
This is the author’s version of the work. It is posted for your personal use. Not for redistribution. The definitive version was published in Companion of the 2022
ACM/SPEC International Conference on Performance Engineering (ICPE ’22 Companion), 2022, doi: 10.1145/3491204.3527483.

How is Transient Behavior Addressed in Practice?
Insights from a Series of Expert Interviews

Samuel Beck
Institute for Visualization and

Interactive Systems
University of Stuttgart
Stuttgart, Germany

Sebastian Frank
Alireza Hakamian

Institute for Software Engineering
University of Stuttgart
Stuttgart, Germany

André van Hoorn
Department of Informatics
University of Hamburg
Hamburg, Germany

ABSTRACT
Transient behavior occurs when a running software system changes
from one steady-state to another. In microservice systems, such
disruptions can, for example, be caused by continuous deployment,
self-adaptation, and various failures. Although transient behavior
could be captured in non-functional requirements, little is known
of how that is handled in practice. Our objective was to study how
architects and engineers approach runtime disruptions, which chal-
lenges they face, whether or not they specify transient behavior,
and how currently employed tools and methods can be improved.
To this end, we conducted semi-structured interviews with five
experienced practitioners from major companies in Germany. We
found that a big challenge in the industry is a lack of awareness of
transient behavior by software stakeholders. Consequently, they
often do not consider specifying it in non-functional requirements.
Additionally, better tooling is needed to reduce the effort of an-
alyzing transient behavior. We present two prototypes that we
developed corresponding to these findings to improve the current
situation. Beyond that, the insights we present can serve as pointers
for interesting research directions for other researchers.

CCS CONCEPTS
• Software and its engineering → Extra-functional proper-
ties; Requirements analysis; • Human-centered computing
→ Human computer interaction (HCI).

KEYWORDS
transient behavior, non-functional requirements, microservices

ACM Reference Format:
Samuel Beck, Sebastian Frank, Alireza Hakamian, and André van Hoorn.
2022. How is Transient Behavior Addressed in Practice? Insights from
a Series of Expert Interviews. In Companion of the 2022 ACM/SPEC In-
ternational Conference on Performance Engineering (ICPE ’22 Companion),
April 9–13, 2022, Bejing, China. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3491204.3527483

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPE ’22 Companion, April 9–13, 2022, Bejing, China
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9159-7/22/04. . . $15.00
https://doi.org/10.1145/3491204.3527483

Resilience
loss

Q(t)

time

100

t₀ t₁

In
iti

al
lo

ss

Time to recovery

Figure 1: Bruneau’s resilience triangle model [4] on a re-
silience curve, adopted from Yin et al. [13].

1 INTRODUCTION
Modern microservice-based software systems are subject to fre-
quent changes in production, leading to so-called transient behavior.
Changes can arise from outside, e.g., workload peaks and changing
user behavior, or inside the system, e.g., autoscaling and deploy-
ment of new (versions of) services. User satisfaction can be heavily
affected if the system is not resilient to such changes. Figure 1 illus-
trates a system’s transient behavior and resilience [4, 13] by plotting
a system’s quality of service (QoS) and accumulating resilience loss
for a limited time caused by a change at 𝑡0. It is crucial not only to
comprehend but also to elicit and specify a system’s transient be-
havior in non-functional requirements [6]. However, the elicitation
and specification are challenging due to the unexpected changes
and the system’s complex behavior. For this reason, we want to
better understand the problems and challenges that developers,
architects, and operators face with eliciting and comprehending
non-functional requirements for transient behavior in practice. Our
goal is to identify new research directions in this area and potential
avenues for improving current practices and tooling. Furthermore,
we are interested in whether and how emerging human-computer
interaction (HCI) methods can help to tackle the complexity of
transient behavior.

We conducted five semi-structured online interviews [12] with
experienced software architects from German IT companies. They
revealed that requirements for transient behavior are mostly not
captured in the industry. Major reasons for that are a lack of under-
standing from business stakeholders and a perceived low criticality
of transient behavior compared to other quality attributes. Regard-
ing the analysis of transient behavior, the interviewees stated that

https://doi.org/10.1145/3491204.3527483
https://doi.org/10.1145/3491204.3527483
https://doi.org/10.1145/3491204.3527483
https://doi.org/10.1145/3491204.3527483
https://doi.org/10.1145/3491204.3527483


the high effort due to unsuited tooling makes the analysis of tran-
sient behavior not worth it for them. They ask for better visual-
izations and models of transient behavior and improved filtering
to identify issues easier. Based on the findings, we developed two
early prototypes: TransVis [2] is a tool intended to aid software
architects and engineers in the specification and exploration of
transient behavior through visualizations and chatbot conversa-
tions. Resirio [14] is intended to guide users through an interactive
elicitation of resilience scenarios for a microservice architecture
model extracted from execution traces.

After introducing the background and related work, this paper
details the expert interview series and its findings and outlines the
two prototypes.

2 BACKGROUND AND RELATEDWORK
This section gives a brief introduction to the concept of transient
behavior before discussing related work.

2.1 Transient Behavior
Transient behavior concerns the time-dependent behavior of a sys-
tem’s QoS, quantified as the probability of being in a specific state 𝑠
at time 𝑡 [11]. The concept of transient behavior was originally
introduced in electrical engineering, where it describes the state of
an electrical power system while it changes from one steady state
to another [10]. Causes for changes in microservice-based systems
are continuous deployments of services, instance failures, and self-
adaptation of the system caused by load changes and resilience
mechanisms that limit the effect of failures. The changes disrupt
the QoS of impacted services and create transitions between system
states, akin to transient behavior in electrical systems. In previous
work [2], we modeled transient software behavior using the re-
silience triangle by Bruneau et al. [4], illustrated in Figure 1 and
comprising the following properties: (i) initial loss 𝑋 , (ii) time to re-
covery𝑇 , and (iii) loss of resilience 𝑅. The properties are based on a
QoS function𝑄 (𝑡) and an expected QoS value𝑄𝑒 . The initial loss𝑋
is defined by the loss of quality at the beginning of an instance of
transient behavior. The time to recovery 𝑇 describes a transient
behavior’s duration, and the loss of resilience 𝑅 is approximated by
the area of the triangle formed by the previous two.

2.2 Related Work
We performed an industry interview to know how engineers deal
with transient behavior in their requirements and proposed proto-
types to improve current limitations in the industry. To our knowl-
edge, our study is the first attempt to provide empirical evidence
on existing challenges of transient behavior in non-functional re-
quirements.

Niedermaier et al. [9] proposed an industry interview to un-
derstand existing challenges in observability and monitoring of
distributed systems, which use the DevOps paradigm and microser-
vice architectural style. Using a similar method, Eckhardt et al. [6]
collected 530 requirements specification from 11 companies to study
the distinction between functional and non-functional require-
ments. They found that 75% of the non-functional requirements
describe the system behavior and hence are, in fact, functional. Our

Table 1: Interview design.

Hypotheses Questions (Categories)
General questions

𝐻1 Transient behavior
𝐻2
𝐻3 Specification of transient behavior
𝐻4
𝐻5 Tools/methods for specifying
𝐻6 and comprehending transient behavior

main difference to the previous works is that we use the indus-
try interview technique to identify challenges on a different topic:
transient behavior specification in non-functional requirements.

Another method of identifying challenges or open questions is
performing a literature review instead of going to the industry. We
did not perform a literature review, as our objective was to know
how transient behavior is handled in practice.

This paper also presents two prototypes for specifying and under-
standing transient behavior. Method-wise, related work concerns
helping stakeholders of the software systems in requirements engi-
neering phases such as specification using visualization techniques.
Shaker et al. [1] performed a systematic literature review on re-
quirements engineering visualization and proposed a classification
of works on the subject. For additional related work specific to the
prototypes, we refer to [2, 14].

3 METHOD
To obtain the desired insights, we interviewed software architects
from five different companies in the IT consulting business. We
selected candidates who have already accumulated considerable
experience in this field and regularly work on projects involving a
cloud and microservice environment. We contacted seven software
architects and invited each of them to an interview. Five out of
those seven accepted the invitation. The interviews were held in
2020 in a semi-structured manner [12] in the form of video calls,
each lasting around one hour. Table 1 gives an overview of the
interview design, mapping hypotheses to questions.

3.1 Hypotheses
Before we conducted the interviews, we created six hypotheses
about how engineers think about and handle transient behavior
and sought to confirm or reject them through the interviews:

𝐻1: Engineers are familiar with the concept of transient behavior
in software.

𝐻2: Engineers understand the transient behavior in their systems.

𝐻3: Engineers think that the transient behavior of software should
be specified in non-functional requirements.

𝐻4: Engineers specify the transient behavior of their software sys-
tems in non-functional requirements.

𝐻5: Engineers are satisfied with existing methods and processes
for analyzing and specifying non-functional requirements
for the transient behavior of software.



𝐻6: Engineers collaborate when they are analyzing or specifying
non-functional requirements for the transient behavior of
software.

3.2 Interview Structure
The questions of the interview were split into four categories
(Table 1) of (i) general questions about the interviewees’ back-
ground, (ii) their familiarity and experience with transient behavior,
(iii) the specification and comprehension of transient behavior, and
(iv) tools and methods for the specification and comprehension of
transient behavior and the interviewees’ requirements for such.
The question categories were time-boxed to ensure that each was
covered sufficiently in the interview. The semi-structured nature
of the interviews ensures that the interviewees’ statements can be
compared while allowing us the freedom to go into more details
based on participants’ answers. This design promoted a more natu-
ral discourse in which interviewees could express their thoughts
freely. Each interviewee got a short explanation of the concept of
transient behavior or time-dependent behavior in software systems
and its causes if they were not yet familiar with it. The complete
questionnaire is publicly available online as supplementary mate-
rial [3].

3.3 Interview Analysis
The audio was recorded, and a transcript of each interview was
produced, which later served as the basis for the analysis. The tran-
scripts of the interviews are publicly available online as supplemen-
tary material [3]. To analyze the answers in the transcripts, we first
classified them into the categories presented in Section 4. Then,
each interviewee’s answers in each category were summarized,
comprising their main points. For each category, the summaries of
all five candidates were then compiled into one report that reflects
the interviewees’ general opinions on a topic.

4 RESULTS
This section describes the results of the conducted interviews.
First, we give an overview of the interviewees’ backgrounds and
their practices for eliciting non-functional requirements. Then, we
present their answers that regard the analysis and specification of
transient behavior and finish with an overview of their answers
about currently employed tools and methods, requirements for an
envisioned solution, and their views on novel HCI interfaces.

4.1 Background of Interviewees
All five interviewees hold senior positions at different companies in
the software consulting industry that mainly work on enterprise ap-
plications. All interviewees are experienced software architects and
have a deep understanding of microservice architectures. Table 2
presents an overview of the background of the five interviewees.

Stefan Tilkov is the managing director (CEO) and principal con-
sultant at innoQ. He is involved in customer projects, key account
management, workshop organization, and architecture consultancy.
His company has been actively advocating the microservice archi-
tectural style for five to six years.

Uwe Friedrichsen is the chief technical officer (CTO) at codecen-
tric and is responsible for its technological and methodical strategy.

Table 2: Background information of the five interviewees.

Interviewee Position Company
Stefan Tilkov CEO innoQ
Uwe Friedrichsen CTO codecentric
Fabian Keller Head of cloud innovation mimacom
Matthias Häussler Senior managing consultant Novatec Consulting
Torsten1 Software architect Anonymous

He is active as a software architect and develops solutions tailored
to his customers’ needs. He has been working with service-oriented
architectures in the last two decades and has worked with microser-
vices since 2014. Furthermore, he is directly involved in eliciting
and documenting non-functional requirements in his projects.

Fabian Keller was recently appointed as the head of cloud in-
novation at mimacom. He has also been working as a software
engineer for four years. His company develops and maintains mul-
tiple microservice systems.

Matthias Häussler has been a senior managing consultant at No-
vatec Consulting for four years. Before that, he worked for almost
17 years at IBM. He is concerned chiefly with cloud-native software
development. He mainly works in customer projects and also gives
workshops and lectures on this topic. Furthermore, Matthias is the
organizer of a local meetup and ambassador for Cloud Foundry. His
experience with microservices is mainly limited to transforming
monolithic legacy applications into microservice applications. He
highlighted during the interview that he is not directly involved
with the elicitation and documentation of non-functional require-
ments in his projects.

Torsten1 holds a PhD in computer science. His PhD thesis fo-
cused on software performance engineering. He has been working
as a software architect for one year at a software and IT consulting
company whose primary focus is on the tax consultant market.
Currently, he is mainly concerned with software performance as-
pects, microservice systems, and maintainability. He is also directly
involved with the elicitation and documentation of non-functional
requirements in his projects. Torsten is a fictional name because
the interviewee was not permitted to reveal his real identity and
company name.

4.2 Specification of Non-functional
Requirements

All five interviewees stated that they specify some non-functional
requirements for their projects. However, the thoroughness with
which requirements are captured at the different companies varies.
Torsten and Stefan explained that they usually capture non-functional
requirements in formal quality scenarios. The three other inter-
viewees explained that they specify non-functional requirements
informally, citing the complexity of formal requirements and sce-
narios as the reason. Fabian expressed that they document both
functional and non-function requirements in user stories.

They all described that it is challenging to obtain concrete non-
functional requirements from their customers. A lack of general
understanding of these requirements and their importance among
business stakeholders were generally stated as the main obstacles
1Name and organization changed at the interviewee’s request.



to a more thorough and precise specification of non-functional
requirements. Uwe and Matthias pointed out beyond this that they
are often left to guess the non-functional requirements that their
customers have for a system. The only way to validate if these
requirements meet the customer’s expectations is through frequent
testing.

4.3 Familiarity with the Concept of Transient
Behavior

Stefan, Uwe, and Matthias were not familiar with the concept of
transient behavior in software systems and its causes. Fabian stated
that he was already familiar with the basic concept but enquired
about the need for a specification in non-functional requirements
thereof. Torsten said that he was already familiar with the concept
and its causes. Besides him, the other interviewees asked for a short
explanation of the concept.

4.4 Causes of Transient Behavior
All participants identified deployments as the most significant cause
of transient behavior in their projects. Torsten, Fabian, andMatthias
expressed that failures and resilience mechanisms are, in their
opinion, potentially the second biggest cause of transient behavior.
While this case happens less frequently than deployments, they
estimated that the consequences on the system’s quality of service
might be more critical. However, as Torsten highlighted, the tran-
sient behavior introduced in a system by resilience mechanisms is
difficult to detect and trace. None of the interviewees claimed that
they analyzed behavior introduced this way in detail.

Stefan and Matthias explained that they minimize transient be-
havior caused by deployments by employing continuous deploy-
ment methods. Although frequently deploying small code changes
into production means that the system is regularly in a state of
transient behavior, this behavior usually has only a small impact
on the system’s quality of service. On the other hand, big tradi-
tional deployments carried out every four to six months can cause
transient behavior that substantially impacts the quality of service
and potentially lasts for a much longer time. For example, Stefan
recounted instances in which the caused transient behavior lasted
for weeks.

Matthias pointed out that the use of modern cloud and container-
ization technologies combined with new architectural styles, like
microservices or serverless functions, minimizes the duration and
the magnitude of transient behavior, which is an improvement over
previous technologies. For this reason, he thinks that transient
behavior is not as big a problem for developers, architects, and
stakeholders anymore as it used to be in the past. Uwe remarked
that a big driver for undesired transient behavior is that engineers
often ignore that most actions take a certain amount of time before
they are completed and instead assume that they are completed
instantaneously.

4.5 Identifying, Understanding, and Analyzing
Transient Behavior

Torsten and Fabian observed that in their experience, the engineers
at their company could identify, understand, and analyze the tran-
sient behavior in their software systems. Matthias stated that he

thinks the operators tasked with analyzing and understanding the
current transient behavior of a system can do so. On the other
hand, Uwe estimated, from his experience, that only a fraction of
all engineers would be able to complete the task universally and
that only a fraction of them are actually analyzing the transient
behavior of their software systems.

4.5.1 Current Situation. All interviewees mentioned that they are
collecting data about the system behavior and its impact on the
system during runtime through monitoring and log aggregators.
It seems like a large body of data is already available that can be
analyzed to understand the various transient behaviors that occur
in a system, especially their causes and impacts on the system’s
quality of service. However, the interviewees also described that
the amount of collected monitoring data is so large that it becomes
overwhelming to examine it closely and carry out the complex
analyses needed to understand the transient behavior fully. Usually,
it is not considered critical or critical enough towarrant the required
effort. Therefore, such analysis does not take place often. Torsten
was the only one who claimed that his company actively attempted
to understand and analyze the transient behavior in their software
systems.

Torsten, Uwe, and Matthias stated that visualizations reduce
some of the complexity of analyzing monitoring data. However,
Torsten said that integrating such visualizations into their applica-
tion monitoring tools is still in a prototypical state. Uwe expects
it is challenging to develop visualizations that support engineers
in understanding transient behavior in complex scenarios and sys-
tems.

Fabian explained that their analysis of monitoring data is error-
driven, meaning they only look at the monitoring data after a
failure that significantly impacted the system. The negative impact
transient behavior has on the system is accepted by both engineers
and customers.

Torsten, Stefan, Fabian, and Matthias said that such behavior
should ideally already be tested during development to predict and
understand its consequences. However, Torsten, Stefan, and Fabian
also pointed out that such tests require complicated setups and are
time-consuming. Thus, such behavior is only sparsely covered by
test scenarios. Stefan explained that they often only discuss spe-
cific scenarios in theory for the same reason. They try to reason
about if the system would be able to meet the specified quality re-
quirements under these scenarios. Matthias thinks that test-driven
development and the scaling and monitoring capacities of modern
cloud platforms can be used to keep the impact of transient be-
havior under control. Small services that can be restarted quickly
and straightforwardly mean that stopping and restarting a service
that displays undesired behavior is a more straightforward solution
than finding the underlying cause of the behavior.

When Torsten and Fabian walked us through their process for
analyzing the monitoring data after a failure occurred, they men-
tioned that the first step is to exchange ideas with other engineers,
highlighting that collaboration is critical in this task.

4.5.2 Challenges. The interviewees mentioned that the most com-
mon challenge for analyzing and understanding transient behavior
is that it is not perceived as critical enough to merit analyzing
a large amount of monitoring data to understand its causes and



consequences. Engineers have many other higher priority respon-
sibilities compared to considering transient behavior. Furthermore,
Torsten stated that the biggest challenge is inefficient tooling, mak-
ing it too time-consuming to analyze transient behavior. Especially
lacking filter configurations for monitoring notifications and alerts
means that relevant events are either not reported or overlooked
between various notifications on irrelevant events. The abundance
of notifications also leads to engineers eventually outright ignoring
reports. The monitoring tool should only send notifications about
critical events in the recipient’s area of responsibility to improve
this situation.

Another challenge that Uwe observes is to create visualizations
of the monitoring data that are still helpful and easy to understand
for complex systems and scenarios. Fabian also remarked that it is
challenging to reproduce and test many scenarios that cause tran-
sient behavior like deployments. Stefan thinks this is complicated
because some transient behaviors cannot be located with the help
of monitoring tools.

Uwe thinks the main challenge in analyzing transient behavior
is that parallel transient behaviors affect each other and form inter-
relationships between them, too complex to be easily understood
by the human mind.

4.6 Specification of Transient Behavior
At the beginning of this part of the interview, we asked the inter-
viewees if they think that transient behavior should be specified
in non-functional requirements. Only Torsten agreed, in princi-
ple. On the other hand, Stefan, Uwe, and Matthias think that it is
not necessary to explicitly specify requirements for this kind of
software behavior in most projects. However, Stefan and Uwe also
added that it depends on the criticality of the respective system. For
some projects, it might pay off to conduct a risk assessment of the
expected transient behavior concerning its occurrence probability
and potential impact on the system. If such an assessment reveals
that the system could be critically impacted by transient behavior,
this behavior should be specified. Nonetheless, they do not think
such a specification is necessary for the enterprise systems that
they are developing and operating.

4.6.1 Current Situation. Torsten claimed that they already specify
some aspects of transient behavior in quality scenarios, the same
way as they capture other non-functional requirements. Software
architects or test engineers usually create these formal scenarios.
The other four interviewees stated that they do not explicitly specify
non-functional requirements to capture transient behavior. How-
ever, they specify other non-functional requirements that some-
times implicitly also influence a system’s transient behavior. Stefan,
for example, said that they define informal quality scenarios to
capture non-functional requirements that might also affect which
transient behavior is acceptable. Fabian also explained that they
define requirements like the maximum number of concurrent users
that a system must handle. However, they do not specify quality
requirements that the system must fulfill while scaling service in-
stances in or out to comply with the other requirement. Matthias
thinks that some requirements for transient behavior might be more
interesting than others. His example was that startup time and scal-
ing behavior are essential factors of serverless functions that get

started and stopped frequently. On the other hand, the behavior
during deployment is less critical in his opinion because modern
platforms and methods already reduce the impact and extent of
transient behavior during that phase.

4.6.2 Challenges. The biggest challenge for specifying transient
behavior that all five interviewees named is that customers and
business stakeholders are not aware of it and lack the knowledge
to understand what it is, why it should be specified, and what their
requirements are. Thus, it is difficult to find acceptance for the topic
of transient behavior among these stakeholders, which corresponds
to what they already said about non-functional requirements in gen-
eral towards the beginning of the interviews. Torsten explained that
non-technical stakeholders often have difficulties defining concrete
numbers for non-functional requirements in general and transient
behavior. Furthermore, they have problems assessing the trade-off
between a better solution’s development and operational costs and
the impact of unspecified transient behavior. Architects and en-
gineers often have to infer the requirements of their customers
themselves.

Another challenge that Torsten and Fabian described is that it
is difficult to define a response measure for quality scenarios that
involve transient behavior, i.e., how the system should react if a spe-
cific behavior occurs. Here, input from the business stakeholders is
needed again, which is challenging because of the issues mentioned
previously.

Furthermore, Stefan, Uwe, and Matthias perceive other non-
functional requirements as more important than those that specify
transient behavior. Since it is already challenging to elicit these
requirements from their customers, they would rather spend their
effort on them than on additional requirements for transient be-
havior. They have other problems that have a higher priority than
the specification of transient behavior and are willing to accept the
consequences that unspecified transient behavior causes.

Finally, Torsten brought up that it can be challenging to identify
quality scenarios for transient behavior and be confident that a
scenario captures all aspects of a specific behavior. The fact that it
is challenging to trace the causes of transient behavior impedes its
formal specification.

4.7 Tools and Methods
We asked the interviewees how satisfied they are with the tools
and methods they use to analyze and specify transient behavior
and how these tools could be further improved. Afterward, we also
inquired about the requirements that a new solution for these tasks
would have to meet that employs novel HCI interfaces to support
engineers.

4.7.1 Existing Tools. All five described that they take advantage
of application performance monitoring tools to collect data about
their software systems during the runtime. Sometimes they use
proprietary solutions. Other times the toolset is determined by
the customer. In general, none of them has a fixed set of tools
for every project. To emphasize this, Matthias explained that they
constantly search and try new tools to consult their customers with
the latest technologies and methods. These monitoring tools are
usually configured to issue alerts when unexpected behavior arises



to notify the responsible operator. Torsten also revealed that they
use log aggregators and data analytics engines like Elasticsearch2
to monitor the behavior of an application. In his opinion, these
tools lack adequate filters to notify engineers only about relevant
events.

Torsten, Stefan, Uwe, and Fabian elaborated on their method
for documenting non-functional requirements. They all use stan-
dard tools that are simple to use to capture their requirements, like
different text processing applications and spreadsheets. Torsten
stated that the essential factor in the specification of non-functional
requirements is good communication with non-technical stakehold-
ers, not tooling. Before the COVID-19 pandemic that started in 2020,
they documented these quality requirements with post-it notes.
Fabian said they collect non-functional requirements together with
functional requirements in user stories that are tracked in a ticket
management tool. However, this makes it difficult to find a specific
requirement later on because they are collected in an unstructured
fashion, and their tool lacks search functionality. The interviews
exposed that a critical aspect of the specification is that it must be
simple to capture requirements and change them later.

An interesting approach was presented by Stefan, who men-
tioned a method based on EventStorming3 that was developed by
one of his co-workers for the collaborative elicitation of quality
requirements.

4.7.2 Requirements for a Potential Solution. A requirement that all
interviewees had for a potential solution that takes advantage of
novel HCI interfaces is that it must allow collaboration. For once,
virtual collaboration in the form that multiple users can access and
edit the same model or file simultaneously is a must. When multiple
engineers are working together in person, it would also be helpful
if there is a way to collaborate in that scenario, too. Especially since
the importance of communication and collaboration have been
repeatedly highlighted during the interviews.

Stefan established that a solution must be practice-oriented if it
should be adapted in the industry. He means that the tool and the
employed interfaces should be easy to learn and use. Uwe stressed
this point by remarking that a solution approach should not worsen
the current situation by adding additional complexity to the tasks.
Furthermore, it must be possible to integrate a solution into the
existing processes surrounding the concerned activities. Otherwise,
it would find no adoption in practice. Since a big problem in dealing
with transient behavior seems to be the lack of acceptance of the
topic from business stakeholders, a solution would have to create
value directly visible to them. Finally, most projects are entirely
managed in version control systems like Git. Any solution would
have to support this by ensuring that all created artifacts can be
managed there without issues.

For Torsten, a solution must improve the problems he sees with
the current tools in use. It needs to include filtering data and in-
cidents to present only relevant data to the engineers who use
it. Moreover, data representation and visualization must promote
easy and fast identification of relevant behavior, its causes, and its
impacts on the system. Fabian would like a filtering or search func-
tion not for monitoring data but for the requirements that specify

2https://www.elastic.co/enterprise-search
3https://www.eventstorming.com/

transient behavior. He also thinks it would be helpful if a solution
supports engineers in creating scenarios for automatic tests and
verification of these requirements.

Uwe already mentioned that a solution would need to include
visualizations that are still helpful for complex scenarios and sys-
tems. Matthias especially wants visualizations of the duration of
transient behavior, a service’s or the system’s recovery time, and
the services affected by it.

Multiple interviewees remarked that a solution that supports
stakeholders in the specification of transient behavior must also
be easy for non-technical stakeholders involved in this process.
While engineers also expect rich options for configuring a solution,
especially for analyzing transient behavior, usability should be
the focus of a solution that supports various stakeholders in the
specification of transient behavior.

4.7.3 Thoughts on Novel HCI Interfaces. Stefan, Uwe, and Matthias
worry that the utilization of novel HCI interfaces for a solution
would not help to increase its usability and effectiveness. Instead, in
their opinion, the problems of modeling and visualizing transient
behavior need to be solved first, as there is still a lack of capable
solutions in this regard. Stefan is concerned that using such HCI
methods would make a solution less practical and harder to adapt
in the industry.

Torsten, Stefan, Uwe, and Fabian are wary of a solution that
employs virtual reality (VR) or augmented reality (AR) because the
technology is not yet prevalent. Furthermore, they are afraid that
the technology could restrict communication between stakeholders,
and there is a context switch when putting on a head-mounted
display to start a VR application. Uwe, aware that it is difficult to
create useful visualizations for complex transient behavior, is not
convinced that VR or AR would solve this problem.

Whereas Fabian also has concerns about VR in its current state,
he thinks that a solution that employs this paradigm could have
potential in the future when VR is more broadly adopted and the
technology’s flaws are alleviated. The technology that has the most
potential for a solution right now is, in his opinion, chatbots. He ar-
gues that bots are already commonly used in software engineering,
for example, for notifications about failures or other critical system
events. It would be a helpful extension of these bots if they allow
him to interact with the information they present, e.g., restarting a
service or the presentation of suggestions for possible next steps
from the chatbot.

Uwe thinks natural and multimodal user interfaces are the most
promising HCI approaches. In his opinion, these user interface
paradigms will see broad adoption in the future, as they allow more
natural interaction, similar to how humans communicate with each
other. For this reason, they could eventually be used to facilitate the
handling of such complex topics as transient behavior. However, he
fears that many engineers would reject such a solution until these
methods are more commonly employed.

Finally, Fabian and Uwe think that speech as a mode is less suited
for such a use case because it has a low information density, and
the user experience with voice assistants is still lacking, at least for
now.



5 DISCUSSION
In this section, we discuss insights of our interviews related to the
hypotheses presented in Section 3.1 and those identified additionally
thanks to the explorative nature of the semi-structured interviews.

Threats to Validity. The sample size of our interviews was not big
enough to make statements about the general population of engi-
neers. However, the insights that we gained through the interviews
helped us to have an impression of the requirements that software
engineers have towards transient behavior and knowledge of how
they currently handle it. We are only discussing the hypotheses for
the same reasons without formally rejecting or accepting them.

5.1 Hypotheses
𝐻1: Engineers are familiar with the concept of transient behavior

in software? — Probably not. While some interviewees, like Torsten,
were more familiar with the concept of transient behavior than
others, the concept was mostly new to them.When it was explained
to them, they quickly grasped it. However, most of them had not
heard the term “transient behavior” before we invited them to the
interview. Therefore, it seems reasonably safe to say that𝐻1 should
be rejected.

𝐻2: Engineers understand the transient behavior in their systems?
— It depends. It is not easy to provide a general estimate to𝐻2 based
on the interviewees’ statements. While two of them stated that their
engineers would be able to identify, understand, and analyze tran-
sient behavior, four interviewees shared that transient behavior is
usually not analyzed in their organizations. Furthermore, Uwe esti-
mated that only a fraction of all engineers would be able to analyze
complex transient behavior that can cascade from one microservice
to another. After refining the hypothesis, future work could attempt
to answer this question through quantitative experimentation.

𝐻3: Engineers think that the transient behavior of software should
be specified in non-functional requirements? — It depends. There is
no clear answer to 𝐻3. While Torsten thinks that transient behav-
ior should generally be specified, most of the other interviewees
clarified that this is often unnecessary. However, they stated that a
specification might make sense for critical systems, which could
severely be impacted by transient behavior. Therefore, 𝐻3 can nei-
ther be confirmed nor rejected, as this question is too complex to be
covered by a single hypothesis that does not distinguish between
different kinds of systems.

𝐻4: Engineers specify the transient behavior of their software sys-
tems in non-functional requirements? — Mainly not. The division
between the interviewees seems similar concerning 𝐻4. Torsten
claimed that they attempt to specify transient behavior in non-
functional requirements in their projects. The other four inter-
viewees stated that they do not explicitly capture non-functional
requirements for transient behavior. While several of them men-
tioned that some of the non-functional requirements they specify
also influence transient behavior, these requirements are not cre-
ated with transient behavior in mind. For this reason, it seems like
𝐻4 should mostly be rejected.

𝐻5: Engineers are satisfied with existing methods and processes
for analyzing and specifying non-functional requirements for the

transient behavior of software? — Mixed: non-technical stakeholders
are a challenge, too. There is again no clear answer to 𝐻5. Torsten
stated that tooling is one of their biggest problems in analyzing
transient behavior. Similarly, Fabian expressed that reproducing and
testing scenarios that involve transient behavior is challenging. On
the other hand, Uwe thinks that communication with non-technical
stakeholders is a more significant challenge while tooling plays
less of a role. He claimed to be satisfied with the current tools and
methods they employ.

𝐻6: Engineers collaborate when they are analyzing or specifying
non-functional requirements for the transient behavior of software? —
Yes. The situation is different with 𝐻6. All interviewees agreed that
collaboration is essential when dealing with the different aspects of
transient behavior. It especially plays a big part in the specification
because both non-technical and technical stakeholders have to work
together. Therefore, we argue that our interviews confirmed 𝐻6.

5.2 Additional Insights
In addition to the presented findings directly related to the hypothe-
ses, we identified the following insights from the interviews that
are related to transient behavior:

(1) The biggest challenge when eliciting any non-functional
requirements is a lack of awareness and understanding from
business stakeholders.

(2) Transient behavior is not considered critical enough to be
analyzed.

(3) Deployments are seen as the most significant cause of tran-
sient behavior in enterprise applications.

(4) Frequently having transient behavior with low quality loss
and recovery time is preferred over infrequent transient
behavior with high quality loss and recovery time.

(5) Test scenarios should cover transient behavior; however,
they rarely do due to the complexity of these scenarios.

(6) Simultaneous transient behaviors can affect each other, mak-
ing it challenging to understand them.

(7) When specifying non-functional requirements, simple tools
are preferred over feature-rich ones.

(8) Novel HCI interfaces are not broadly adopted in software
engineering processes.

Moreover, we identified some insights addressing the wider con-
text of application performance management (APM) [8]:

(1) Better analytical solutions are needed to understand large
amounts of APM data.

(2) There is a lack of easy-to-understand visualizations for APM
data of complex scenarios.

(3) Filtering and easy-to-understand visualizations are key for
dealing with large amounts of APM data.

6 FOLLOW-UP PROTOTYPES
Our findings reveal that specification and analysis of transient be-
havior are rarely performed in the industry. The primary reasons for
this are the challenge of eliciting requirements from business stake-
holders and a lack of effective tooling to analyze transient behavior
within a wealth of APM data. We developed two early prototypes
to improve this situation and explore potential research directions.



Figure 2: TransVis includes visualizations for a system’s (1)
architecture, each service’s (2) transient behavior and (3) loss
of resilience, and a (4) chatbot.

We have achieved the following complementary intermediate re-
sults toward our overall vision of improving the specification and
comprehension of transient software behavior:

6.1 TransVis
TransVis [2] focuses on the specification and comprehension of tran-
sient behavior. TransVis presents a graph-based visualization of the
system’s services that indicates potential violations. For each ser-
vice, the violations and measurements can be visually investigated
and compared against simple specifications based on Bruneau’s
resilience triangle model. An integrated chatbot assists the user
in their tasks, e.g., adding, deleting, and showing specifications.
Figure 2 shows the TransVis dashboard. A user study [2] revealed
that the visualizations are effective for specifying and exploring
transient behavior. However, the chatbot was rarely utilized by the
participants.

6.2 Resirio
Resirio [14] is a tool that can import execution traces and conducts
a CHAZOPS-based [5] hazard analysis on the extracted architec-
tural model. The results are presented in a graph-based architecture
visualization to help users in interactive elicitation of resilience
scenarios. The user can then specify the resilience scenario in a
conversation with a chatbot. We conducted a user study with par-
ticipants from industry and academia to evaluate Resirio’s usability,
effectiveness, and support. The evaluation shows that the developed
prototype gives novice requirements engineers a foundation for fast
requirements elicitation and that Resirio complements traditional
requirements engineering approaches.

7 CONCLUSION
Based on the question of how transient behavior is addressed in
practice, we interviewed five experienced software architects from
the industry. We discovered that transient behavior is seldom spec-
ified in requirements due to a lack of knowledge from stakeholders
and a low prioritization. Furthermore, we observed that better
tooling is needed for the analysis of transient behavior. Besides
improved filtering options for incidents, this includes improved
visualizations and models for transient behavior. Building on the
interview findings, we have provided a brief overview of our tool
prototypes, TransVis and Resirio. In addition to the presented tools,
we are developing concepts and editors for the interactive trans-
formation of ATAM-based resilience scenarios into more formal
representations. This step is intended to extend the requirement
elicitation workshop targeting resilience and transient behavior [7].

ACKNOWLEDGMENTS
We thank the interview participants. This research has received
funding from the Baden-Württemberg Stiftung (Orcas project) and
the German Federal Ministry of Education and Research (Software
Campus 2.0—Microproject: DiSpel).

REFERENCES
[1] Zahra Shakeri Hossein Abad, Mohammad Noaeen, and Guenther Ruhe. 2016.

Requirements Engineering Visualization: A Systematic Literature Review. In 24th
IEEE Int. Requirements Engineering Conference, RE. IEEE Computer Society, 6–15.

[2] Samuel Beck, Sebastian Frank, Alireza Hakamian, Leonel Merino, and André van
Hoorn. 2021. TransVis: Using Visualizations and Chatbots for Supporting Tran-
sient Behavior in Microservice Systems. In 2021 Working Conference on Software
Visualization (VISSOFT). 65–75.

[3] Samuel Beck, Sebastian Frank, Mir Alireza Hakamian, and André van Hoorn. 2022.
How is Transient Behavior Addressed in Practice? Insights from a Series of Expert
Interviews – Supplementary Material. https://doi.org/10.5281/zenodo.6425604

[4] Michel Bruneau et al. 2003. A framework to quantitatively assess and enhance
the seismic resilience of communities. Earthquake spectra 19, 4 (2003), 733–752.

[5] JV Earthy. 1992. Hazard and operability study as an approach to software safety
assessment. In IEE Colloquium on Hazard Analysis. IET, 5–1.

[6] Jonas Eckhardt, Andreas Vogelsang, and Daniel Méndez Fernández. 2016. Are
"non-functional" requirements really non-functional?: an investigation of non-
functional requirements in practice. In Proceedings of the 38th International Confer-
ence on Software Engineering, ICSE, Laura K. Dillon, Willem Visser, and Laurie A.
Williams (Eds.). ACM, 832–842.

[7] Sebastian Frank, M. Alireza Hakamian, Lion Wagner, Dominik Kesim, Jóakim
von Kistowski, and André van Hoorn. 2021. Scenario-based Resilience Evaluation
and Improvement of Microservice Architectures: An Experience Report. In ECSA
2021 Companion Volume, Vol. 2978.

[8] Christoph Heger, André van Hoorn, Mario Mann, and Dusan Okanovic. 2017.
Application Performance Management: State of the Art and Challenges for the
Future. In Proceedings of the 8th ACM/SPEC on International Conference on Perfor-
mance Engineering, ICPE. ACM, 429–432.

[9] Sina Niedermaier, Falko Koetter, Andreas Freymann, and Stefan Wagner. 2019.
On Observability and Monitoring of Distributed Systems - An Industry Interview
Study. In Proceedings of the 17th International Conference on Service-Oriented
Computing, ICSOC, Vol. 11895. Springer, 36–52.

[10] Valentin Andreevich Venikov. 2014. Transient Phenomena in Electrical Power
Systems: International Series of Monographs on Electronics and Instrumentation,
Vol. 24. Vol. 24. Elsevier.

[11] Chang-YuWang, Dimitris Logothetis, Kishor S Trivedi, and Ioannis Viniotis. 1996.
Transient behavior of ATM networks under overloads. In Proceedings of the 1996
IEEE Conference on Computer Communications, INFOCOM, Vol. 3. IEEE, 978–985.

[12] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and
Anders Wesslén. 2012. Experimentation in software engineering. Springer.

[13] Kanglin Yin, Qingfeng Du, Wei Wang, Juan Qiu, and Jincheng Xu. 2019. On
Representing and Eliciting Resilience Requirements of Microservice Architecture
Systems. arXiv preprint arXiv:1909.13096 (2019).

[14] Christoph Zorn. 2021. Interactive Elicitation of Resilience Scenarios in Microservice
Architectures. Master’s thesis. University of Stuttgart.

https://doi.org/10.5281/zenodo.6425604

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Transient Behavior
	2.2 Related Work

	3 Method
	3.1 Hypotheses
	3.2 Interview Structure
	3.3 Interview Analysis

	4 Results
	4.1 Background of Interviewees
	4.2 Specification of Non-functional Requirements
	4.3 Familiarity with the Concept of Transient Behavior
	4.4 Causes of Transient Behavior
	4.5 Identifying, Understanding, and Analyzing Transient Behavior
	4.6 Specification of Transient Behavior
	4.7 Tools and Methods

	5 Discussion
	5.1 Hypotheses
	5.2 Additional Insights

	6 Follow-up Prototypes
	6.1 TransVis
	6.2 Resirio

	7 Conclusion
	Acknowledgments
	References

