge regarding
the specification of transient behavior.

B. Analyzing Transient Behavior

Almost all participants were able to correctly identify
whether or not the system complied with the specifications.
Only in one case, transient behavior was assessed wrongly. In
another case, a participant was unsure whether a specification
is only fulfilled if all three transient behavior metrics are within
the acceptable range.

Plotting the specification on top of significant transient
behavior was perceived as helpful for verifying its compliance.
The participants used both the transient behavior and loss of
resilience visualizations to verify whether a specification was
met. They mostly spotted behavior that potentially constitutes
a violation in the latter, as such behavior is easily visible
by the loss of resilience exceeding the specification. In the

next step, the participants examined the transient behavior
visualization to compare the extent of the quality degradation
and the duration of the transient behavior with the resilience
triangle representing the specification. However, it was not
always clear to the participants when transient behavior starts
and ends. Whereas the initial loss happens instantly in the
resilience triangle, the actual QoS can decrease gradually over
time, which is exacerbated by a low sampling frequency of
the measurements. One participant expressed that it was not
clear whether the transient behavior started at the beginning
of the initial loss when the degradation exceeded the specified
initial loss or at the lowest point of the degradation. Similarly,
a service’s recovery from disruption is often not linear, as the
resilience triangle visualizes it, complicating the comparison
of transient behavior with the specification.

Another point that two of the participants mentioned was
that they would prefer to specify the quality metric used
for the QoS function. They argued that the ambiguity of
the abstract QoS function, unknown to the user, made the
scenarios more difficult to understand. Moreover, they would
like to switch between different metrics to investigate different
quality aspects of a system.

The feedback from the participants indicates that the ap-
proach is suited for exploration and communication of tran-
sient behavior and the analysis of individual specifications.
However, engineers missed features to filter or query the data
for specification violations. Also, the reporting of violations is
essential in production, which the prototype does not support.
Future work should provide a way to get a quick overview
of transient behavior that exceeds the specifications without
manually searching for it.

Finally, all participants stated that they are not aware of any
other publicly available system that facilitates the analysis of
transient behavior specifications.

C. Usability

To evaluate the usability of our prototype, we asked the
participants to rate 15 usability-related statements on a Likert
scale from one (strongly disagree) to five (strongly agree).
Figure 8 presents the results of the questionnaire. The results
indicate that the participants strongly agreed that the tool was
easy to use. Furthermore, four participants strongly agreed
that most people would learn to use the tool very quickly.
One participant disagreed with this statement and explained
that the tool is easy to learn, but the theory of transient
behavior is complex, and it is time-consuming to understand
the concepts behind the term. Additionally, he claimed that
the representation of specifications as resilience triangles is
difficult to understand at first. However, the participants agreed
that the included visualizations were helpful and supported
the users in their tasks. Also, the results suggest that the tasks
were not mentally demanding for the participants. In fact, they
felt confident using the tool. These findings indicate a high
usability of the TransVis approach.

Count

Complex

Inconsistent

Cumbersome

High mental effort

High work effort

I felt insecure

Requires much
learning

Fast to learn

Would use

Well integrated

I felt confident

I was successfull

Easy to use

Helpful
visualizations

Comprehensive
visualizations

4 2 0 2 4

Strongly
disagree

Strongly
agreeDisagree Neither Agree

Fig. 8: Results of the questionnaire regarding the usability of
the prototype.

D. Helpfulness of Chatbot

All participants but one did not use the chatbot to solve the
tasks. They considered that the chatbot interactions required
too much time to be a viable alternative to the direct interaction
with the visualizations. Furthermore, participants felt that
the chatbot did not provide them considerable value beyond
controlling the visualizations and creating specifications. Both
tasks could be completed faster without using the chatbot.
To be helpful, the chatbot would require to provide other
distinctive features beyond the functionality provided by the
dashboard. The participants attempted to use the chatbot to
filter the presented data or directly search for specification
violations. If it were to be extended with such features, the
chatbot might become more helpful for analyzing transient
behavior. Another reason to explain the little value perceived
by participants can be the manageable size of the two subject
systems and the simplicity of the given tasks. For more
complex tasks in larger systems, the chatbot might be a faster
method for finding services than the visualization due to the
limited screen space.

The participants also complained that it was not evident
which input the chatbot understands. This led to trial-and-error
approaches when trying to understand the chatbot’s features.
Additionally, the chatbot occasionally can classify input to the

wrong intent or fail to recognize entities.

E. Threats to Validity

In this section, we discuss potential threats to the validity
of our results.

Regarding the applicability of the results to the real world,
the specified tasks were relatively simple and well defined.
This is often not the case in actual software projects, where
non-functional requirements are often not sufficiently speci-
fied.

Furthermore, the used datasets were created during load
tests and chaos experiments and not collected during produc-
tion. For this reason, the data used in our study might not be
representative of the real performance data of a microservice
system. Also, the recorded scenarios only contain data of the
system’s run-time for several minutes. A real-world system’s
production performance monitoring data is far more extensive,
which could substantially increase the difficulty of analyzing
it. Therefore, the given tasks might not be representative of
problems that are faced in the real world.

There is a possibility that the experts invited to the study
are not a representative sample of the population of software
architects and DevOps Engineers. That is, they could be more
or less skilled than the average software architect or DevOps
engineer. Also, their willingness to participate in a user study
indicates their high motivation, which could have influenced
their performance in the tasks.

Another potential threat to validity is the method of the
expert study. The questionnaire might not be extensive enough
to capture all aspects of the participants’ experience. Many
insights were also derived from comments that the participants
made about the prototype, which represent their subjective
opinion. Moreover, the participants might not have discussed
all aspects of the prototype and the task thoroughly.

VI. RELATED WORK

We now analyze related works in two main domains:
visualization of software resilience and the application of HCI
methods in software engineering.

A. Visualization of Resilience

Work on resilience visualization originates mainly from
research on disaster and system resilience. Different solutions
for comparing resilience scenarios, as adopted in the TransVis
approach, have been proposed.

Zobel [15] extends the resilience triangle from Bruneau et
al. [14] with a new approach for visualizing the relationship
between the predicted initial loss that a facility suffers during
a disaster and the predicted time it needs for recovery. His
proposed visualization intends to support decision-makers in
disaster planning in comparing the resilience of different
critical facilities. We adopted this approach to approximate the
loss of resilience by calculating the area of the triangle formed
by the initial drop in the QoS and the time needed for a full
recovery. To differentiate between scenarios in which different
combinations of initial loss and time to recovery result in

the same loss of resilience, Zobel introduces the predicted
resilience concept, which can be visualized as a hyperbola.
Points on such a hyperbola represent the possible combinations
of initial loss and time to recovery that result in the given
predicted resilience. However, Zobel does not apply his model
and visualization to transient behavior in software systems.

Dessavre et al. [38] propose an extended model for system
resilience that introduces stress as an additional dimension of
disruptive events. They argue that their model enables com-
paring the impact of different disruptions and the resilience of
different systems. To this end, they define a multidimensional
resilience function that incorporates time, stress, and quality
of service. Furthermore, they employ a heatmap visualization
created by mapping the values of the function to a color scale.
Multiple heatmaps can be combined in a single visualization
to compare system resilience during different disruptions. By
subtracting the resilience values of a dependent system from
the original system, dependencies between the systems can be
visualized. Adopting such an approach could be interesting for
analyzing the impact of transient behavior in a microservice
on the rest of the system.

Yin et al. [9] propose the Microservice Resilience Measure-
ment Model (MRMM) as a quantitative metric to measure re-
silience in microservice systems. Additionally, they build upon
this work to introduce a model for representing resilience re-
quirements that consist of (i) a resilience goal, (ii) disruptions,
and (iii) resilience mechanisms that mitigate the impact of the
disruptions. While their work enables elicitation and modeling
of resilience requirements, they highlight that generating such
requirements for complex systems is challenging. Moreover,
they do not leverage HCI methods to increase the accessibility
of their approach.

B. HCI in Software Engineering

Much research has been done on the application of HCI
methods in software engineering.

Fittkau et al. [39] propose ExplorViz, which uses a city
metaphor to create 3D software visualizations of execution
traces and software architectures. The originally web-based
tool was extended by a virtual reality component that allowed
the exploration of software visualizations in virtual reality
through a head-mounted display and gesture-based interaction.

Merino et al. [40] investigated whether the application of
immersive augmented reality to 3D software visualizations
solved usability issues and increased users’ effectiveness. They
found out that immersive augmented reality facilitated navi-
gation in 3D visualizations and enhanced the user experience.

Seipel et al. [41] combined software visualization in aug-
mented reality with a conversational interface that can un-
derstand spoken natural language. Their work allows users
to explore 3D software visualizations through gestures and
speech simultaneously.

Okanović et al. [26] propose PerformoBot, a chatbot for
configuring and running load tests. PerformoBot guides users
in (i) creating load tests through natural language conversa-
tions, (ii) automatically running the tests, and (iii) answers

respective performance concerns in a generated report. In
evaluating their approach through a user study, they found
that PerformoBot had a high acceptance rate, especially among
novice developers. However, they did not couple the chatbot
with interactive performance visualizations.

Bieliauskas and Schreiber [20] propose interaction with
software visualizations through a conversational interface.
Their approach was able to support group conversations with
relevant visualizations. Furthermore, the conversational inter-
face made the visualizations more accessible to new team
members. However, their approach focused on visualizations
for relations between software components.

While there is existing work that investigates transient
analysis or the application of HCI methods in software en-
gineering, to the best of our knowledge, TransVis constitutes
the first attempt to apply HCI methods to the transient analysis
of microservice systems.

VII. CONCLUSION

We presented the TransVis approach that employs resilience
visualizations and a chatbot for the specification and analysis
of transient behavior in microservice systems. The findings
of our exploratory expert study suggest that the developed
visualizations are effective, especially for exploring transient
behavior and comparing a service’s QoS with a specified
behavior. However, we also found that a chatbot was not
beneficial because the direct interaction with the visualizations
is a more intuitive and faster method. The study also revealed
many opportunities for future work. The prototype could be
improved by adding an overview of the specifications and
filtering and querying functionalities for critical behavior. Such
features could be implemented in the chatbot to increase its
effectiveness. Also, the prototype is limited to static datasets.
The integration of live performance measurements is essential
to make the approach viable for production use and automatic
reporting of critical behavior. Furthermore, the chatbot could
be improved by extending its functionality to allow answering
questions concerning the data. Additionally, we did not explore
the application of other human-computer interfaces such as
virtual or augmented reality or multi-touch tables to our use
cases. An approach employing such interfaces could build
upon the developed visualizations. Finally, we see a need for
solutions that facilitate the specification and the elicitation of
requirements for transient behavior.

ACKNOWLEDGMENT

We thank the study participants. Van Hoorn acknowledges
funding by the Baden-Württemberg Stiftung (Orcas project).
Frank and Hakamian acknowledge funding by the German
Federal Ministry of Education and Research (Software Cam-
pus 2.0 — Microproject: DiSpel).

REFERENCES

[1] M. Krigsman. (2010) Cloud-based IT failure halts Virgin
flights. [Online]. Available: https://www.zdnet.com/article/cloud-based-
it-failure-halts-virgin-flights/

[2] R. Thomson. (2008) British Airways reveals
what went wrong with terminal 5. [Online].
Available: https://www.computerweekly.com/news/2240086013/British-
Airways-reveals-what-went-wrong-with-Terminal-5

[3] S. Wolfe. (2018) Amazon’s one hour of downtime on prime
day may have cost it up to $100 million in lost sales.
[Online]. Available: https://www.businessinsider.com/amazon-prime-
day-website-issues-cost-it-millions-in-lost-sales-2018-7

[4] L. Bass, I. Weber, and L. Zhu, DevOps: A software architect’s perspec-
tive. Addison-Wesley Professional, 2015.

[5] S. Newman, Building microservices: designing fine-grained systems.
O’Reilly Media, Inc., 2015.

[6] C. Czepa and U. Zdun, “How understandable are pattern-based behav-
ioral constraints for novice software designers?” ACM Transactions on
Software Engineering and Methodology (TOSEM), vol. 28, no. 2, pp.
1–38, 2019.

[7] L. Merino, M. Ghafari, C. Anslow, and O. Nierstrasz, “CityVR: Gameful
software visualization,” in 2017 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE, 2017, pp. 633–
637.

[8] C. Toxtli, A. Monroy-Hernández, and J. Cranshaw, “Understanding
chatbot-mediated task management,” in Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems, 2018, pp. 1–6.

[9] K. Yin, Q. Du, W. Wang, J. Qiu, and J. Xu, “On representing and
eliciting resilience requirements of microservice architecture systems,”
arXiv preprint arXiv:1909.13096, 2019.

[10] S. Beck, S. Frank, M. A. Hakamian, L. Merino, and A. van Hoorn.
(2021) TransVis: Using visualizations and chatbots for supporting
transient behavior in microservice systems - supplementary material.
[Online]. Available: https://doi.org/10.5281/zenodo.4728953

[11] C.-Y. Wang, D. Logothetis, K. S. Trivedi, and I. Viniotis, “Transient
behavior of ATM networks under overloads,” in Proceedings of IEEE IN-
FOCOM’96. Conference on Computer Communications, vol. 3. IEEE,
1996, pp. 978–985.

[12] W. J. Stewart, Probability, Markov chains, queues, and simulation.
Princeton university press, 2009.

[13] V. A. Venikov, Transient Phenomena in Electrical Power Systems:
International Series of Monographs on Electronics and Instrumentation,
Vol. 24. Elsevier, 2014, vol. 24.

[14] M. Bruneau, S. E. Chang, R. T. Eguchi, G. C. Lee, T. D. O’Rourke,
A. M. Reinhorn, M. Shinozuka, K. Tierney, W. A. Wallace, and
D. Von Winterfeldt, “A framework to quantitatively assess and enhance
the seismic resilience of communities,” Earthquake spectra, vol. 19,
no. 4, pp. 733–752, 2003.

[15] C. W. Zobel, “Comparative visualization of predicted disaster resilience,”
in Proceedings of the 7th International ISCRAM Conference. ISCRAM,
2010, pp. 1–5.

[16] S. Beck, “Evaluating human-computer interfaces for specification and
comprehension of transient behavior in microservice-based software
systems,” Master’s thesis, University of Stuttgart, 2020, relevant chapters
are part of the supplementary material [10].

[17] B. Shneiderman, “The eyes have it: A task by data type taxonomy for
information visualizations,” in Proceedings 1996 IEEE symposium on
visual languages. IEEE, 1996, pp. 336–343.

[18] D. B. West et al., Introduction to graph theory. Prentice hall Upper
Saddle River, NJ, 1996, vol. 2.

[19] B. Saket, P. Simonetto, S. Kobourov, and K. Börner, “Node, node-link,
and node-link-group diagrams: An evaluation,” IEEE Transactions on
Visualization and Computer Graphics, vol. 20, no. 12, pp. 2231–2240,
2014.

[20] S. Bieliauskas and A. Schreiber, “A conversational user interface for
software visualization,” in 2017 IEEE Working Conference on Software
Visualization (VISSOFT). IEEE, 2017, pp. 139–143.

[21] D. Wigdor and D. Wixon, Brave NUI world: designing natural user
interfaces for touch and gesture. Elsevier, 2011.

[22] M. Turk, “Multimodal interaction: A review,” Pattern Recognition Let-
ters, vol. 36, pp. 189–195, 2014.

[23] M.-A. Storey and A. Zagalsky, “Disrupting developer productivity one
bot at a time,” in Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2016,
pp. 928–931.

[24] E. Paikari, J. Choi, S. Kim, S. Baek, M. Kim, S. Lee, C. Han,
Y. Kim, K. Ahn, C. Cheong et al., “A chatbot for conflict detection
and resolution,” in 2019 IEEE/ACM 1st International Workshop on Bots
in Software Engineering (BotSE). IEEE, 2019, pp. 29–33.

[25] L. Goasduff. (2019) Chatbots will appeal to modern workers. [Online].
Available: https://www.gartner.com/smarterwithgartner/chatbots-will-
appeal-to-modern-workers/

[26] D. Okanović, S. Beck, L. Merz, C. Zorn, L. Merino, A. van Hoorn,
and F. Beck, “Can a chatbot support software engineers with load
testing? approach and experiences,” in Proceedings of the ACM/SPEC
International Conference on Performance Engineering, 2020, pp. 120–
129.

[27] A. Abdellatif, K. Badran, and E. Shihab, “A repository of research
articles on software bots,” http://papers.botse.org.

[28] Dialogflow concepts. [Online]. Available: https://cloud.google.com/
dialogflow/docs/concepts

[29] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer Science
& Business Media, 2012.

[30] T. Isenberg, P. Isenberg, J. Chen, M. Sedlmair, and T. Möller, “A
systematic review on the practice of evaluating visualization,” IEEE
Transactions on Visualization and Computer Graphics, vol. 19, no. 12,
pp. 2818–2827, 2013.

[31] S. Greenberg and B. Buxton, “Usability evaluation considered harmful
(some of the time),” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, 2008, pp. 111–120.

[32] S. Frank, A. Hakamian, L. Wagner, D. Kesim, J. von Kistowski, and
A. van Hoorn, “Scenario-based resilience evaluation and improvement
of microservice architectures: An experience report,” in Companion of
the 15th European Conference on Software Architecture (ECSA 2021),
2021.

[33] Weaveworks and Container Solutions. (2017) Sockshop: A microservices
demo application. [Online]. Available: https://microservices-demo.
github.io/

[34] C. M. Aderaldo, N. C. Mendonça, C. Pahl, and P. Jamshidi,
“Benchmark requirements for microservices architecture research,”
in 2017 IEEE/ACM 1st International Workshop on Establishing the
Community-Wide Infrastructure for Architecture-Based Software Engi-
neering (ECASE). IEEE, 2017, pp. 8–13.

[35] A. Avritzer, V. Ferme, A. Janes, B. Russo, A. van Hoorn, H. Schulz,
D. Menasché, and V. Rufino, “Scalability assessment of microservice
architecture deployment configurations: A domain-based approach lever-
aging operational profiles and load tests,” Journal of Systems and
Software, p. 110564, 2020.

[36] J. Brooke, “SUS: A quick and dirty usability scale,” Usability evaluation
in industry, vol. 189, no. 194, pp. 4–7, 1996.

[37] S. G. Hart and L. E. Staveland, “Development of NASA-TLX (task
load index): Results of empirical and theoretical research,” in Advances
in psychology. Elsevier, 1988, vol. 52, pp. 139–183.

[38] D. G. Dessavre, J. E. Ramirez-Marquez, and K. Barker, “Multidi-
mensional approach to complex system resilience analysis,” Reliability
Engineering & System Safety, vol. 149, pp. 34–43, 2016.

[39] F. Fittkau, A. Krause, and W. Hasselbring, “Exploring software cities
in virtual reality,” in 2015 IEEE 3rd Working Conference on Software
Visualization (VISSOFT). IEEE, 2015, pp. 130–134.

[40] L. Merino, A. Bergel, and O. Nierstrasz, “Overcoming issues of 3D
software visualization through immersive augmented reality,” in 2018
IEEE Working Conference on Software Visualization (VISSOFT). IEEE,
2018, pp. 54–64.

[41] P. Seipel, A. Stock, S. Santhanam, A. Baranowski, N. Hochgeschwender,
and A. Schreiber, “Speak to your software visualization—exploring
component-based software architectures in augmented reality with a
conversational interface,” in 2019 Working Conference on Software
Visualization (VISSOFT). IEEE, 2019, pp. 78–82.

https://www.zdnet.com/article/cloud-based-it-failure-halts-virgin-flights/
https://www.zdnet.com/article/cloud-based-it-failure-halts-virgin-flights/
https://www.computerweekly.com/news/2240086013/British-Airways-reveals-what-went-wrong-with-Terminal-5
https://www.computerweekly.com/news/2240086013/British-Airways-reveals-what-went-wrong-with-Terminal-5
https://www.businessinsider.com/amazon-prime-day-website-issues-cost-it-millions-in-lost-sales-2018-7
https://www.businessinsider.com/amazon-prime-day-website-issues-cost-it-millions-in-lost-sales-2018-7
https://doi.org/10.5281/zenodo.4728953
https://www.gartner.com/smarterwithgartner/chatbots-will-appeal-to-modern-workers/
https://www.gartner.com/smarterwithgartner/chatbots-will-appeal-to-modern-workers/
https://cloud.google.com/dialogflow/docs/concepts
https://cloud.google.com/dialogflow/docs/concepts
https://microservices-demo.github.io/
https://microservices-demo.github.io/

	I Introduction
	II Transient Behavior
	II-A Modeling Transient Behavior
	II-B Transient Behavior in Practice

	III TransVis Approach
	III-A Use Cases
	III-A1 UC1: Specifying Transient Behavior
	III-A2 UC2: Finding Transient Behavior
	III-A3 UC3: Verifying Transient Behavior
	III-A4 UC4: Analyzing the Impact of Transient Behavior

	III-B Visualizations
	III-B1 Architecture Visualization
	III-B2 Transient Behavior Visualization
	III-B3 Specification Visualization
	III-B4 Loss of Resilience Visualization
	III-B5 Dashboard

	III-C Chatbot
	III-C1 Select Service
	III-C2 Show Specification
	III-C3 Add Specification
	III-C4 Edit Specification
	III-C5 Delete Specification
	III-C6 Help

	III-D Implementation

	IV Expert Study
	IV-A Study Design
	IV-B Participants
	IV-C Procedure

	V Results
	V-A Specifying Transient Behavior
	V-B Analyzing Transient Behavior
	V-C Usability
	V-D Helpfulness of Chatbot
	V-E Threats to Validity

	VI Related Work
	VI-A Visualization of Resilience
	VI-B HCI in Software Engineering

	VII Conclusion
	References

