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a b s t r a c t 

Class separation is an important concept in machine learning and visual analytics. We address the visual 

analysis of class separation measures for both high-dimensional data and its corresponding projections 

into 2D through dimensionality reduction (DR) methods. Although a plethora of separation measures 

have been proposed, it is difficult to compare class separation between multiple datasets with different 

characteristics, multiple separation measures, and multiple DR methods. We present ProSeCo, an interac- 

tive visualization approach to support comparison between up to 20 class separation measures and up 

to 4 DR methods, with respect to any of 7 dataset characteristics: dataset size, dataset dimensions, class 

counts, class size variability, class size skewness, outlieriness, and real-world vs. synthetically generated 

data. ProSeCo supports (1) comparing across measures, (2) comparing high-dimensional to dimensionally- 

reduced 2D data across measures, (3) comparing between different DR methods across measures, (4) 

partitioning with respect to a dataset characteristic, (5) comparing partitions for a selected characteristic 

across measures, and (6) inspecting individual datasets in detail. We demonstrate the utility of ProSeCo 

in two usage scenarios, using datasets [1] posted at https://osf.io/epcf9/ . 

© 2021 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

The separability of classes in datasets is an essential topic in 

many data science problems. Class separation measures aim at 

quantifying the extent that explicitly designated groups within 

datasets are distinguishable in terms of spatial proximity between 

instances, as illustrated in Fig. 1 ; these groups are typically called 

classes or clusters, and instances are sometimes called points or 

items. 

Class separation measures play an important role in Machine 

Learning (ML), with applications that include dataset synthesis [2] , 

feature selection [3] , and cluster quality analysis [4] . Separation 

measures have also been explored in the visualization (VIS) com- 

munity as visual quality measures to quantify characteristics im- 

portant to human observers [5] , such as the amount of spatial 

overlap between classes when high-dimensional data is projected 
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to an easily visualizable 2D space with dimensionality reduction 

(DR) methods [6] . 

It has long been argued that no single best class separation 

measure serves all purposes [7,8] . The output of separation mea- 

sures are numeric scores; these may be difficult to directly com- 

pare because of many differences. They may range along different 

scales, or have different distributions of their values. They may en- 

code preferable states as either large or small values. Thus, in prac- 

tice, it remains challenging to assess the suitability of a measure 

for a given problem or dataset. 

In this work, we address analysis of class separation measures 

according to three central aspects: separation measures, dataset 

characteristics, and DR method. 

First, separation measures are the most obvious and fundamen- 

tal lens of analysis. Class separation can be measured per instance, 

per class, or per dataset. We focus on measures of the coarsest 

possible granularity, that give one value per dataset, because our 

goal is the assessment of measures for up to 10 0 0 datasets simul- 

taneously in a single analysis session. 

https://doi.org/10.1016/j.cag.2021.03.004 
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Fig. 1. Scatterplot matrices showing 3 out of 100 5D datasets with two classes (blue 

and red), synthetically generated to differ linearly by the degree of class separation, 

from total overlap to well separated. This controlled dataset collection is analyzed 

in depth in Section 6.1 . (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

Second, the characteristics of the datasets can dramatically af- 

fect analysis outcomes of separation measures and DR methods. 

We capture some interesting variations of this very general idea by 

focusing a small set of six continuous or discrete attributes: dataset 

size for both instances and dimensions, class counts and class size 

variability and skewness, and the number of outliers. We also con- 

sider a seventh binary attribute, whether datasets are synthetic or 

real-world. 

Third, the DR method used can affect class separation scores. 

A measure applied to original nD datasets does not necessarily 

produce consistent output on the 2D projected (DR-2D) equiva- 

lents [9] . The interpretation of nD distances is difficult and un- 

intuitive [10] , so understanding their transformation into 2D is a 

challenge when working with dimensionality-reduced data [11] . 

Our primary contribution is the design and implementation of 

the interactive visual analysis tool ProSeCo, short for Probing Sepa- 

ration Comparison. It directly tackles the challenge of how to com- 

pare different separation measures qualitatively and quantitatively. 

It supports investigating the consistency of class separation mea- 

sures in different contexts, such as analyzing the consistency of 

separation measures across large dataset collections, or studying 

the influence on DR on the estimates of class separation measures. 

ProSeCo builds on a preliminary workshop paper [12] introduc- 

ing SepEx, which covered only measures and DR methods. In this 

work, we also include dataset characteristics as a third aspect, and 

also scale to a larger set of measures, DR methods, and datasets. 

ProSeCo handles the interactive visual analysis of up to 20 class 

separation measures in parallel for both direct nD data and DR-2D 

data, for up to 4 DR methods, across a collection of up to 10 0 0 

datasets. 

We provide evidence for the utility of ProSeCo through two 

usage scenarios, one with a controlled collection of datasets syn- 

thetically generated to differ linearly in a single parameter, and 

one with a heterogeneous collection of many datasets with variance 

across all seven dataset characteristics. We demonstrate different 

analysis stages including inversion of measure axes to align the va- 

lence of value domains for each measure, filtering outlier datasets 

based on specific measures, filtering and partitioning according to 

specific characteristics, and comparing nD data to its DR-2D ana- 

log. This scenario leads to a secondary contribution, a curated col- 

lection of 57 datasets where outliers across 12 different measures 

have all been culled. 

2. Background 

At the heart of our work is the visual analysis of class sepa- 

ration measures, which have been studied in both the machine 

learning and visualization communities. To provide context, we 

briefly review how these have been used in both literatures. 

2.1. Classseparation measures in machine learning 

The ML literature contains many synonyms for class separation 

measures including cluster separation measures, cluster separation 

factors, cluster separation indices, cluster quality indices, and clus- 

ter validity indices. These measures represent metrics that aim at 

quantifying how well distributions of classes, clusters, or groups in 

datasets are separated [4] . Separation measures quantify the sepa- 

ration and compactness of the groups and thereby help to assess 

the quality of a clustering or class assignment. A literature survey 

on cluster separation measures provides a more detailed discussion 

[13] . We focus here on measures that achieve one scalar value for 

the entire dataset. 

Many separation measures have been proposed, with popular 

ones including Dunn [14] , Silhouette [15] , Davies–Bouldin [16] , and 

Calinski–Harabasz [17] . Separation measures capture different char- 

acteristics such as local neighborhoods, entropy, within-class and 

between-class distances, class diameters, class density and com- 

pactness, and minimum spanning trees [18] , see also Section 4.2 . 

Class separation measures play an important role in ML for 

problems such as the synthesis of datasets [2,19] and the selection 

of datasets for evaluations, data studies, or sensitivity analy- 

ses [20] . They further can be used to assess the complexity of a 

labeled dataset. Given the class labels for each data instance in 

the dataset, separation measures quantify the amount of overlap 

and class confusion [21] in the dataset and thereby the problem 

complexity of the dataset [3,22,23] . Separation measures can 

further be used to objectively compare the performance of clus- 

tering methods. The evaluation of clustering methods is difficult, 

because usually no ground truth exists. Given two clustering 

results, it is difficult to say which one is better. Separation mea- 

sures enable to assess and compare cluster quality and clustering 

performance [4,24] . Another application of separation measures is 

feature selection [3] ; that is, to assess how well a feature separates 

two given classes in a dataset. A classifier built upon this basic 

concept is the decision tree [25] . 

2.2. Class separation measures in visualization 

Separation measures have also been explored in the VIS com- 

munity over the past decade, as one type of visual quality mea- 

sure [5,26] . The main difference to the ML community is that these 

measures usually focus on the visible 2D space, most commonly in 

the form of 2D scatterplots. Classical separation metrics for scat- 

terplots took inspiration from ML and used, for instance, centroid- 

based or entropy-based approaches to model separability [27,28] . 

In addition to such heuristic-based measures, newer approaches 

have proposed to directly model the human perception of class 

separability in scatterplots [18,29] . In other words, the metric 

should reflect in how far a human observer perceives classes to be 

separable or not. Perceptual class separability is a non-trivial pro- 

cess which is affected by many visual dataset characteristics, with 

spatial overlap being the major defining characteristic for human 

observers [6] . 

These ideas have further been used to optimize DR and visual 

encoding methods according to how humans would perceive them. 

Espadoto et al. conducted a quantitative study comparing differ- 

ent DR methods based on separation measure results [30] . Wang 

et al. went one step further and used the best performing percep- 

tual separation measures directly within a linear DR method [31] . 

Their method is similar to the venerable Linear Discriminant Anal- 

ysis (LDA) approach [32] but optimizes separability according to 

human-perceived instead of heuristic-based separability. Percep- 

tual separation measures were also used to optimize visual encod- 

ing techniques. An example of their use is to automatically assign 

colors to classes in scatterplots in a way that makes them easy to 
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separate for humans [33] , or simply to create completely new and 

tailored color palettes for that purpose [34] . 

3. Related work 

We now discuss previous approaches and tools for the system- 

atic analysis and comparison of class separation measures. 

Existing endeavors into this direction focus on theoretical and 

empirical studies comparing different separation measures. In ML, 

there are only a few broader and systematic comparisons of sep- 

aration measures [4,7,8,35–37] . These existing comparative studies 

focus mostly on the comparison of achievable performance, for ex- 

ample in terms of performance metrics or in estimating an appro- 

priate number of clusters for a dataset. In contrast, our approach 

with ProSeCo is to focus on the consistency of estimates from dif- 

ferent separation measures and the influence of dataset character- 

istics on separation measure outcomes. 

The VIS literature does contain some previous analyses of sep- 

aration measures. Visual assessment of cluster separation with the 

particular focus on dimensionality-reduced datasets was carried 

out by Bernard et al. for self-organizing maps (SOM) [38] and for 

outlier analysis methods [39] . Tatu et al. conducted a user study 

comparing four separation measures on a single dataset [28] . Ex- 

panding both on separation measures and dataset characteristics, 

Sedlmair and Aupetit evaluated 15 existing separation measures 

based on 828 two-class scatterplots [40] . 

The results of such studies are helpful as they give generic ad- 

vice on which measures perform generally well and which not. 

However, it is hard to derive insights that are tailored to a specific 

problem at hand. For such individualized analysis approaches, a vi- 

sualization tool that allows people to directly analyze separation 

measures would seem to be an obvious option. While a number 

of tools have been proposed for the analysis and selection of DR 

methods [9,41,42] , there is surprisingly little previous work on in- 

teractive visual tools for separation measures. The goal of our work 

is to fill this gap. 

Our previous workshop paper presented SepEx, a preliminary 

version of ProSeCo that was the first interactive visual data analysis 

system to handle the two aspects of separation measures and DR 

methods. However, it did not handle dataset characteristics at all. 

It did support the first three tasks discussed below in Section 4.1 , 

but not the last three. It had more limited scalability than ProSeCo, 

handling 3 rather than 4 DR methods, 12 rather than 20 separation 

measures, and several hundred rather than 10 0 0 datasets in a col- 

lection. 

4. ProSeCo: abstractions 

We first present the analysis tasks that motivated the design of 

ProSeCo, and state its scalability targets. We then present the spe- 

cific choices for the three targets of the analysis tasks: separation 

measures, dataset characteristics, and DR methods. 

4.1. Analysis tasks 

We articulate six analysis tasks as the primary design concerns 

for ProSeCo, summarized in Table 1 . 

T1: Compare across measures . The most basic task is to com- 

pare the output of each separation measure for each dataset 

in the collection, in search of an overview of commonali- 

ties and differences across these measures. This comparison 

may lead to identifying measures with redundant behavior, 

or identifying datasets that are outliers for particular mea- 

sures. 

Table 1 

The six analysis tasks supported by ProSeCo, targeting measures, DR methods, and 

dataset characteristics. 

Task Description 

T1 Compare across measures 

T2 Compare nD to DR-2D data across measures 

T3 Compare between DR-2D data across measures 

T4 Partition within dataset characteristic 

T5 Compare dataset partitions across measures 

T6 Inspect within individual dataset 

T2: Compare nD to DR-2D data across measures . This task 

is to understand the effects introduced by DR methods on 

multiple class separation measures. Ideally, class separation 

would be consistent across the nD dataset and its 2D projec- 

tion, which should also be reflected by respective measures. 

T3: Compare DR-2D data across measures . This task is to di- 

rectly compare the effect of different DR methods through 

analysis of their DR-2D projection results. 

T4: Partition within dataset characteristic . This task is to par- 

tition dataset collections into meaningful bins according to 

user-selectable thresholds for a specific dataset characteris- 

tic, so that aggregate numerical values can be computed for 

each bin. 

T5: Compare partitions across measures. This task is to com- 

pare the distributions of measure outputs for each bin of 

a partitioned dataset collection, to develop and test hy- 

potheses about dependencies and relationships between the 

dataset characteristic used to partition the dataset (T4) and 

the behavior of measure outputs. 

T6: Investigate individual dataset . This task is to see all rel- 

evant details of a single dataset, including the distribution 

of data elements in the nD space, the distribution of DR-2D 

data elements in the reduced spaces, and the distribution 

of classes in either data space. This auxiliary task supports 

exploration of why certain datasets behave differently than 

others in the other five primary tasks. 

Considering these tasks as action-target pairs [43] , the actions 

are compare , partition , and also inspect . The targets are separation 

measures, DR methods, and dataset characteristics. 

As with many systems, scalability is a goal. In our case, scal- 

ability primarily relates to the number of datasets, measures, and 

DR methods that our tool can manage without visually overloading 

the interface. To that end, our overarching requirement is to sup- 

port tasks T1 through T5 in a single screen, to harness the benefits 

of a navigation-free overview. In contrast, we deem the T6 task of 

inspecting an individual dataset to be sufficiently modular that it is 

not subject to that requirement. We consider an ambitious yet still 

manageable information density for that single overview screen, 

and work backwards from that constraint to identify scalability tar- 

gets. Our analysis of the tradeoffs between the competing goals of 

the five primary tasks led us to identify the following scalability 

aims: 10 0 0 datasets, 20 measures, 7 dataset characteristics, and 

4 DR methods. 

We address these scalability aims in the design and implemen- 

tation choices of ProSeCo. We note that the exact choices are not 

the central aspect of our contribution, and could most certainly be 

changed. The crucial point is the design of an interface that sup- 

ports the six tasks listed above and scales to roughly these cardi- 

nalities for the three target types and the dataset collection. 

4.2. Separation measures 

ProSeCo supports the analysis of up to 20 instances of sepa- 

ration measures at the same time. For the purpose of readability, 
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we simply refer to all measure instances as measures. The 12 main 

class separation measures that we use in the usage scenarios range 

from early and well-established to newer and more exotic ones, for 

a mix of popularity and diversity. In addition, we chose one main 

measure (Dunn) to explore in detail through 9 different parame- 

terizations, for a total of 20 measures that can be investigated at 

once. All of these measures are at the coarsest possible granularity, 

providing one value for an entire dataset. The 12 main supported 

measures are: 

• Average Within [44] : The average within measure estimates the 

within-class homogeneity based on average within-class dis- 

tances. 
• Average Between [44] : The average between measure is similar 

to average within and measures the between-class separation 

via average between-class distances. 
• Ball Index [45] : The ball index is the mean of the dispersions 

per cluster. The dispersion per cluster is computed as the mean 

of the squared distances between the cluster members and the 

barycenter of the cluster. 
• Calinski–Harabasz Index [17] : The Calinski–Harabasz measure 

estimates the concentration of the classes around their center- 

of-mass using squared Euclidean distances. 
• Davies–Bouldin Index [16] : The Davies–Bouldin index is com- 

puted by the average Euclidean distance between the centroid 

of the class and its individual members. 
• Dunn Index [14] : The Dunn index is computed as the ratio 

of the minimum between-class distances over the maximum 

within-class distance in order to identify compact and well 

separated clusters or classes. The nine parameterizations that 

we explored arise from two parameters: within-class compari- 

son ( avgCentroid , avg , and max ) and between-class comparison 

( closest , centroids , furthest ), always referring to the distance re- 

lations used. 
• Distance Consistency [27] : The distance consistency measure is 

computed as the portion of data points whose nearest class 

center (center-of-mass) belongs to the same class. 
• Extended Minimum Spanning Tree (Emst) Class Separation [46] : 

The Emst separation measure is the average portion of the 

neighbors of each sample, which belong to the same class as 

the sample. The neighborhood is estimated by the extended 

minimum spanning tree of all samples. 
• Hypothesis Margin [47] : The hypothesis margin measure is the 

average of the differences between distances from each sample 

to its nearest neighbor from another class and distances to its 

own class nearest neighbor. 
• Normalized Hubert Statistics [48] : The normalized Hubert 

statistics measure is computed from two pairwise similarity 

matrices: one of all input samples and one of all class cen- 

ters. Both matrices are multiplied with each other and z- 

standardized. The result is averaged to obtain one separation 

value for over all classes. 
• Point-Biserial Index [49] :The Point-Biserial Index builds upon 

the point-biserial correlation coefficient and is computed as 

a product of two quantities: first, the difference of the mean 

within-class distances and the mean of the between-class dif- 

ference. Second, the square root of the product of the number 

of within-class samples and the number of between-class sam- 

ples divided by the total number of samples. 
• Silhouette [15] : The silhouette measure represents the separa- 

tion as the difference between the average between class dis- 

tances and the average within-class distances, normalized by 

the maximum of these two quantities. 

4.3. Dimensionality reduction techniques 

From the large class of DR methods proposed in previous 

work [50] , we selected a mix of longstanding approaches in 

widespread use and newer methods gaining in popularity. From 

oldest to newest, the 4 supported DR methods are: 

• PCA [51] : Principal Components Analysis is a linear DR ap- 

proach that identifies orthogonal directions (principal compo- 

nents) in the data. Each component represents one direction in 

the data along which variance in the data can be explained. For 

visualization the data is projected onto the first two principal 

components. 
• MDS [52] : Multidimensional Scaling is a family of linear and 

nonlinear DR methods that attempt to preserve pairwise dis- 

tances between objects. Our implementation takes the pairwise 

distances of all points as input and maps the points to 2D by 

preserving the between-point distances using Kruskal’s stress 

optimization criterion. 
• t-SNE [53] : t-distributed Stochastic Neighbor Embedding is a 

nonlinear DR method that emphasizes cluster structure using 

divergence of probability distributions between pairs of high di- 

mensional objects to keep similar instances close and keep dis- 

similar distances far apart. 
• UMAP [54] : Uniform Manifold Approximation and Projection 

first builds a high-dimensional graph representation of the data 

and then tries to find a lower-dimensional graph with as sim- 

ilar as possible structure. UMAP is a nonlinear approach with 

better preservation of global structure and faster computation 

time than t-SNE. 

4.4. Dataset characteristics 

Datasets can vary considerably in arbitrary aspects and charac- 

teristics. We formalized a small subset of frequently used dataset 

characteristics to make them available for analysis. We considered 

expressibility and intuitiveness, and only use characteristics that 

are robust, easy to re-implement, and computable at interactive 

rates. We were also inspired by the VizNet approach where sim- 

ilar data characteristics have been used to provide an overview of 

millions of datasets [55] . We selected a set of 7 basic dataset char- 

acteristics for integration in ProSeCo: 

• Dataset Size is measured in number of data points (instances) 

in the dataset. 
• Dataset Dimensions refers to the number of attributes (feature 

dimensions) in the dataset. 
• Class Counts provides the number of distinct classes in the 

dataset. 
• Class Sizes Variation measures the variation of the individual 

class sizes, from a value of zero for completely balanced to 

larger values that indicate more imbalance. We measure im- 

balance by the coefficient of variation of the class cardinalities 

(class sizes). 
• Class Sizes Skewness measures the asymmetry of the distribu- 

tion of class sizes. Balanced datasets have a value of 0, many 

small classes and few large ones yields a negative value, and 

the inverse is positive. Class sizes skewness is the third mo- 

ment of the distribution of class cardinalities. 
• Outlierness measures the amount of outliers in the dataset. We 

chose the MAD outlier detection criterion [56] , following the 

rationale of VizNet [55] . 
• Real-World is a binary characteristic, assigning a dataset either 

as real-world or synthetic. Real-world is a meta-information 

provided manually, as the characteristics cannot be derived 

from the dataset content directly. 
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Fig. 2. ProSeCo Interface. Top view supports analysis and partitioning of dataset characteristics (T4). The four main views support comparing across measures of nD data (T1, 

middle left closeup), nD to DR-reduced 2D datasets (T2, bottom left closeup), DR-2D data across measures (T3, bottom right closeup), and partitions of datasets (T5, middle 

right closeup). The top T4 view shows how the selected data characteristic Class Counts is used to partition the datasets into two subsets (1, dark red outline). It also shows 

the selection of a bar (bin) that contains all real-world datasets (2, blue outline). (For interpretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 

5. ProSeCo interface 

The ProSeCo interface is shown in Fig. 2 . Each of the five views 

is designed to support one of the primary analysis tasks T1 - 

T5, described in Section 4.1 . The figure shows ProSeCo applied 

to 89 heterogeneous datasets, as described in Usage Scenario 2 

( Section 6.2 ). For the illustration of the different techniques in this 

section, we use the collection with 100 synthetic datasets, as used 

in Usage Scenario 1 ( Section 6.1 ). 

5.1. ProSeCo overview 

At the center, four views are shown in a 2 x 2 grid, each support- 

ing one individual analysis task. There are several common themes 

between these views, two of which use parallel coordinates (T1 

and T2) and two of which use strip plots or box plots (T3 and T5). 

In each view, the class separation measures are always arranged 

side by side. The measure outputs are always shown along verti- 

cal axes, where class separation grows from bottom to top (or vice 

versa if the value domain is inverted). Labels for the value domain 

of each measure can be shown, or suppressed to reduce clutter. 

Datasets are shown as gray lines, with transparency used to miti- 

gate over-plotting occlusion. 

Selected dataset lines are blue, with linked highlighting across 

all views to enable seeing relationships between brushed data and 

comparing observations from different perspectives. The selected 

measures, DR methods, and dataset characteristic are indicated 

with red. 

Showing the data at the granularity of individual items with 

strip plots allows inspection of a single item (with a click) or mul- 

tiple items (with a rectangular drag or a lasso for an arbitrary 

shape). The strip plots handle collections of hundreds of datasets, 

and for larger collections these two views can be switched to box- 

plots to support the analysis of statistical distributions of measure 

outputs in aggregate. The top view is a strip of small multiples, 

with vertical histograms showing data characteristic distributions 

and horizontal histograms of counts for the partitioned bins (T4). 

The control panel below it supports filtering and selection, includ- 

ing a button on the right to open popup panes for the detailed 

analysis of selected datasets (T6). 

Fig. 3. Middle Left Closeup (T1): Parallel coordinates visualization used for com- 

paring measure outputs across datasets, with one axis per measure and a grey line 

for each dataset (blue when selected). The 100 datasets shown are generated to 

have a linear increase of class separation (cf. Fig. 1 ). In the example, DistanceCons 

and EmstClassSep produce consistent results for the entire dataset collection, while 

measures AvgWithin and Ball show little sensitivity to the datasets. (For interpre- 

tation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 

5.2. T1: Compare across measures 

The middle left view supports T1 with parallel coordinates, 

where each axis corresponds to one measure. This technique pro- 

vides a compact representation to align with our goal of sub- 

stantial information density, considering the trade-off between the 

available display space and the complex information to depict. The 

active value domain of every measure is normalized in the visual 

space, which eases the visual comparison. Interactive selection of 

contiguous groups of lines (representing datasets) aids in the com- 

parison of non-adjacent measures. 

The list-based control panel on the far left allows measures to 

be filtered out or reordered, updating all four of the middle views 

including the axis ordering in this view. Fig. 3 shows a closeup of 

this view where 12 measures are made comparable, despite differ- 

ing considerably in their value domains. Measures that are linearly 

correlated give rise to horizontal line segments. In contrast, sloped 

segments and crossed lines highlight changes in rank and indicate 

that two measures yield inconsistent separability estimates for dif- 

ferent datasets. An advantage of parallel coordinates is that they 

immediately show such inconsistencies prominently by crossings. 
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Fig. 4. Bottom Left Closeup (T2): Comparison of pairs of measure outputs applied 

on nD data (left vertical axis) and DR-reduced 2D data (right vertical axis) using 

slope charts. Four examples are shown: the left two charts show highly consistent 

mappings from nD to 2D, but the two on the right are rather inconsistent. 

5.3. T2: Compare nD to DR-2D data across measures 

The lower left view of ProSeCo supports T2, comparing nD to 

DR-2D data to show the effect of DR on the selected measure 

outputs (cf. Fig. 2 ). Fig. 4 shows a closeup of a few of the indi- 

vidual slope charts of the view. 

Again, separation measures are horizontally aligned columns, 

and each DR method is given a row, resulting in a grid of measures 

vs. DR methods. The grid in this view supports three types of com- 

parisons. The first is measure-centered: how do measures compare? , 

supported by comparing columns. The second is DR-centered: how 

do DR methods compare? , supported by considering rows. The third 

is mapping-centered: how does the mapping of a single measure and 

DR from nD to 2D behave? , supported by investigating individual 

cells in the matrix interface. 

Our choice of slope chart was driven by the needs of T2, to 

show ranks of two variables and rank changes between nD and 

2D. We considered scatterplots, which would be preferable for cor- 

relation analysis, but are less suited for handling ranks. With slope 

charts, analysts can compare the numerical outputs of both mea- 

sures as well as rankings of datasets with respect to separability 

expressed by different measures. Moreover, they can be interpreted 

similarly to the view supporting T1, where slopes and crossings 

indicate inconsistencies between measure scores for nD and DR- 

reduced 2D data. Few or small ordering inconsistencies have mi- 

nor visual impact, but a substantial number will be highly visually 

salient, to emphasize where the transformation leads to discrepan- 

cies. With the list-based interface on the lower left of ProSeCo, the 

filtering and reordering of DR methods can be done interactively, 

for both this view and its neighbor to the right. In Fig. 2 , MDS, 

t-SNE, and UMAP were selected, whereas PCA was filtered out. 

5.4. T3: Compare DR-2D data across measures 

The bottom right view addresses task T3, comparing separation 

measures across DR methods directly with only the DR-2D data, in 

contrast to the comparison of nD to DR-2D data focus of T2. Ver- 

tical plots depict the distributions of every measure, aligned side- 

by-side horizontally, with the DR methods nested within each col- 

umn. Labels for measures are placed on top, with labels for the DR 

methods at the bottom. 

There are several choices for the visual representation in this 

view, shown in Fig. 5 . In the fine-grained depiction, each individ- 

ual dataset is shown through strip plots, which are normalized in 

the visual space to ease comparison as in the other views. Selec- 

tions can be shown with blue triangles on the left of each line for 

further emphasis. In the coarse-grained depiction, distributions of 

many datasets are shown in aggregate via box plots, a design vari- 

ant scaling up to thousands of datasets or even more. To further 

enhance visual comparison, selected datasets can also be high- 

lighted within a second blue boxplot side-by-side to the original 

boxplot, which is the most simplified design variant. A benefit of 

strip plots is that they show both distribution and visual density 

of the analyzed datasets, and moreover closely match the look and 

Fig. 5. Bottom Right Closeup (T3): Comparison of measures for DR-reduced 

datasets. Users can adjust the visual representation, leading to the five different 

variants of the interface. In the first three variants every dataset is visualized. In 

the last two variants boxplots are shown, thus being agnostic to the number of 

datasets. In example two and three, selected datasets are emphasized with blue 

triangles. The last variant also shows boxplots for current dataset selections. (For 

interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 

feel of the parallel coordinates and slope plots. All three of these 

representations provide the ability to both highlight and directly 

select individual items, which is not available through aggregate 

representations such as histograms or boxplots. A benefit of box- 

plots is of course scalability. Although alternative to boxplots such 

as violin plots [57] have the benefits of visually indicating multi- 

modal distributions, they have the cost of requiring more horizon- 

tal screen space per plot to be legible. 

5.5. T4: Partition within dataset characteristics 

The top view, shown in detail in Fig. 8 , supports T4, providing 

an overview of the seven dataset characteristics (cf. Section 4.4 ) 

and allowing one of them to be selected as the partitioning to use 

in the view supporting T5. 

There are seven small multiples, each with a vertical histogram 

to show the distribution of the characteristic across the value do- 

main. Light gray bars in the histogram represent the distribution 

of the entire dataset collection, dark gray bars depict the current 

filter status, and blue bars highlight the currently selected subset 

of datasets. The horizontal sliders below the histograms enable fil- 

tering by restricting a characteristic’s value range to select only a 

subset of datasets. 

Each small multiple also contains partitioning controls and dis- 

plays. The respective value distribution of each characteristic can 

be partitioned into a user-specified number of bins. Using the Class 

Count characteristics in Fig. 2 as an example, the interface allows 

analysts to apply binning operations to the dataset collection, spec- 

ified and triggered in the visual interface. The first parameter that 

the user can interactively control is the number of bins of the par- 

tition, which can be adjusted using a numeric up-down control at 

the right of the interface. The second controllable user parameter is 

the choice between a domain-preserving or a frequency-preserving 

binning variant, enabled with a radio button below [58] . These two 

binning options either partition the given value range into equally 

spaced bins (domain) or partitions the underlying population of 

datasets into equally sized bins (frequency); both variants can be 

highly beneficial [59] . The result of the binning is displayed at the 

top right of the interface with a labeled horizontal bar chart. It is 

horizontal in order to (a) avoid confusion with the histogram and 

(b) to make labels more readable. 

By default, ProSeCo uses two bins with a frequency-preserving 

strategy. Analysts can use the binning support to adjust the parti- 

tion of the dataset collection interactively. 

5.6. T5: Compare dataset partitions across measures 

The middle right view supports task T5, comparing a single se- 

lected partition for one of the dataset characteristics across multi- 
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Fig. 6. Middle Right Closeup (T5): Comparison of measures across the different bins 

of a partition of the dataset collection. In the example, the real world (”1“) ver- 

sus synthetic (”0“) dataset characteristic was chosen to partition datasets into two 

bins for each measure. We identify an interesting pattern across most measures: in 

the dataset collection, real-world seem to be less separable than synthetic datasets, 

highlighted with red arrows (manual annotation). (For interpretation of the refer- 

ences to color in this figure legend, the reader is referred to the web version of this 

article.) 

ple measures (cf. Fig. 2 ). This view supports identifying potential 

dependencies between these two targets. It relies on the choices 

made for T4 and is linked to the settings made in the small multi- 

ples in the top view. 

As this task has very similar underlying requirements to T3, we 

re-use the same visualization design in this view as in the corre- 

sponding view below it. Fig. 6 shows a closeup example comparing 

real-world to synthetic datasets. 

5.7. T6: Inspect within individual dataset 

Task T6 is supported through a popup pane that appears only 

on demand. A button control on the upper right (cf. Fig. 2 ) en- 

ables users to open multiple popups at once, one for every selected 

dataset, also allowing the detailed visual comparison of multiple 

datasets on demand. This pane contains multiple views: a scat- 

terplot matrix showing all pairwise combinations of dimensions 

to show full details about the nD data, individual scatterplots of 

the dimensionally reduced DR-2D instances for all of the active DR 

methods, and a parallel coordinates view showing all instances. 

In all of the views, the instances are color-coded by their class. 

Fig. 7 shows one example dataset with 22 dimensions and two 

classes using this interface. Figs. 35–122 in the supplemental ma- 

terials document show this view for all datasets in Usage Scenario 

2 ( Section 6.2 ). 

5.8. View coordination 

ProSeCo uses extensive linkage between the views, with linked 

highlighting to show selections and linked filtering to arrive at 

more meaningful subsets of dataset collections. Datasets are the 

analysis objects that are shown for all the three aspects: separa- 

tion measures, characteristics of dataset collections, and DR meth- 

ods and DR-2D results; they can be selected in any of those views 

and filtered in all of them. There is a consistent color coding across 

all five primary views, with all datasets in light gray, the current 

filter status in dark gray, selected datasets in blue, and selected 

measures, dataset characteristics, and DR methods in red. 

Highlighting naturally allows the comparison of selected and 

unselected subsets, a mechanism that is particularly relevant in 

tools with linked views such as ProSeCo where analysis objects 

are shown from different perspectives. Using data selection, an- 

alysts can gain insights into differences and commonalities be- 

tween selected and unselected datasets, especially in linked views. 

The linked highlighting uses a global selection model that is con- 

nected with each individual view via appropriate event handling. 

Fig. 7. Popup (T6): Interface for the detailed analysis of datasets including, scatter- 

plot matrix, parallel coordinates, scatterplots for DR results and colored class labels. 

For the data set in the example DR results are quite different. 

The global selection model is linked to all views in the system 

wherever datasets are (a) shown and (b) interactively selectable. 

Individual datasets may be outlying or less relevant for the 

analysis. Filtering out these datasets helps to make space in the in- 

terface for the remaining dataset subset of interest, by individual- 

izing the dataset collection to subsets that are appropriate for spe- 

cific analysis tasks. As with selection, there is a global filter model 

that combines filter operations of the individual views. 

In all four center views for the tasks T1, T2, T3, and T5, selection 

of datasets is enabled via rectangle selection or simple click selec- 

tion. In the top view supporting T4, users can also select subsets 

of the dataset collection with a click on the vertical or horizon- 

tal histograms in the 7 small multiples. For the vertical histograms 

multi-selection is also enabled via rectangle selection. 

In the top view showing dataset characteristics (T4), filtering is 

provided with a range slider at the bottom of every view, and filter 

events automatically update the filter status in every view. 

There is an additional view coordination region, just below the 

top view (T4). It shows the counts of all datasets, after filtering, 

and selected through a bar chart (with color-coded bars, to serve 

double duty as a legend). It has buttons to move the current set 

of selections into the filter set, show all of the filtered sets again 

and select them, clear filters, and show the selected datasets with 

popup inspection views (T6). 

5.9. Implementation, performance, and scalability 

ProSeCo is implemented in Java, and is built on top of many 

external libraries that implement the separation measures and 

DR methods. To achieve interactive response times for large 

dataset collections and multiple DR methods, we do extensive pre- 

computation of DR results for all datasets under the assumption 

that these are known a priori and remain static during analysis. 

For 100 datsets and four DRs, pre-computation took six hours on a 

standard notebook. The pre-computation of measure results for the 

nD and the DR-reduced 2D dataset collection only takes seconds to 

minutes, depending on the separation measure. Accordingly, in sit- 

uations where the set of measures is adapted during the analysis 
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session, such as when measure parameters are modified, the ProS- 

eCo architecture takes only minutes to calculate new measure out- 

puts for the nD dataset collection and the 2D dataset collections. In 

situations where dataset collections or the set of DRs are modified, 

ProSeCo is not real-time capable. It remains an open challenge how 

approaches like ProSeCo can be applied in scenarios where dataset 

collection are synthesized as an upstream process. 

The two usage scenarios feature collections of around 100 

datasets, but we have also tested ProSeCo at larger scales. The 

computational performance assessment with the largest tested 

collection was based on an experiment conducted by Sedlmair 

et al. [40] and included 828 datasets. ProSeCo maintained reason- 

able information density, and interactive frame rates with aggre- 

gate boxplots rather than fine-grained strip plots. 

We thus consider that ProSeCo has achieved the scalability tar- 

get of 10 0 0 datasets. From a design point of view, scaling up from 

100 to 10 0 0 datasets is quite viable because each new dataset 

only adds another line to existing view, and we have aggregate vi- 

sual encodings that further support this large scale. In contrast, it 

would be difficult to scale to substantially more than the current 

20 measures, 7 dataset characteristics, and 4 DR methods. A core 

design decision is to have a single-screen overview that supports 

tasks T1 through T5, which imposes a very strong constraint on 

what numbers are viable. Scaling up beyond 20 measures would 

lead to some challenges, since it would require adding more axes 

to some of the views. Our choices for the design of the bottom two 

views lead to very strong constraints on the number of DR meth- 

ods that could be used at once, since adding more has a combi- 

natorial effect on the number of axes needed within them. How- 

ever, the interface supports selecting only a subset of the measures 

and the DR methods, so it would be straightforward to add several 

more alternatives. A few more dataset characteristics could sim- 

ply be added with the current design, perhaps up to one dozen, 

but going beyond that would require adding some kind of selec- 

tion mechanism for those as well. 

6. Usage scenarios 

We present two usage scenarios, showing that ProSeCo fosters 

revealing a series of characteristics of measures for class separa- 

tion, both expected and unexpected. The first scenario describes a 

highly synthetic dataset, which offers us full control to illustrate 

the ideas and potentials of ProSeCo. The second scenario focuses 

on the analysis of metrics using real-world data. Please note that 

both scenarios are realistic in the sense that they could support an 

analyst in understanding metrics. The equivalent in empirical sci- 

ence would be the duality of controlled and field experiments [60] . 

Similar approaches of studying synthetic vs. real-world datasets 

have been used in previous data studies as well [6,61] . Below, we 

summarize the major aspects of the analysis. The supplemental 

materials contain considerably more details, context information, 

and enlarged figures for both workflows. The two datasets [1] used 

in this analysis are posted at https://osf.io/epcf9/ . 

6.1. Controlled datasets 

In the first scenario we fully control the dataset collection, so 

that the variations in the measured outputs can definitely be at- 

tributed to the measures, rather than dataset characteristics. Some 

parts of this scenario draw on sensitivity analysis, where an inde- 

pendent variable is changed while the output of a dependent vari- 

able is observed. 

6.1.1. Controlled dataset collection 

We create a collection of synthetic datasets, the controlled 

dataset collection , where we keep the values of all synthesis param- 

eter constant, except the one that we vary in a controlled way. We 

create 100 synthetic datasets, all of which have 5 dimensions, 10 0 0 

instances, two perfectly balanced classes (500 instances per class), 

and the same distribution of instances of both classes. The variable 

parameter was the distance between centroids (centers of gravity) 

of the two classes (cf. Fig. 1 ). We went for constant change of dis- 

tances between any two datasets, resulting in a set of datasets with 

a linear increase of class distances from zero to 10 times the size 

of diameter of the classes (which was identical for both classes). A 

more detailed overview of the controlled dataset collection is pro- 

vided in the supplemental materials. 

6.1.2. Select measures 

We first reduce the number of separation measures from 20 

down to 12, by using ProSeCo to conduct a parameter analysis for 

the nine different instances of the Dunn measure (cf. Section 4.2 ). 

We find out that between-class comparison seems to have a 

stronger impact on measure results as the within-class comparison 

criterion. The between-class parameter value which preserves the 

linearity of the datasets best is centroids . The supplemental ma- 

terials contain the details of this parameter analysis. Informed by 

these findings, we decide to choose Dunn[ avgCentr , centroids ]. 

6.1.3. Invert measure axes 

We continue the analysis by comparing measures for nD data 

(T1). We investigate valences, inverting individual measures as 

needed to ensure that all measure valences have the same orien- 

tation and are thus visually comparable. To make the identification 

of valence easy, we select a subset of datasets that all have high 

separability (measured with Silhouette), as shown in Fig. 3 . Eight 

measures show positive valence, with value distribution clearly 

shifted vertically to the top. However, four measures have nega- 

tive valence, assessing high separability with low values (Average- 

Within, Ball, Davies Bouldin, and Normalized Hubert), so we in- 

vert them. We further observe that most measures preserve the 

order of class separation, except Normalized Hubert where multi- 

ple changes in rank occur shown as crossings in the parallel coor- 

dinates. 

6.1.4. Order measures 

We then determine groups of measures with similar value do- 

mains and re-order them accordingly, with the result shown in 

Fig. 9 . Our analysis of the value domains of the 12 separation mea- 

sures reveals considerable differences. The Distance Consistency, 

Point Biserial, and Silhouette measures are bound to [0.1], whereas 

some measures are open in one direction, some with very high 

values such as Calinski-Harabasz or Normalized Hubert. We check 

whether the linear increase of class distances in the controlled 

dataset, is reflected by the individual measures. We move the four 

measures that reflect the linearity together to the far right side, 

separating them from the group of five with non-linear behavior 

(from Davies-Bouldin to Silhouette). In between these groups is 

a measure that stands out, Normalized Hubert. It is the only one 

which violates the order of separation measure estimates: the least 

separated dataset receives the highest score, whereas the most 

separated dataset receives the second highest separation score (see 

red highlight in Fig. 9 ). 

6.1.5. Compare nD to DR-2D across measures 

The next step in the workflow is the comparison of measure 

results for nD data vs. DR-reduced 2D data (T2). Overall, the 12 

measures and 4 DR methods yield 48 mappings from nD to 2D. In 

Fig. 10 , we show eight out of 12 measures to emphasize on most 

apparent findings. In this figure, these findings are manually an- 

notated with rectangles of different colors. From left to right, a 

first finding (left yellow rectangle) describes the 8 mappings of 
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Fig. 8. Top Closeup (T4: Overview of dataset characteristics as provided with the dynamic query interface of ProSeCo. Overall, seven characteristics build the basis for 

analysis, filtering, partition, and selection operations. Red arrows mark the outlier filtering operations applied in the usage scenario on the heterogeneous dataset collection 

using the range sliders. The last characteristics (Real World) was used to partition the dataset collection, indicated by a dark red outline. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Interactive re-ordering of measures according to the value domains. The se- 

lection of the 20 least separable datasets help to identify characteristics of the value 

domains and to validate the measure ordering. 

Fig. 10. Comparison of pairs of measure outputs applied on nD data and DR- 

reduced 2D data (T2). Eight out of 12 measures (aligned horizontally) and 4 DR 

methods (vertically) yield a grid with 32 slope charts for the detailed nD to 2D 

comparison. Many charts show interesting patterns, most expressive findings are 

hand-labeled with rectangles of different colors (see text for explanations). 

AvgWithin which look like a fan: while the measures for nD are 

clumped together, the 2D results distribute quite well. In the sec- 

ond pattern (center green rectangle) two measures (Ptbiserial, and 

Silhouette) have consistent mappings from nD to 2D for all four 

DR methods, with many parallel lines and few rank changes in 

the slope charts. On the right, we identify more mappings of high 

consistency, also outlined in green. Normalized Hubert (red verti- 

cal rectangle) is among the measures with value distributions for 

2D that are compressed by outliers. Particularly weak consistency 

can be observed for AvgBetween, Dunn, Hypothesis Margin, and 

Calinski-Hrabasz in combination with tSNE and UMAP (red hori- 

zontal rectangles). Especially tSNE seems to produce many incon- 

sistencies, which may originate from its inability to preserve the 

global structure in the data. An anomaly can be identified for the 

PCA-based output of Calinski-Hrabasz (purple rectangle). We found 

out that in the PCA implementation (WEKA), the 2D PCA only re- 

turns one principal component, when the remaining variance is 

approaching zero. 

6.1.6. Comparison of measures for DR-reduced datasets 

Informed by the analysis of nD vs. 2D mapping consistency, we 

select the seven best-performing measures and continue with T3. 

Fig. 11. Strip plots in combination with boxplots for the visual comparison of 

7 measures and 4 DRs (PCA, MDS, TSNE, and UMAP), applied on the controlled 

dataset collection. The left four measures have similar behavior, but the three on 

the right show very individual measure distributions. 

Fig. 11 shows the distribution of separability scores of the differ- 

ent DR-reduced datasets. We select the 24 most separable datasets, 

exactly those which stood out due to the PCA anomaly in the last 

analysis step. Interestingly, the left three measures form clusters 

with very similar measure results, whereas the results for the four 

on the right are all different in their own way. For tSNE, Dunn 

yields low separability for all datasets, whereas the other DRs lead 

to scores that are up to ten times higher. The problem here cannot 

be the 2D projections obtained by tSNE, because other measures 

like Distance Consistency yield high values for tSNE projected data. 

The index seems to be unreliable in this case. Hypothesis Margin 

has a similar problem when applied with MDS, whereas when ap- 

plied with UMAP particularly high class separability is measured. 

Calinski-Hrabasz assigns barely separable classes for datasets pro- 

jected with tSNE, yet particularly high values to PCA, especially for 

the 24 datasets where we identified the PCA anomaly earlier. Over- 

all, we observe strongly varying behavior between class separation 

measures for different dimensionality-reduced datasets, showing 

how important the well-informed selection of a separation mea- 

sure is for a given task. 

6.2. Heterogeneous datasets 

In the second scenario we maximize the heterogeneity of 

datasets in the collection, to assess effects that can be observed 

when measures and DRs are applied on a great variety of dataset 

characteristics. 

6.2.1. Heterogeneous dataset collection 

For the analysis of separation measures with heterogeneous 

datasets, we build upon the comprehensive dataset collection 

by Sedlmair et al. [6] . Sources for these datasets are UCI [62] , 

umass [63] , xmdv [64] , VisuMap [65] , sap [66] , dataset synthe- 

ses [6] , and datasets from colleagues [27,28,67] . 

We also add seven datasets from our controlled dataset collec- 

tion [12] to increase the overall variety of datasets, and provide a 

link back to our analyses under controlled conditions. We would 

like to see if these well-understood datasets stand out in our anal- 

yses on the heterogeneous dataset collection. 
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Fig. 12. Overview of the 12 measures for the heterogeneous dataset collection. 

Large parts of the value domains are only allocated by single outlier datasets, made 

visible in T1 view, highlighted with hand-labeled red rectangles. While this pro- 

vides interesting indications about individual measure behaviors, we remove outlier 

datasets to shed light on the remaining datasets. (For interpretation of the refer- 

ences to color in this figure legend, the reader is referred to the web version of this 

article.) 

Fig. 13. Ordering of measures with an emphasis on their value distributions. Dis- 

tributions skewed towards the top are assigned to the left, distributions skewed to- 

wards the bottom are assigned to the right. In the center are measures with more 

balanced distributions. 

6.2.2. Filter datasets 

First, we use ProSeCo to gain an overview of the distributions 

of measure outputs for all datasets (T1). Fig. 12 shows that most 

measures yield a highly skewed distribution of scores due to out- 

liers, leading to large portions of unused space in the value domain 

(highlighted by red rectangles, manually annotated). Datasets that 

produce outliers in the separability scores might be special cases 

(worth a separate investigation), so we remove them to shed light 

on the remaining datasets. 

We undertake an iterative filtering strategy that always removes 

the dataset which causes the most violations in several measures 

at the same time, reducing the number of datasets from 89 to 

62 (details in supplemental materials). The result can be seen in 

Fig. 13 . 

6.2.3. Order measures 

We modify the order of measures to enhance utility of the par- 

allel coordinate plots, where distributions of measure outputs are 

aligned side-by-side. The two driving principles for the interac- 

tive ordering of the measure axis are the local criterion of aligning 

measures with similar output distributions next to each other, and 

the global criterion of aligning (groups of) measures so that their 

distributions show a continuum. 

Fig. 13 shows the results of the interactive ordering process. The 

four measures on the far left have a skewed distribution where 

the majority of values is high. The next six measures have distri- 

butions with the majority of values at the center of the axis, or at 

least distributed equally across the axis. Finally, the right two mea- 

sures have value distributions with many low and few high values. 

Some individual measure behaviors stand out: Hypothesis Margin 

maps almost all datasets to the same value and is thus not a very 

promising measure candidate. Similar observations can be made 

for Ball, Average Within, and Average Between; these concentra- 

tion points are also the extreme values of the measures. Finally, 

Silhouette, Point Biserial and Dunn yield broad distributions which 

shows that they are sensitive to the different data characteristics. 

6.2.4. Filter characteristics ranges 

The interfaces for the analysis of data characteristics reveal 

additional information that can be used for dataset filtering. As 

shown with the red arrow annotations in the Fig. 8 T4 view, we 

use the range sliders to filter out datasets with extreme values. By 

filtering out 5 more datasets with extreme dataset characteristics, 

we achieve much more control of the dataset collection. The re- 

sult of the filtering process is shown in the supplemental materials 

document. 

6.2.5. Comparepartitioned characteristic across measures 

As also shown in Fig. 8 , we partition (T4) the dataset collection 

into two bins: real-world datasets (bottom) and synthetic datasets 

(top). The overall goal of partitioning dataset collections is the 

identification of interesting dependencies between measures and 

dataset characteristics. 

Fig. 6 shows the distribution of measure values according to the 

partition (T5). 

We can observe that most of the real-world datasets seem to 

be less separable than the synthetic datasets used, by noticing that 

the left bin has a lower distribution than the right one for for most 

measures. The effect is most visible with the measures at the cen- 

ter that have less skewed value distributions. 

6.2.6. Compare nD to DR-2D across measures 

The analysis of the consistency between measure results in nD 

and 2D (T2) can be seen in in Fig. 14 . Overall, we analyzed all 

48 (12 measures x 4 DR) slope charts and manually annotated 

the consistency of the mappings with the color-coded rectangles: 

green for good consistency, yellow for moderate, and red for weak. 

To assess consistency, we took outliers in both nD and 2D into ac- 

count. In addition, we analyzed the number of parallel and hor- 

izontal lines, as well as the number of rank changes (line cross- 

ings). We noticed patterns in both vertical (measure-centred) and 

horizontal (DR-centered) orientation. Two findings stand out. First, 

a block of four measures at the center performs particularly well 

(Emst Class Separation, Silhouette, Point Biserial, and Dunn), and a 

fifth also shows acceptable consistency (Calinski-Hrabasz). The re- 

maining measures on the left and right have rather weak perfor- 

mance. Second, t-SNE seems to be the least applicable DR method 

for this class separation task: none of the 12 measures yields good 

results when t-SNE is used (third row of charts). 

6.2.7. Select measures 

Reflecting on the previous steps in this scenario reveals that 

many measures struggled with this heterogeneous dataset col- 

lection. The dataset filtering process reveals many outlier-prone 

measures (Average Between, Average Within, Ball, Davies-Bouldin, 

Distance Consistency, and Hypothesis Margin). The measure order- 

ing step revealed many measures with value domains considerably 

more skewed than the others (Ball, Average Within, Distance 

Consistency, Hypothesis Margin, and Average Between). With 

Normalized Hubert, we had problems with assessing the orien- 

tation, as the measure shows a rather unpredictable behavior for 

many datasets. Focusing on positive examples, the assessment of 

measures in this usage scenario reveals that Point Biserial was a 

particularly usable and useful measure, without major drawbacks 

and shortcomings. Alternative measures that also prove useful are 

Emst Class Separation, Silhouette, and Dunn. 
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Fig. 14. Detailed analysis of the consistency of measures between nD and DR-2D datasets, manually annotated with rectangles colored green (good consistency), yellow 

(moderate), and red (weak). The block of measures at the center perform well, the t-SNE DR method (third row) performs poorly for class separation. (For interpretation of 

the references to color in this figure legend, the reader is referred to the web version of this article.) 

7. Discussion and research opportunities 

The usage scenarios showcase the power and flexibility of ProS- 

eCo. In both, we observe surprising and unexpected results. For 

example, although the fully controlled dataset collection has a 

rather simple structure (two clusters of points with different dis- 

tances), many separation measures do not yield consistent results 

and were distorted when projecting the data from nD to 2D. Fur- 

thermore, the value ranges of different separation measures are 

utilized very differently across the separation measures, making 

their direct comparison difficult. These observations are fully con- 

firmed in the second usage scenario on the heterogeneous dataset 

collection containing numerous real-world datasets. Furthermore, 

we observe in this scenario that individual dataset characteris- 

tics can lead to unexpected, inconsistent, and problematic mea- 

sure outputs in very different ways. Before ProSeCo, we could 

only speculate about the influences that datasets and DR methods 

have on separation measure outputs. We now provide a tool to 

make these influences visible and measurable through interactive 

investigation. 

ProSeCo can support analysis by experts in multiple roles. One 

group of users are analysts who study high-dimensional data and 

need to make informed decisions about which selection measures 

they use for a given collection of datasets. Typically an analyst may 

favor measures which yield consistent results and a differentiated 

(balanced) distribution of scores. Another group of users are de- 

velopers of new separation measures. With ProSeCo they can com- 

pare their measure to other measures and see how it behaves in 

cases where other measures show biases in their scores. A third 

group of users may be designers of new benchmark datasets who 

want to find datasets that challenge existing class separation mea- 

sures (and thereby for example also clustering algorithms). Such a 

benchmark dataset may, for example, be designed in a way that 

existing measures yield inconsistent results on it. With ProSeCo 

this can be immediately be verified and made visible. Developers 

of DR methods may use ProSeCo to assess how strong the distor- 

tions are that are introduced by their DR method. ProSeCo enables 

them to visualize the distortions in terms of inconsistent separa- 

tion measure estimates for hundreds of datasets at the same time. 

Thus, developers can immediately evaluate if a certain feature im- 

proves results on a sound and representative data basis, to sig- 

nificantly accelerate the evaluation and iterative improvement of 

DR methods. To provide such functionality we plan to integrate 

an importer for custom DR results into ProSeCo to enable in-depth 

analysis and comparison with other DR methods. Finally, ProSeCo 

can be a means for students who aim at learning and understand- 

ing these measures. A useful extension of ProSeCo would be to 

add automated analytics features to generate highlights for po- 

tentially interesting observations, outliers, and characteristic pat- 

terns, in the spirit of the manually added highlights in Fig. 14 . This 

future work could also include the integration of previously pro- 

posed methods for automatically ordering parallel coordinate axes 

[68] 

In this paper, we have shown results for two very different us- 

age scenarios, one with a simple and strongly controlled dataset 

collection and one with a heterogeneous collection containing 

mostly real-world datasets. One straight-forward step for further 

research is to analyze other so far unseen collections of high- 

dimensional datasets to see which observations made in the two 

presented usage scenarios might be generalized. There are many 

additional avenues of future work, such as analyzing the parame- 

ters of DR methods or extending the analysis to more DR meth- 

ods. Another direction is the analysis of inconsistencies in measure 

outputs between different datasets. From such an in-depth study, 

guidelines and recommendations could be derived for which types 

of datasets (i.e. characteristics) which separation measure are best 

suited and which separation measures yield the most robust and 

consistent separability scores. 

ProSeCo provides a powerful interface. While the consistent 

color coding and the full linking of all views supports users in find- 

ing patterns and comparing data, we envision concepts for guiding 

users towards interesting measures, datasets, and DRs. Such con- 

cepts could be defined via heuristics or learned from user behav- 

ior iteratively over time. Such mechanisms would allow to model 

user preferences and support the analysis in cases where users are 

overwhelmed by the large number of datasets, DR methods or sep- 

aration measures. 
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8. Conclusions 

We presented ProSeCo, an interactive analysis tool to support 

the visual assessment of class separation measures. ProSeCo en- 

ables the analysis of three aspects: class separation measures, di- 

mensionality reduction (DR) methods, and dataset characteristics. 

It supports the comparison of nD data to its 2D projections for up 

to 20 class separation measures and 4 DR methods, the investi- 

gation of 7 dataset characteristics, and the concurrent and com- 

parative analysis of collections of up to 10 0 0 datasets. We formu- 

lated six different tasks that can be performed with ProSeCo. In 

two usage scenarios, we demonstrated how ProSeCo enabled us to 

identify a series of measure characteristics, as well as commonali- 

ties and differences across measures. We analyzed dataset charac- 

teristics and drew connections between these characteristics and 

measure behaviors. Finally, we were able to assess effects of DR on 

different class separation measures. 

In summary, ProSeCo helps expert analysts to better understand 

the interactions between separation measures, datasets, and DR 

methods, to gain a deeper understanding of separation measures 

and their selection for a given task at hand. The six tasks realized 

by ProSeCo are beneficial for several user groups in the ML and VIS 

communities: users selecting separability measures, developers of 

measures and DR methods, and even students who would like to 

further understand these topics. 
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