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Abstract
Visual analysis of multi-dimensional data is commonly supported by mapping the data to a 2D embedding. When analyzing a
sequence of multi-dimensional data, e.g., in case of temporal data, the usage of 1D embeddings allows for plotting the entire
sequence in a 2D layout. Despite the good performance in generating 2D embeddings, 1D embeddings often exhibit a much
lower quality for pattern recognition tasks. We propose to overcome the issue by involving the user to generate 1D embeddings
of multi-dimensional data in a two-step procedure: We first generate a 2D embedding and then leave the task of reducing the
2D to a 1D embedding to the user. We demonstrate that an interactive generation of 1D embeddings from 2D projected views
can be performed efficiently, effectively, and targeted towards an analysis task. We compare the performance of our approach
against automatically generated 1D and 2D embeddings involving a user study for our interactive approach. We test the 1D
approaches when being applied to time-varying multi-dimensional data.

1. Introduction

Multi-dimensional data are commonly visualized using embed-
dings into a lower-dimensional space. The main goal for estab-
lishing the embedding is to preserve properties and characteris-
tics of the multi-dimensional data in the embedding. Given that
analysis tasks may vary, different approaches for generating map-
pings have been proposed that target different objective func-
tions [SNAA19, NA19b]. Often multiple criteria shall be fulfilled,
where the emphasis may shift depending on the task. Pattern recog-
nition tasks such as detecting and analyzing clusters and outliers
are among the most common tasks. The neighborhood-preservation
property of the t-distributed stochastic neighbor embedding (t-
SNE) approach [vdMH08] facilitates such visual pattern recogni-
tion tasks in the embedding [KB19, LCYH17, BM16, YMXC13].

For visualization purposes, 1D, 2D, or 3D embeddings may be
used. While several studies argue that 2D embeddings should be
preferred over 3D embeddings due to depth perception issues in
3D and the necessity to interact with 3D embeddings [SMT13], 1D
embeddings have rarely been used. When looking into sequence
of multi-dimensional data such as temporal data or ensemble data,
1D embeddings are extremely useful, as they allow for plotting the
entire sequence in a 2D layout, e.g., by using time as a second
axis [FL19, FML16, LHFL19, NHL19]. When using a 2D embed-
ding with time as a third axis, one would introduce again the issues
of working in a 3D space.

While approaches such as t-SNE (with proper parameter set-
tings) often produce excellent results for 2D embeddings, the map-
ping to 1D embeddings sometimes have some issues. As t-SNE

(like many other methods) perform an iterative optimization pro-
cess that starts with a random initial configuration, the low number
of degrees of freedom in a 1D space may lead to the process to be
stuck in a local optimum. We acknowledge this issue and present
examples, where 1D embeddings using t-SNE have a much lower
quality than the respective 2D embeddings, see Section 3.

We propose to overcome the issue by involving the user. The
main idea is to create an automatic mapping to a 2D embedding
using an existing dimensionality reduction algorithm (as a proof of
concept we use t-SNE) and then let the user define the last step
of mapping from 2D to a 1D embedding. There are multiple argu-
ments for our strategy to be useful and successful: (1) Interacting in
a 2D visual space is intuitive for humans and they may outperform
automatic solutions. (2) Interactively defining a 1D embedding in a
2D space is as simple as drawing a curve that fits the data. (3) The
user can define the mapping according to the analysis tasks in mind
and can bring in own experiences and expertise in pattern recogni-
tion tasks. Often the desired embedding has primary and secondary
design goals, where the weighting is hard to determine automati-
cally, while the user is able to find the best trade-off.

We present our interactive mapping approach from 2D to 1D em-
beddings by drawing a curve and mapping to the curve in Section 4.
We perform a user study to evaluate the robustness of the interac-
tive mapping approach and quantitatively compare the quality of
the interactively generated 1D embeddings to 1D and 2D embed-
dings obtained by t-SNE, see Section 5.

In a second step, we extend our approach to time-varying multi-
dimensional data. Recently, dynamic t-SNE has been proposed,
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which tries to keep t-SNE layouts consistent over time [RFaT16].
This dynamic approach can be combined with our interactive 1D
embedding by applying our approach to the first time step. We
further present how the interactively defined curve used for map-
ping 2D to 1D embeddings can be automatically adjusted when the
2D embeddings change over time. We present results and compare
them to a dynamic 1D t-SNE approach, see Section 6.

Our main contributions can be summarized as follows:

• A quantitative comparison of 1D and 2D t-SNE for cluster
preservation.
• A semi-automatic approach to generate 1D embeddings, where

a 2D embedding is generated automatically and a user-centric
approach is proposed to perform the 2D-to-1D mapping.
• A user study to evaluate the robustness of the user-centric com-

ponent to our approach.
• A quantitative comparison of the quality of the 1D embeddings

achieved with our approach when compared to 1D t-SNE.
• An extension to embeddings for time-varying multi-dimensional

data with an automatic adjustment of the 2D-to-1D mapping.

2. Related Work

The multi-dimensional data embedding technique t-SNE was intro-
duced by van der Maaten and Hinton [vdMH08]. The objective was
to find a low-dimensional embedding that preserves the neighbor-
hoods, which is essential for many pattern recognition tasks, as it
facilitates preserving clusters. Extensions of the original work try
to increase the efficiency of the method by proposing approximate
solution, i.e., effectively trading off speed for accuracy [VDM14],
and include the user to decide the granularity of the outcome pro-
jection [PHL∗16]. Since the original approach is supposed to pro-
duce results of higher quality, we use the original approach for our
comparisons. Wattenberg et al. [WVJ16] indicate that the quality of
the t-SNE outcome depends on properly chosen hyper-parameters
(in particular, perplexity) and that bad choices can lead to misinter-
pretations. However, they did not discuss possible issues with 1D
projection (even for proper hyper-parameter selection), which we
discuss in Section 3.

For time-varying multi-dimensional data, Rauber et al. [RFaT16]
proposed dynamic t-SNE, which aims at creating smoothly vary-
ing temporal evolutions of 2D embeddings. The approach tries
to minimize differences between embeddings of subsequent time
steps. The visualization uses animations of 2D embeddings. We,
instead, show the temporal evolution by drawing 1D embeddings
over time, which supports easy analysis of the evolution of clus-
ters over time using a static visualization. This concept of showing
the evolution of 1D embeddings over a temporal axis has already
been sucessfully applied to multiple applications using Multi-
dimensional Scaling (MDS) [FL19, FML16, LHFL19] as well as
dynamic t-SNE [NHL19]. The latter approach deploys 1D t-SNE
for the initial time step, which may suffer from the issue men-
tioned above. 1D t-SNE has also been used in other contexts such
as building t-SNE heatmaps [LRH∗17]. The authors claim that 1D
t-SNE would preserve structures as well as 2D t-SNE without fur-
ther proof of the claim. We show in Section 3 that this is not nec-
essarily true. 1D projections plotted over an attribute vector have

been proposed using the first principle component to interpret la-
tent spaces [LJLH19]. Jäckle et al. [JFSK16] presented a tech-
nique named temporal MDS plots. They propose applying MDS
separately for certain sliding time windows with overlapping off-
sets to have a 1D embedding of data in ascending temporal order.
The technique can be applied in our case, but extracting similari-
ties without using the whole entries of matrices would cause los-
ing information. Bernard et al. [BWS∗12] apply dimensionality re-
duction single multivariate time series for analyzing time-oriented
multi-dimensional data, while we are looking into comparing mul-
tiple time series. An approach to project multiple multivariate time
series into a 2D plot was presented by Wilhelm et al. [WVZ∗15]
to study horse motion capture data. However, their method requires
given similarities of entities between different time steps, which we
do not assume.

3. Comparing 1D to 2D Embeddings Using t-SNE

In this section, we want to demonstrate that 1D embeddings ob-
tained by t-SNE may have significantly lower quality that respec-
tive 2D embeddings. First, we need to discuss what quality measure
shall be used, before we apply it to 1D and 2D t-SNE for concrete
examples.

Quality Measures. The t-SNE approach is motivated by the ob-
jective to preserve neighborhoods, which is crucial for performing
pattern recognition tasks such as cluster analysis in the embedded
view. Consequently, we want to test and quantify how much clus-
ters were preserved in the embeddings. Many measures are known
to judge dimensionality reduction methods [EMK∗19, NA19a].
Among them, the silhouette coefficient [Rou87] is a widely applied
measure for evaluating the quality of a cluster and can be used to
evaluate the performance of embedding techniques (such as t-SNE)
in preserving cluster structures.

In order to validate the cluster preservation quality of an em-
bedding, we can look into the silhouette coefficients of all points
in the embedding. A common approach for combining the silhou-
ette coefficients of all points in a layout is to compute the average
silhouette coefficient. However, one may argue that we are not in-
terested in the average case, but in the worst case, i.e., one would
compute the minimum silhouette coefficient. Using the average or
minimum silhouette coefficient we can quantify the quality of an
embedding and obtain values in the range [−1,1], where larger val-
ues are better. However, one may argue that the exact value of the
silhouette coefficient for a point does not matter, as long as it is
positive. Hence, we argue that a better measure for the quality of
cluster preservation by an embedding is to compute how often the
silhouette coefficient is positive. Hence, we propose to define an
outlier index as the percentage how often the silhouette coefficient
is positive, i.e., O(D) = p

|D| , where p is the number of points with
a positive silhouette coefficient and |D| is the overall number of
points in the dataset. The outlier index O(D) is always in [0,1],
where again higher values are better. The perfect outlier index of
O(D) = 1 means that 100% of the silhouette coefficients are posi-
tive, i.e., no mixing of clusters occurs.

In the remainder of the paper, we will base our argumentation
mainly on the outlier index, but will also report average and mini-
mum silhouette coefficients.
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(a)

(b)

(c)

Figure 1: Comparing 1D and 2D t-SNE results when applied to
Four Cluster data set by showing boxplots of (a) the minimum sil-
houette index, (b) the average silhouette coefficient, and (c) the out-
lier index for different number of t-SNE iterations. 2D t-SNE clearly
outperforms 1D t-SNE.

Comparison. For testing 1D and 2D embeddings using t-SNE, we
use a simple dataset with four clusters. The points of the dataset
represent nodes in a network, on which dynamical simulations are
executed. The similarity of the multi-dimensional data points is
computed as the similarity of the time series of the dynamics, while
the labels (or classes) represent the topological clusters in the net-
work. For the given example, the dynamics match topology, i.e.,
the four classes actually form four non-mixing clusters in the multi-
dimensional space.

We can visually observe that the 2D embedding using t-SNE pre-
serves the four clusters well, see Figure 2(a). The 1D embedding
using t-SNE, however, visually exhibits a mixing/interleaving of
the clusters, see Figure 2(b)(top). To back up this finding with quan-
titative measures, we compute the average silhouette coefficient,
the minimum silhouette coefficient, and the outlier index (see Fig-
ure 1). As the outcome of the embedding depends on the initial ran-
dom configuration and hyper-parameters (perplexity and number
of iterations), we compute ensembles of embeddings and present
the quality measures for the ensembles in the form of boxplots. To
demonstrate that the iterative optimization had converged, we show
the boxplots for different number of iterations (no major changes
occur when plotting for 10k, 30k, 50k, 70k, or 90k iterations). The
outcome of the quantitative quality assessment is that 2D t-SNE
performs drastically better no matter what quality measure is used.
We performed statistical analyses using a paired t-test and obtained
that all differences shown in the figures are statistically significant
with p-values in the order of 10−5 to 10−16. Hence, we have shown
that the quality of t-SNE may deteriorate substantially when going

from 2D to 1D embeddings. Of course, we cannot and do not want
to say that the 1D embeddings are generally worse, but we provided
evidence that they can be worse. In the remainder of the paper, we
will provide further examples and tests.

4. Interactive 1D Embeddings

Dimensionality reduction from a multi-dimensional space to a 2D
embedding inevitably produces loss, in general. However, projec-
tion methods like t-SNE have proven to produce good 2D embed-
dings for many applications. The previous section showed that this
goodness of the embedding may get lost when reducing the dimen-
sionality further to a 1D embedding. However, producing a 1D em-
bedding from a 2D embedding while maintaining certain properties
is something that humans are quite capable of and where humans
may outperform automatic solutions. Hence, we propose a user-
centric approach for mapping a 2D distribution to a 1D embedding.

Given a 2D data set, we propose to generate a 1D embedding by
having the user interactively drawing a curve into a 2D scatterplot.
The user performs the drawing with a certain task in mind such
as keeping all clusters separated. Then, all data points of the 2D
scatterplot get projected onto the curve and the curve is flattened to
generate a 1D embedding of the 2D data set. The individual steps
of our interactive 1D embedding are detailed below. The accompa-
nying video shows examples of the interactions.

Interactive Curve Drawing. Given a 2D scatterplot, the task is to
draw a curve that follows the structure of the data and captures all
its components. The curve needs to be one connected component.
This task is given to the user and as such shall be easy and fast to
perform. The easiest and arguably fastest way to define a curve that
fits a certain shape is to define a piecewise linear curve in the form
of a polyline. A polyline can interactively be defined by clicking
at the respective positions in the desired order. A piecewise linear
curve comes with the additional advantage that the projection onto
the curve is easy and fast to compute. Figure 2(a) shows an example
of a interactively defined, piece-weise linear curve that traverses all
relevant components (the four clusters) of the given scatterplot.

Projection to Curve. Projecting 2D points onto a curve is a well-
known problem with a variety of solutions depending on the type
of curves. Most work is concerning with piece-wise polynomial
curves of higher order, e.g., [OKL∗10, MH03]. We decided to use
piece-wise linear curves (i.e., polynomials of degree 1), which did
not only make the definition of curve easy and controllable, but also
allows for a simple and efficient projection to that curve: We project
a given point p to each line segment separately and then take the
mapped point p′ with minimum distance to the given point p as its
projection.

Flattening the Curve. Given the piece-wise linear curve L consist-
ing of line segments a0a1, . . . ,an−1an, we derive a bijective map-
ping from the curve domain to [0,1] to flatten the curve. Let li de-
note the length of line segment aiai+1, then the length of the curve

L is given by l =
n−1
∑

i=0
li. We define the flattening by mapping aiai+1

linearly to [bi,bi+1] =

[
i−1
∑

k=0
lk/l,

i
∑

k=0
lk/l

]
for i = 0, . . .n−1 . Given

a point p with its projection p′ onto the piece-wise linear curve
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L being p′ = a j + t0(a j+1− a j). Then, the 1D projection of p is
defined by p = b j + t0(b j+1−b j).

(a)

(b)

Figure 2: (a) 2D t-SNE of dataset with four clusters and interac-
tively drawn curve that traverses the clusters. (b) 1D t-SNE em-
bedding of the same dataset (top) and interactive 1D embedding
when projecting onto the drawn curve (bottom). The interactive 1D
embedding preserves the clusters in contrast to 1D t-SNE.

5. Evaluation

Since our interactive 1D embedding approach is mainly determined
by the ability of users to reliably perform a suitable 2D-to-1D map-
ping by drawing a curve, we performed a user study to test the ro-
bustness of the projection quality via the interactive 1D embedding
approach. Giving the ensemble of projections obtained by users
drawing curves, we can compare the quality of the ensemble against
automatic approaches. We compare the outcome of the interactive
1D embedding against 1D and 2D t-SNE using the quality mea-
sures introduced in Section 3.

Data Sets. For the evaluation, we identified a number of data sets
with different numbers of clusters. Apart from using the data set
with 4 clusters/classes (cf. Figure 2(a)) introduced in Section 3,
we apply the defined methods to the following three data sets
(from [FS18]): The Flame data set [FM07] that contains two la-
beled classes as shown in Figure 3(a), the R15 data set [VRB02]
that contains 15 labeled classes, see Figure 3(b), the Aggregation
data set [GMT07] that consists of 7 labeled classes, see Figure 3(c).
Since our objective is to project from 2D to 1D, the chosen data sets
have a dimensionality of 2. One should note that the classes are
mostly also forming clusters, but some of the classes are partially
overlapping.

2D t-SNE. Since we want to compare the outcome of our interac-
tive 1D embeddings to both 1D and 2D t-SNE results, the input to
our user study shall not be the scatterplots shown in Figure 3, but
the scatterplots that are obtained after applying 2D t-SNE. Since t-
SNE is not reproducing 2D scatterplots when applied to a 2D input,
the outcome of the 2D t-SNE approach may vary quite a bit from
its input. This can be observed in Figure 3, where the 2D t-SNE
results in (d) and (e) are quite close to its input in (a) and (b), while
the 2D t-SNE results in (f) is rather different to its input in (c).

User Study. We conducted a user study to test how reliably users
can generate a “good" 1D embedding from a 2D scatterplot. As
input we used the 2D t-SNE projections shown in Figures 2(a) and
3(d-f). However, the class labels are not revealed to the study’s sub-
jects. Instead, all points in the scatterplot were drawn using black
color.

The body of participants in our study consists of 38 subjects,
of which 7 have profound visualization knowledge (working in a
visualization research group), while 31 do not. The subject body
consisted of 29 males and 9 females with 29 being of age 20-29,
8 of age 30-39, and 1 of age 60. The majority of the subject body
were graduate students. All subjects reported to have no visual im-
pairment and normal or corrected to normal vision.

Participants were instructed on how to draw the curve and were
explained how 2D points will be projected on the curve. The were
also told that the task is to maintain clusters when projecting from
2D to 1D. Each participant was then asked to produce the best out-
come for each of the four data sets. They were also given feedback
of how the 1D embedding would look like and were given the op-
portunity to adjust their curve drawings to improve the embedding.
Each subject performed the same task on the four data sets in the
order Four Clusters, Flame, R15, Aggregation.

Examples of the outcome of the user study is shown in Fig-
ure 3. Figure 3(g-i) show examples of curves that were drawn by the
user given the 2D t-SNE input of Figure 3(d-f). We observed that
the subjects consistently manage to draw curves that pass through
all clusters. Interestingly, some subjects tried to maximize separa-
tion of clusters by adding detours to the curves as shown in Fig-
ure 3(h). The interactively obtained 1D embeddings are shown in
Figures 3(j-l) bottom. Visual inspection shows that the classes are
quite well separated with some issues on the Aggregation data set,
where the 2D t-SNE had produced some overlaps.

All subjects reported that they felt quite confident with their task
of drawing the curve, which indicates that the tasks given to the
subjects was indeed somewhat intuitive,

Comparison and Statistical Analysis. To compare the interactive
1D embeddings against 1D and 2D t-SNE, we perform statistical
analyses of the set of results obtained by our interactive 1D embed-
ding against the t-SNE results. Since t-SNE outcome depends on
the initial random configuration, we computed for both 1D and 2D
t-SNE an ensemble of embedding results (but with the same per-
plexity and maximum number of iterations, where perplexity was
optimized for each data set independently). Then, we compute for
each of the four tested data sets and each of the three methods (in-
teractive 1D embedding, 1D t-SNE, 2D t-SNE) the quality of the
embedding. We argued that the outlier index would be the most ap-
propriate measure, but also report average and minimum silhouette
coefficient. Results are reported in the form of box plot, which are
shown for each of the data sets and the three quality measures. To
statistically compare the outcome against each other, we perform a
pairwise comparison of the three methods using a paired t-test. The
respective p-values are shown in Table 1.

Results. In Table 1, the outcome of the pairwise comparison is
color-coded by the winner: red for our 1D embedding, green for
2D t-SNE, and blue for 1D t-SNE, black if there was no statisti-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3: (a-c) Scatterplots of 2D labeled data sets referred to as Flame, R15, and Aggregation. (d-f) Respective 2D t-SNE plots of the data
sets, which are the plots used in our user study. (g-i) Examples of interactively generated curves within our user study, where labels were
not color-coded. (j-l) Respective 1D embeddings using 1D t-SNE (top) and interactive 1D embedding (bottom) when projecting to the drawn
curves.

Figure 4: Box plots of outlier index for comparing the three tech-
niques for the four data sets.

cal significance. Looking at the outlier index (also see Figure 4),
our 1D embedding generally performs best and the 2D t-SNE out-
performs the 1D t-SNE. However, for one of the data sets (Ag-
gregation), things are a bit different. We already had seen that 2D
t-SNE had issues and mixed clusters. As this was given as input
to our method, the performance of our method also dropped. Our
method actually outperformed 2D t-SNE, but 1D t-SNE did even

better. Looking at the average and minimum silhouette coefficient,
things get a bit more mixed, but at least for the average silhouette
coefficient our method seems to perform best, while in terms of the
minimum silhouette coefficient, 2D t-SNE seems to perform best.

6. Time-varying Interactive 1D embedding

One of the main motivations in introducing 1D embeddings was
to show the temporal evolution of time-varying multi-dimensionel
data in an intuitive visual encoding. Using the 1D interactive em-
bedding introduced above, we can initialize a 1D t-SNE layout and
then apply the dynamic t-SNE [RFaT16] approach to it, whose pri-
mary purpose is to maintain a smooth transition between consec-
utive time steps of the t-SNE projection layouts for time-varying
multi-dimensional data. However, during the execution of the dy-
namic t-SNE approach the 1D embedding may need to be updated
depending on the quality of the dynamic t-SNE result. We propose
an automatic scheme to update the interactively defined 1D curve
during the evolution of time.

Timeline View. Given a collection of 1D projections for different
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Dataset Min. Silh. Coeff. Avg. Silh. Coeff. Outlier Index
Four p12 = 0.08 p12 < 10−11 p12 = 0.2
Clusters p13 < 10−15 p13 < 10−14 p13 < 10−19

p23 < 10−15 p23 < 10−9 p23 < 10−9

Flame p12 < 10−15 p12 < 10−15 p12 < 10−12

p13 < 10−15 p13 < 10−9 p13 < 10−9

p23 < 10−15 p23 = 0.7 p23 < 10−7

R15 p12 < 10−14 p12 < 10−6 p12 = 0.03
p13 = 0.01 p13 = 0.02 p13 = 0.003
p23 < 10−15 p23 = 0.02 p23 < 10−6

Aggre- p12 < 10−15 p12 < 10−15 p12 = 0.004
gation p13 < 10−9 p13 < 10−5 p13 = 0.01

p23 = 0.0004 p23 < 10−13 p23 < 10−6

Table 1: p-values of paired t-test, where p12 stands for the p-value
when comparing interactive 1D embedding to 2D t-SNE, p13 when
comparing interactive 1D embedding to 1D t-SNE, and p23 when
comparing 2D t-SNE to 1D t-SNE. p-values are highlighted by
color, when the difference is statistically significant at level 0.05.
The colors indicate the winning method, where red stands for in-
teractive 1D embedding, green 2D t-SNE, and blue for 1D t-SNE.
Black indicates no significant difference.

time steps of a time-varying 1D multi-dimensional data, one could
observe the development of time-related patterns such as merging
or splitting of clusters in a timeline view as shown in Figure 5(b).
The x-axis of the view represents time, while the y-axis represents
the 1D embedding. Given one point in the data set, the embeddings
of the point at two consecutive time steps are connected by a line
segment. All the line segments that are connected to each other will
provide a means to track the development of the points over time.
The color of the lines can be used to encode the class labels.

In order to produce high-quality time-varying time lines, the user
would need to draw a 2D curve for each time step. Given that data
sets may consist of hundreds or thousands of time steps, this is not a
viable solution. Since the dynamic t-SNE approach was designed to
produce time-coherent 2D projections, we can restrict ourselves to
only draw the curve for the first time step and use that curve for all
2D layouts produced by the dynamic t-SNE approach. Figure 5(a)
shows a curve drawn into the 2D t-SNE layout for the first time
step of the Four Cluster data set.Figure 5(b)(top) shows the timeline
view when using that curve for 100 time steps of the dynamic 2D
t-SNE layouts to obtain our 1D embeddings. Figure 5(b)(bottom)
shows in comparison the timeline view when using dynamic 1D t-
SNE. The clusters in the time-varying multi-dimensional data never
mix, which is not obvious when looking at the dynamic 1D t-SNE
timeline. Our approach produces a much more stable result. Still,
even with our approach the timelines of the clusters start to cross
each other after many time steps. The reason for this behavior is
that the dynamic 2D t-SNE is not robust enough and introduces
rotations of cluster pairs. Therefore, we next propose an automatic
adjustment of our interactively drawn curve over the time steps.

Tracking of Curve. To compensate for the motions that the dy-
namic 2D t-SNE approach allows, we propose to use an automatic
tracking of the curve that was drawn by the user for the initial time
step. More precisely, we monitor the changes of the neighborhoods
of our curve over time and adjust the shape of the curve accord-

(a)

(b)

Figure 5: Time-varying multi-dimensional data visualization: (a)
First time step of dynamic 2D t-SNE output and interactively gen-
erated curve. (b) Timeline view showing 1D embeddings over time
for 100 time steps: While dynamic 1D t-SNE (bottom) generates
many crossings of time lines and mixing of clusters, the projection
to the interactively generated curve (top) preserves the clusters well
for the first half of the time steps.

ingly. To account for large local deformations, the piece-wise curve
gets refined by introducing additional vertices when necessary.

To account for the temporal changes of the neighborhood of a
vertex on the curve, we make local considerations to update its po-
sition (and thus the curve’s position) over the time steps. For each
vertex p of the piece-wise linear (possibly refined) curve that was
drawn by the user, we consider its k-nearest neighbor points from
the 2D scatter plot. From those k points, we extract the barycenter
o and the respective two principal directions e1 and e2. We call (o,
e1, e2) the local frame of point p, which forms a 2D Cartesian co-
ordinate system. We store for point p its local frame as well as its
position with respect to the local frame. In the next time step, we
re-compute the local frame based on the updated positions of the
k-nearest neighbors and re-position vertex p to a new position that
has the same coordinates with respect to the local frame as before,
but now using the updated local frame. As such the vertex p always
adjusts its position when the positions of the k-nearest neighbors
change. During this process, we may need to flip the orientation of
principal directions as well as swap first and second principal direc-
tion to have matching local frames of consecutive time steps. This
procedure is executed for each time step of the timeline.
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(a)

(b)

Figure 6: Automatic curve tracking: (a) Timeline view generated by
automatically tracking the initial interactively generated curve. The
clusters are generally well-preserved except for the intersections of
the red and purple time lines around time step ts = 69 shown in
the inset. Selecting time step ts = 69 allows for its investigation in
the 2D embedding (b). We observe a self-intersection of the tracked
curve for time step ts = 69 due to swirling motions of the purple
and red clusters (black arrow).

Given the example we showed in Figure 5(a), we can process
the same example using the automatic tracking of our initial user-
defined curve. The respective result is shown in Figure 6(a). We
observe that the mixing of clusters is now (mostly) prevented, i.e.,
the clusters remain separate during the evolution. The edge crossing
of the timeline is effectively prevented. Results. Figure 7 shows the
same example of the Four Clusters data set, but now the simulation
was run for much longer (thousands of time steps), such that the
clusters actually merge. We synthetically extended the time series
by adding a splitting event after the merging, i.e., the clusters start
separating again.

Figure 7 shows a comparison of the timeline views. The dynamic
1D t-SNE approach (a) does not allow for a time-coherent visual-
ization. Our approach without curve tracking (b) is maybe some-
what better, but the clusters are still not tractable over time. Our

approach with curve tracking (c) though shows clearly separated
clusters at the beginning (around time step tA), some mixing in the
middle (around time step tB), and again clearly separated clusters at
the end (around time step tC). When looking at the 2D t-SNE plots
and the tracked curves at those three phases (d), this behavior can
be verified.

(a)

(b)

(c)

(d)

Figure 7: Timeline views for extended Four Clusters data set with
11,500 time steps including merging and splitting events using dy-
namic 1D t-SNE (a) and our interactive dynamic 1D embeddings
without (b) and with curve tracking (c). With curve tracking (c)
three phases of separated clusters (around time step tA = 2,362),
mixed cluster (around tB = 6,854), and again separated clusters
(around tC = 10,210) can be observed and confirmed via coordi-
nated views to the respective 2D t-SNE plots (d).

Discussion. When comparing Figures 7(b) and (c), one may argue
that the timeline view in (b) exhibits a contracting and expanding
phase, which is lost in (c). This is due to the tracking of the curve,
which also makes the curve contract and expand, while the length
of the curve is always mapped to interval [0,1] for the timeline view.
We could also scale by the length of the curve to show the contract-
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ing behavior, but the goal here was to observe cluster mixing and
splitting, which may be less obvious when scaling.

Our approach introduces one parameter, namely the number of
neighbors k used for tracking the curve. We observed that generally
good results were obtained when choosing k to be in the range of
the cluster sizes.

While the timeline views with our tracked curves generally keep
separated clusters separate, we observe that for some time steps that
may still be some line crossings, e.g., at time step ts = 69 in Fig-
ure 6(a), see inset. Animating the respective 2D embeddings over-
laid with the automatically adjusted curve explains the swapping:
The purple and red clusters exhibit a swirling pattern over time,
i.e., the clusters rotate around each other as indicated by the black
arrow inserted into Figure 6(b). In addition, the purple clusters ro-
tates roughly around its barycenter as indicated by the purple arrow
in the figure. Due to the swirling of the two clusters, the curve has
self-intersections around time step ts = 69, which prevent a mean-
ingful projection onto the curve. In Figure 6(b), it becomes appar-
ent that the points of the purple cluster will be assigned to different
parts of the curve.

(a)
(b)

Figure 8: Interactive re-initialization: (a) Selecting time step ts =
58 the curve can interactively be re-initialized by drawing a new
curve. (b) Tracking the new curve from time step ts = 58 onward
generates a new timeline view.

Interactive Analysis. The timeline view and the visualization of
the 2D embedding are linked via coordinated interaction. The
workflow of an interactive analysis process is supported as follows:
Initially, the first time step is shown in the 2D embedding and the
user can draw the curve that best follows the data structure. In the

case of labeled data, the labels are automatically assigned colors,
which can be customized interactively. In the case of unlabeled
data, the user can identify clusters in the 2D embedding and in-
teractively assign colors to them. The timelines are then generated
with respect to the defined (and tracked) curve and colored accord-
ingly. In the timeline view, on the other hand, each time step can be
selected by mouse click and the respective 2D embedding of the se-
lected time step is shown using the same color scheme and overlaid
with the automatically tracked curve. The interactive operations are
best conveyed in the accompanying video.

Given this interactive set-up of the two views, the entire time
series can be analyzed. Merging and splitting events can be an-
alyzed as in Figure 7 and suspicious time points can be investi-
gated as in Figure 6. If the user at some point feels that the curve
tracking is suboptimal, an interactive re-initialization of the curve
is supported. For example, if a projection artifact is observed, the
user can interactively define a new curve for the selected time step,
which re-initializes the curve tracking from that time step on. This
re-initialization leads to an update of the timeline view, where the
timelines change from the selected time step onward. Figure 8
shows an example. Starting with the timelines of the automatically
tracked curve in Figure 6, time step ts = 58 is selected for a re-
initialization and a new curve is drawn for ts = 58 as shown in
Figure 8(a). Then, the timeline view is updated as in Figure 8(b).
Here, the user decided for a swapping of the cluster order at time
step ts = 58. Since the user initiates teh re-initialization, the dis-
continuity at time step ts = 58 cannot be misinterpreted as a cluster
mixing.

One may consider replacing the interactive curve generation
by an automatic curve generation. However, humans are typically
good at detecting structures in 2D data distributions and based on
different data distributions may follow different strategies to gener-
ate the curves. As mentioned above, different design goals for the
projection also induce different strategies to define the curve. Still,
if the design goal has been defined a priority, e.g., cluster preser-
vation, then automatic approaches may be developed to find curves
that are optimal with respect to the design goal. We would want to
consider such ideas for future work.

7. Conclusion and Discussion

We presented case studies that provide evidence that the dimen-
sionality of 1D t-SNE is too low to faithfully preserve desired struc-
tures, while 2D t-SNE still produced desired results. This observa-
tion motivated our approach to interactively generate 1D embed-
dings from 2D embeddings based on a simple curve drawing. We
documented that our strategy leads to desirable results when the 2D
embeddings had preserved the structures well. We showed how our
approach can be coupled with a dynamic t-SNE approach for time-
varying multi-dimensional data visualization, where the 1D embed-
dings are arranged over a time axis. Automatic curve tracking and
interactive re-initialization allowed for improved visualizations.

As t-SNE aims at preserving neighborhoods, the goal of the ex-
amples shown in this paper was also neighborhood preservation.
Consequently, other possibly desirable properties of projections
such as preserving distances are not fulfilled. However, our ap-
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proach could be coupled with other projection methods. For exam-
ple, we could use MDS in case distance preservation is the ultimate
goal. Of course, the curve drawing strategy would also be different
for different design goals of the projections.

The quality of the projection also depends on the ability of the
user to generate suitable curves. However, in our user study we
observed that users quite quickly developed respective skills. Hu-
mans are typically good at detecting structures in 2D data distribu-
tions and based on different data distributions may follow differ-
ent strategies to generate the curves. As mentioned above, different
design goals for the projection also induce different strategies to
define the curve. Still, if the design goal has been defined a pri-
ori, automatic approaches may be developed to find curves that are
optimal with respect to the design goal, which we would want to
consider for future work.
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