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Abstract— Skill-based programming has proven to be ad-
vantageous for assembly tasks, but still requires expert knowl-
edge, especially for force-controlled applications. However, it is
error-prone due to the multitude of parameters, e.g. different
coordinate frames and either position-, velocity- or force-
controlled motions on the axes of a frame. We propose a
mixed reality based solution, which systematically visualizes
the geometric constraints of advanced high-level skills directly
in the real-world robotic environment and provides a user
interface to create applications efficiently and safely in mixed
reality. Therefore, state-machine information is also visualized,
and a holographic digital twin allows the user to ad-hoc validate
the program via force-enabled simulation. The approach is
evaluated on a top hat rail mounting task, proving the capability
of the system to handle advanced assembly programming tasks
efficiently and tangibly.

I. INTRODUCTION

While the number of robots used in industry is growing
each year by about 10-20%, the portion of robots performing
assembly tasks is staying relatively low at around 12%,
and the amount of automation in assembly is still at a
low level [1]. One main reason is that assembly tasks are
often difficult to automate since they frequently require some
sensitiveness, e.g. to overcome component tolerances or to
perform force-sensitive tasks like clipping or placing. Also,
the diversity of variants hinders companies from automating
assembly lines. Another reason is that along with Industry
4.0 and specialization of industries as well as products,
efficient programming becomes crucial, especially for small
and medium enterprises (SMEs). Classical robot waypoint
programming cannot address these needs.

One approach to overcome these issues is skill-based
programming, providing a library of well-defined function
blocks, so-called skills, which need to be parameterized.
This still requires expert knowledge, and handling different
coordinate frames, axes, and waypoints remains complex and
error-prone, even for experienced programmers, since the
programmer needs to handle motions in up to 6 degrees of
freedom (DOF).

Mixed Reality (MR) can address this issues by enabling
the user to act within a three-dimensional environment and
to interact with the environment itself (Fig. 1). It keeps
the capabilities of Virtual Reality (VR), which is to have
a 3D visualization of the robot, without the need to model
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Fig. 1: Skill parameter visualization in mixed reality for a
top hat rail mounting task. The interface allows on-the-fly
execution on the digital twin, before it can be executed on
the real robot.

the whole scene. This allows to stay closer to the real-
world application, drastically lowering or even avoiding the
sim2real gap.

This work proposes a way how MR can systematically
and beneficially be used for skill-based programming: by
visualizing the parameters of the skills, providing an MR-
user interface for programming and an execution panel, and
enabling ad-hoc validation using a digital twin with contact
force simulation.

This paper is structured as follows: Sec. II summarizes
the state of the art of skill-based programming and robot
programming in augmented or mixed reality. Sec. III gives an
overview of the skill model and selected complex assembly
skills. Sec. IV then evaluates how the skill parameters can
be visualized and set using MR. Sec. V details the system
architecture and implementation, while Sec. VI validates
the system on an example application. Sec. VII gives a
conclusion and outlook.

II. STATE OF THE ART

A. Skill-based Programming

The VDI guidelines #2860 published in 1990 provided
the first guidelines for a unique and comprehensible descrip-
tion of assembly processes [2]. In 1992, Hasegawa et al.
published the first formal descriptions of skill-based robot



programs, which allowed them to address typical assembly
tasks with a sequence of hybrid position-, velocity-, or force-
controlled manipulation skills [3].

While in the following, one branch of research focused
on the automatic creation of programs from CAD data,
another branch tried to make the manual composing of robot
programs more efficient by supporting the programmer. One
possibility is the usage of domain-specific languages (DSL),
which allow to describe the task in an appropriate way (e.g.
[4], [5], [6] or [7]). Another approach is to give graphical
support, like e.g. [8] or [9] with icon resp. block-based
programming approaches.

Since the creation of skill-based robot programs still
requires expert knowledge of the DSL, and parameters like
compliances or other controller gains are hard to tune, differ-
ent approaches to make skill-based programming more user-
friendly have been exploited. For example, Lämmle et al.
applied deep reinforcement learning (DRL) to automatically
create a robot program from learning in a physical simulation
environment [10]. Bargmann et al. presented a programming-
by-demonstration approach based on the iTaSC formalism,
using external measurements only and addressing the diffi-
culties of combined position and force control [11].

B. Mixed Reality Assisted Programming

While augmented reality has been used for more than
a decade in the context of robot programming, e.g. by
augmenting camera images in a 2D desktop interface [12], a
tracked pen for trajectory definition with overlay projection
[13] or a head-mounted device [14], with a haptic input
device [15] or with gesture detection [16], the use of MR has
recently increased with the release of the Microsoft HoloLens
1 and 2 as key enabler.

Quintero et al. implemented an MR user interface that
allowed the user to create trajectories in free space or on
contact surfaces, to visualize the trajectories and to online
reprogram during simulation and execution [17]. They found
less teaching time and better performance contrasting a
higher mental workload compared to a kinesthetic teaching.

Ostanin et al. created a hololens user interface for trajec-
tory creation in simulation or on the real robot [18]. They
used a simple set of buttons to choose from five simple
robot actions and a three-dimensional interactive marker to
specify and manipulate the trajectory points. An obstacle-
avoiding path planning algorithm was used to enhance the
user experience.

Gadre et al. implemented a hololens user interface for
robot task creation. The user could choose from a list to
add robot actions like waypoints, to create trajectories, or
to visualize and execute motions [19]. Their study on two
pick-and-place tasks found that the MR interface required
less work, was easier to use, and more natural compared to
a 2D interface.

So, while MR has been used to program industrial robots,
the existing works focus on trajectory teaching and pick-
and-place tasks. There exists no combination of skill-based
programming and MR yet.
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Fig. 2: Composition, parameters and monitors of three com-
plex pitasc skills.

III. SKILL-BASED PROGRAMMING WITH PITASC

As a comprehensive underlying skill model and library
for robot programming, we use the pitasc skill model [20].
From the proposed skill library, we choose three exemplary
complex skills for our visualization, which have in practice
been proven to be sufficient for many assembly tasks [21].

A. Pitasc Skill Model

Pitasc is driven by three elementary types of processes:
position-, velocity-, or force-controlled motions (each linear
and angular). In the pitasc skill library, the skill skill lin
implements a (Cartesian) position-controlled motion, the
skill skill cartesian velocity a velocity-controlled motion,
and the skill skill apply force a force-controlled one. Their
parameters frame and coordinates determine which axis of
which coordinate frame is controlled.

There are two container skills to compose these skills:
the skill skill sequence executes all its subskills sequen-
tially, while skill concurrency executes them concurrently.
By putting, e.g., a skill cartesian velocity for the controlled
frame’s x- or y-coordinate and a skill apply force for the z-
axis into a skill concurrency, one can compose high-level
skills – in this example a sliding motion.

To define transitions between skills, the pitasc model
introduces monitors attached to the skills, observing, for
example, force thresholds or position limits.

B. Selected Complex Skills

The compositions of the selected skills are shown in Fig. 2.
1) skill guarded approach: This skill moves towards a

surface until a force contact is established. It consists of a
skill concurrency with the subskills skill cartesian velocity,
which moves the tool frame along the specified axes of the
control frame with a given velocity, and a skill hold pose,



(a) skill guarded approach (b) skill guarded slide (c) skill pivot

Fig. 3: Visualization of skill parameters: straight arrows (a, b) indicate linear velocity-controlled axes, the jagged arrows (b,
c) indicate force-controlled axes and the rotation symbol (c) visualizes rotation around this axis. The respective values are
displayed next to the respective axis. The monitor symbols visualize the control flow transitions at the corresponding axis
by showing the observed parameter and the transition condition.

which holds the remaining DOFs in place. In addition, the
member max forces allows specifying a maximum force in
the direction of motion; if this maximum force is exceeded,
the next skill at the superior level is executed.

2) skill guarded slide: This skill slides along a surface
and pushes perpendicular to the surface with a specific
force until a force threshold in the direction of motion
is exceeded. It consists of a skill concurrency with three
subskills: a skill cartesian velocity, which moves the tool
frame in the specified move axes of the control frame with a
given velocity, a skill apply force to apply a force along the
specified force axes (typically the tool’s z-axis, pointing in
the direction of the surface), and a skill hold pose to hold all
remaining DOFs in place. As for the skill guarded approach,
the member max forces allows specifying a maximum force
in the direction of motion.

3) skill pivot: This skill inserts a part while keeping a
contact. It consists of a skill concurrency with the subskills
skill apply force, which pushes the tool frame along the
specified force axes of the control frame, a skill lin, which
aligns the specified tool frame and the control frame along
the rotation axes until the difference is below the speci-
fied rotation error, and a skill hold pose, which holds all
remaining DOFs in place. This skill is particularly useful
when performing snapping motions, which turn a part while
pushing or pulling in a perpendicular direction.

IV. VISUALIZATION AND INTERACTION IN MIXED
REALITY

To enable the user to create a robot program using the
skills discussed in Sec. III-B, we visualize the parameters in
the augmented world (Sec. IV-A) and provide a user interface
in mixed reality to adapt the parameters to the user’s needs
(Sec. IV-B). During this teaching process, the user is always

able to simulate the program (Sec. IV-C) or execute it on the
real robot.

A. Parameter Visualization

The selected complex skills (see Sec. III-B) have the
following principal types of parameters:

• frames (tool frame, control frame)
• axes (move axes, force axes)
• numerical values (velocities, target forces)
• control flow transitions (max forces, rotation error)

For frames, we use the popular concept of three RGB-
colored axes for visualization, together with a text field that
shows the corresponding frame’s name. For axes, showing
all of them with arrows would confuse the user in case of
complex skills like skill pivot, which pushes along two axes
and moves (rotates) along another. Therefore, we distinguish
between the type of motion. For linear motion axes, we
use a simple arrow along with a text field showing the
specified velocity. This arrow starts at the selected tool frame
and points in the direction of the chosen control frame (see
Fig. 3a, b); its color is chosen accordingly to its type (xyz
– RGB). For rotational axes, we use a circular arrow around
the rotation axes (see Fig. 3c).

For force-controlled axes, we use a different type of arrow
inspired by the symbol of a mechanical spring (see Fig. 3b,
c). To ensure that the text fields are always visible to the
user, they are oriented toward the user via a small script
that calculates the position orthogonal to the arrow (from
the user’s perspective).

For numerical values, we use a text field for simplicity.
Sliders need a definition for the range, and setting them to
an exact value in MR turned out to be difficult for the user,
while the MR keyboard showed better usability. All values



(a) Frame teaching (b) Execution panel

Fig. 4: (a) Frame teaching by dragging the robot hologram’s
end-effector to the desired pose; (b) execution panel to
validate the current state of the program on the digital
twin (simulated robot) or on the real robot. ‘Save’ allows
exporting the application to a file.

are visualized as text boxes directly at the corresponding
axes.

To visualize the transitions between skills, a monitor
symbol is shown at the end of the axis it observes. It shows
the respective type of parameter, which can be a force (e.g.
Fig. 3a: Fz) or a distance between axes (Fig. 3c: ∆a, where
the letter a means a rotation around the x-axis), and shows
the transition condition below. Once the condition is met, the
next skill is executed.

B. User Interaction

For the menu panels, there are in general two possibilities
in MR: a head-up-display (HUD), which moves along with
the user’s head, or spatially anchored panels, which the user
can move with hand gestures. Since on HUDs, the displayed
information always covers a part of the field of view (FOV),
and the FOV of current state-of-the-art MR-glasses is still
smaller than a human’s FOV, we choose spatially anchored
panels as menu type. Another benefit is that when working
with industrial robots, one can place the panels, e.g., on the
walls of the robot cell, which provides an excellent overview
and keeps the workspace free.

The presented application has different types of panels:
• a setup panel,
• a programming panel to actually create a robot program,
• a skill parameter panel to change skill parameters,
• an execution panel to run the program in simulation or

on the real robot.
The robot programming panel is shown in Fig. 5a. At the

beginning, the user sees an empty list, and by clicking the
‘add’ button, skills of the skill library can be added.

One click on the skill opens the skill parameter panel
(see Fig. 5b-d) next to the application panel, where the
user can set the skill parameters of the selected skill. These
parameters are directly visualized at the tool center point of
the robot, transformed from a text into a 3D experienceable
visualization (see Fig. 3).

For teaching new frames, the user can drag the end-
effector to its desired position and orientation (see Fig. 4a).

(a) Programming panel (b) skill guarded approach

(c) skill guarded slide (d) skill pivot

Fig. 5: Programming panel (a) and skill parameter panels
(b-d) to set the parameters of the respective skill. Additional
expert parameters, e.g. controller gains, are provided by an
‘advanced’ tab (b).

Clicking on ‘Add Target’ creates a frame at the current pose,
which can then be named and used as a skill parameter.

The execution panel (see Fig. 4b) allows to simulate the
application, which means executing the pitasc program on
the digital twin, a digital representation of the robot and
the environment, which is visualized as a holographic robot
within the real world (see Fig. 1). The program can also
be executed on the real robot. The pause/resume and stop
buttons help to inspect certain moments of the program in
detail. By clicking ‘Save’, the application is exported in a
pitasc DSL (XML) file, which can be executed independently
from our application using the pitasc executor [22].

C. Digital Twin and Force Simulation

To allow a safe and effortless detection of wrong
parametrizations or skill orders, a digital twin of the robot
along with contact force simulation is used to simulate the
robot program for the user.

The digital twin requires a definition of the real robot, its
end-effector, and the part of the environment the robot shall
interact with. With these, a digital twin can automatically
be created without any configuration overhead. The physical
simulation calculates the contact forces between the simu-
lated robot and the virtual environment, acting as a virtual
force-torque sensor.
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Fig. 6: Proposed software architecture: The user programs a robot application using the HoloLens GUI client, which
communicates with the server via a Unity2ROS bridge. The teaching backend holds all information about the current
program and allows execution on the digital twin or the real robot via pitasc. The digital twin is derived from the robot
description and consists of a robot simulator and a force simulation. MoveIt [25] is used for coordinate frame teaching,
calculating the inverse kinematics for a given pose.

Seeing robot programming as a reinforcement learning
process, the human here acts as the RL-agent, exploring
different sets of skills and their parameters and evaluating
them in a virtual environment. Once a satisfactory state has
been achieved, the user can execute it on the real robot.

V. ARCHITECTURE AND IMPLEMENTATION

We introduce a client-server-based architecture for robot
programming. This is especially required in industrial envi-
ronments to ensure that the program is not lost once the MR
glasses’ battery is empty or if one wants to switch to text-
based programming at some point. Fig. 6 shows the main
components and the communication between them.

A. Server

The teaching backend node holds the current program and
model information, providing a GraphQL-Interface [23] to
access or modify data. GraphQL is an alternative to a REST
API, using json-based queries and thus being independent of
the communication protocol.

Other server-side components, which all communicate via
Robot Operating System (ROS) [24], are the descriptions of
the physical robot and the environment using the Unified
Robot Description Format (URDF), a robot simulator and a
force simulator to simulate force-controlled applications, the
driver of the real robot, and a pitasc node to execute pitasc
applications. Since the interface of pitasc to the robot is based
on ros control, in general, all robots with a ROS driver and
a VelocityJointInterface can be controlled by pitasc and be
taught by our application.

For the frame teaching (by dragging the hologram’s end-
effector, see Sec. IV-B), the inverse kinematics are calculated
with the MoveIt Motion Planning Framework [25].

B. GUI Client

We use a Microsoft HoloLens 2 as MR glasses. The
application is developed with Unity3D [26] and MixedReal-
ityToolkit [27]. UnityRoboticsHub [28] is used to load the
robot model and to communicate with ROS. A custom
frontend library takes care of the GraphQL communication
with the teaching backend, providing access to the pitasc
application and execution. This decoupling allows reusing
the frontend library for different kinds of clients.

C. Digital Twin

For simulating the contact forces, the physics engine
MuJoCo [29] is used. We implemented an interface to
construct the environment from the URDF description of the
real robot environment and feed the end-effector poses from
the robot simulator into the engine.

Therefore, we do not rely on correct inertial data of the
robot links in the robot URDF description (which, in our
experience, are rarely accurate), since we do not physically
simulate the robot joints and its controller. Instead, the
robot simulator assumes that the robot controller follows the
given joint velocities with a delay of three time steps and a
Gaussian position noise of 1×10−5 rad (standard deviation).
MuJuCo then calculates the forces acting on the end-effector
resulting from this motion.

To smooth the coupling of the robot and force simulations
and properly utilize MuJoCo’s soft constraint model, we
insert a coupled compliant element (stiffness ≈ 232kN/m
(kNm/rad), damping ≈ 1000Ns/m (Nms/rad)) between the
tool center point of the robot and the end-effector in the
force simulation. While the robot pose updates with 125Hz,
MuJoCo runs with 33kHz to simulate the involved dynamics
sufficiently.
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a top hat rail [20]. v means a velocity, F a force, and α a
rotation.

VI. DEMONSTRATION AND DISCUSSION

We validate our solution on a top hat rail mounting task
(see Fig. 7). Fig. 1 shows the experimental setup: The rail
is mounted on a positioning table, which is turned off and
not part of the experiment. The foam beside the rail reduces
light reflections. We use a Universal Robots UR10e and its
integrated force-torque sensor.

The teaching of picking the part is omitted here since we
focus on the force controlled assembly part, and part picking
consists of just a few transfer motions (skill lin) and a skill
that closes the gripper.

The terminal can be mounted using the following skills:
• a skill lin to a start position with a tilting angle of

approx. 20° (see Fig. 7a)
• a skill guarded approach to move towards the rail until

a certain force is measured (see Fig. 7b)
• a skill guarded slide to keep contact to the rail while

moving to the side until the snap fits in the rail and
causes a force (see Fig. 7c)

• a skill pivot to rotate to the target orientation while
keeping contact to the rail (see Fig. 7d).

The robot programming took approx. 10 minutes using
the mixed reality interface, including frequent simulations
to check the validity of the program. To validate the ar-
chitecture, we implemented an rviz-plugin [30] as another
GUI client, and successfully created the same program,
completely virtually, without any server-side adaptations.

After achieving a satisfying execution on the digital twin,
we executed the program on the real robot using the exe-
cution panel (see Fig. 4b), which already succeeded on the
first try without any adaptions or tuning.

Fig. 8 compares the simulated forces and the measured
forces of the real robot for two different parameter sets,
showing a qualitatively and quantitatively satisfying corre-
spondence with root mean square errors in z-direction of
1.47N (Fh) and 1.48N (Fl), respectively. The deviation in
the y-force during skill guarded slide is caused by different
friction coefficients in the real world and simulation and
can trigger the axis monitor of skill guarded slide. Thus, the
max forces parameter must not be chosen too low – this
applies to both the simulation and the real robot. Since the
simulation mainly helps to (qualitatively) visualize force-
controlled skills, the deviation is acceptable but can be
improved by more accurate modeling and parameter tuning.
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Fig. 8: Comparison of real and simulated forces in y- and
z-axes of {target} frame (see Fig. 7a for axes definition) for
a parameter set with high and one with low target forces (Fh
= {10 N, 15 N} and Fl = {5 N, 5 N}, target forces in z).

While menus and buttons showed good usability in MR,
the keyboard interaction was troublesome and error-prone.
One overcome could be a multimodal input approach, with
MR and classical input devices like mouse and keyboard,
beside existing deep learning approaches for setting param-
eters [10]. Furthermore, the interface needs an abstraction
mechanism for encapsulating skills in a high-level skill (like
a possible skill mount terminal). This allows for simple reuse
and reducing the number of parameters.

VII. CONCLUSION AND OUTLOOK

We presented a tangible MR-based robot teaching ap-
proach for skill-based programming. By designing visual-
izations for different types of parameters and using them
in the user interface, we demonstrated how skill-based pro-
gramming can profit from the 3D-visualization capabilities of
MR. Ad-hoc validation on a digital twin, including contact
force simulation, reduces errors in programming, avoiding
potential hardware damages, and lessens the gap between
simulation and reality. All in all, we gave an impression of
how a future robot teaching panel and teaching process could
look like.

In the future, we will work on a generic visualization
model for all types of parameters and skills of the skill
library. Furthermore, we will evaluate the user experience in
user studies to get quantitative information about the practi-
cal usefulness of MR in skill-based programming. We plan
a comprehensive user study with more than 20 participants
where we aim to compare different types of programming
interfaces along with different levels of experiences of the
participants.
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