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Figure 1: Overview of the presented visualization approach for the annotation of areas of interest (AOIs) in augmented reality. (a) A 3D gaze
player and (b) a linked timeline view show fixations of participants on AOIs. The overview can be (f) zoomed and filtered for (c) participants
and (d) AOI labels. (e) Different view options allow encoding annotated fixations differently to examine various aspects.

Abstract
Augmented Reality (AR) provides new ways for situated visualization and human-computer interaction in physical environments.
Current evaluation procedures for AR applications rely primarily on questionnaires and interviews, providing qualitative means
to assess usability and task solution strategies. Eye tracking extends these existing evaluation methodologies by providing
indicators for visual attention to virtual and real elements in the environment. However, the analysis of viewing behavior,
especially the comparison of multiple participants, is difficult to achieve in AR. Specifically, the definition of areas of interest
(AOIs), which is often a prerequisite for such analysis, is cumbersome and tedious with existing approaches. To address this
issue, we present a new visualization approach to define AOIs, label fixations, and investigate the resulting annotated scanpaths.
Our approach utilizes automatic annotation of gaze on virtual objects and an image-based approach that also considers spatial
context for the manual annotation of objects in the real world. Our results show, that with our approach, eye tracking data from
AR scenes can be annotated and analyzed flexibly with respect to data aspects and annotation strategies.

CCS Concepts
• Human-centered computing → Visualization;

† e-mail:Seyda.Oeney@visus.uni-stuttgart.de

1. Introduction

Augmented reality (AR) has seen a revival in recent years, mainly
through improved hardware and easy-to-use software that allows
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researchers to design augmented content without having to deal
with the underlying computer vision technology. This technology
provides new ways to display information in the spatial context of
the real world. Examples comprise training and support in medical
procedures [VRZ∗17], industrial manufacturing [FLFCBNVM18],
as well as data visualization for situated analysis [BHM∗22]. Eval-
uation of AR applications is mainly conducted by qualitative meth-
ods such as interviews and observations, as well as quantitative
measurements [DB11, Liv05]. Quantitative methods are often re-
stricted to performance measures (How long did it take to solve
the task? How correct was the result?), often leaving the question
open: Why were some participants performing better than others?
Investigating visual task solution strategies can provide answers to
this question, as it might reveal where people spent attention and
important parts of a task that caused problems.

Eye tracking is a means to evaluate visual stimuli (e.g., visu-
alization techniques [KFBW16]) quantitatively and qualitatively.
The measured gaze distribution is an indicator of visual attention
and can be investigated sequentially to derive a detailed temporal
analysis of individual steps while performing a task [AABW12].
Modern head-mounted displays (HMDs) include eye tracking as
means for gaze-based interaction which can also be recorded for
post-experimental analysis to understand perceptual and cognitive
aspects of the task at hand [KKBW22]. In traditional eye tracking
analysis, mapping of gaze to semantic objects or areas of interest
(AOIs) is a common way to enrich fixations with world knowl-
edge that also improves the comparability of data from different
people [BKR∗17]. AR scenarios pose a challenge for traditional
analysis approaches for multiple reasons:

• Movement and gaze data of multiple participants is often not
recorded in a common world-coordinate system, but in indi-
vidual coordinates per participant. This is comparable to issues
with spatial comparability of data recorded with eye tracking
glasses [KHSW16].

• AOIs in AR scenarios can be virtual or real. Virtual content can
be identified automatically, whereas real AOIs pose a classifica-
tion problem. For scenarios with predefined AOIs, this classifi-
cation can potentially be trained algorithmically [WHB∗18]. In
scenarios where AOIs are not known in advance (e.g., uncon-
trolled environments), manual annotation is often necessary.

• Video-based manual annotation of AOIs is time-consuming and
neglects the 3D spatial context of the data. Multiple approaches
for the annotation of such mobile gaze data were proposed in
the past [BKR∗17], mainly focusing on 2D images recorded by
a world-view camera of wearable eye tracking devices.

Hence, although an AOI-based analysis of gaze data from AR
scenarios is achievable with established methods such as video-
based manual annotation, the data processing results in annota-
tions of real-world AOIs without spatial information in the con-
text of the environment. Especially in AR, this spatial context is
essential to understand how people interacted with the virtual and
the real surroundings. For example, investigating navigation sup-
port in orientation tasks where the location of AOIs is important to
investigate spatial cognition processes. Furthermore, visualization
techniques depicting movement trajectories and scanpaths of peo-
ple’s gaze from AR focus on single participant analyses. However,
to derive generalizable findings about behavior patterns, higher

participant numbers have to be investigated. Current techniques
mainly show single trajectories [MT21] or aggregated gaze dis-
tributions [LSO20]. They do not support this type of multi-user
analysis and annotation is still necessary to investigate data with
AOI-based methods.

We contribute a new visualization-based approach to annotate
and interpret gaze data of multiple participants simultaneously
without neglecting the spatial context of the data (Figure 1). Our
focus lies on AR scenarios with a combination of virtual and real
AOIs. We display the data by extending the gaze stripes tech-
nique [KHH∗15], a temporal overview of investigated content
based on thumbnail images. In a second linked view, we provide
a detailed replay of gaze and movement in the 3D spatial context
of the scene. Fixations on virtual content are labeled and visual-
ized automatically. For the remaining unlabeled fixations, we com-
pare different annotation techniques and their applicability for AR
scenes: (1) Direct fixation labeling based on the point of regard, (2)
image-based labeling with thumbnails and the definition of bound-
ing boxes in 3D space. We showcase our approach with an experi-
ment where people investigated a collection of artwork enriched by
interactive virtual content and domain experts annotated this data.

Our results show similar annotation times for both techniques.
Labeling in 3D space was preferred by most because the spatial
context allows for more intuitive labeling and provides a deeper
understanding of the space. The annotated data as well as the source
code of our implementation are openly available [OPB∗23].

2. Related Work

We focus our discussion of related work on eye-tracking-based
evaluation in general and how AOI-based analysis is currently ap-
plied. Further, we provide an overview of current applications of
eye tracking in the context of AR scenarios.

2.1. Eye Tracking for User-based Evaluation

Eye tracking for evaluation purposes has a long tradition in research
fields such as psychology, cognitive science [Duc17], human-
computer interaction [PB06], and visualization [KFBW16]. How-
ever, evaluation scenarios consider mostly desktop applications
(e.g., examining reading behavior [BBHD10]) and mobile eye
tracking with wearable devices (e.g., how people perform every-
day tasks [HB05]). Experiments in VR also benefit from eye track-
ing for the interpretation of viewing behavior [CKK19, MPPO19].
In contrast, AR technology just recently became feasible for the
application of eye tracking and therefore opens a new field of re-
search [KBPR22] to adjust established techniques and develop new
methods to gain insights into how people use AR applications.

2.2. AOI-based Gaze Analysis

As we will further outline in Section 4, there are different ap-
proaches to derive AOIs or labels for fixations on AOIs, respec-
tively. Boundary shapes of relevant objects (e.g., [BCNS15]) pro-
vide the geometry for testing if the gaze lies inside the respective
region. Alternatively, gaze samples or fixations can be labeled di-
rectly. This is usually performed by showing individual gaze co-
ordinates on the visual stimulus and letting the annotator assign
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the correct label (e.g., [NBW16]). Image labeling based on thumb-
nails of stimulus regions around the point of regard has been inte-
grated into visualization techniques to improve the annotation pro-
cess [Kur21, PKP10]. However, these techniques have only been
applied to data from remote and wearable eye tracking devices. Al-
though such techniques could also be applied to AR scenarios, the
spatial context would be neglected. As a consequence, later analy-
ses could only interpret gaze as a sequence of visited AOIs without
a reference to where these AOIs were located. To close this gap, we
propose a technique that takes advantage of the context recorded
by the device to support an efficient annotation of virtual and real
AOIs. As a consequence, we can combine the advantages of spatial
annotation with image-based techniques to provide a visualization
approach to annotate and interpret gaze patterns from multiple par-
ticipants recorded in AR.

2.3. Evaluation of Augmented Reality

Evaluation of AR applications is often performed with classi-
cal performance analysis and qualitative techniques such as ob-
servations and interviews [DB11]. Eye tracking provides an ad-
ditional means to derive insights beyond user performance and
can help detect design issues and understand viewing behav-
ior [KFBW16]. For desktop applications, this technique was ap-
plied many times [GSL∗02, PHG∗04]. The interest of using eye
tracking for AR scenarios increased in recent years, partially due
to the availability of the technique in current hardware generations.
As an example, there are multiple approaches presenting heat maps
and trajectories in a 3D context [SG22]. Although this is valuable
information about gaze distributions in general, a comparison be-
tween many participants is hard to achieve this way. Consequently,
AOIs become necessary to investigate scanpaths semantically. To
the best of our knowledge, there is no approach fit for the require-
ments of AOI-based analysis in AR scenarios. To solve this issue,
fixation-based labeling can be applied as a general approach to per-
form this task sequentially. Further, spatial annotation allows one
to annotate data from multiple participants in parallel. A thorough
comparison between techniques is outlined in Section 5.

3. Data Processing

The data acquisition requires an HMD that supports eye tracking
(e.g., Microsoft HoloLens 2). Unity was employed to create the
AR scene to capture the viewers’ movements and collect 3D gaze
data, both of which are needed to provide the spatio-temporal con-
text in the visualization framework later. The Mixed Reality Toolkit
(MRTK) [Mic16] was integrated into our scene to make Unity AR-
capable and facilitate access to various HoloLens features. The
ARETT toolkit [KBM∗21a] was utilized to capture gaze with a sta-
ble sampling rate. With this setup, we collected important data that
was essential for preparing our visualization framework:

Hitted object, which contained the gaze hit with the object. In our
case, the virtual objects corresponded to the virtual AOIs.

Transformed 3D gaze position in a global coordinate sys-
tem. From these data, we extracted fixations using the veloc-
ity threshold algorithm (I-VT) [SG00] provided as an R pack-
age [KBM∗21b].

Projected gaze point onto the camera image recorded by the
HMD. Thumbnails for image-based annotation were created
from the projection of the identified fixations with the video
recordings captured during the pilot experiment.

Gaze replay requires a mesh representation of the environment.
Therefore, the room was scanned with the HoloLens at the start of
the pilot experiment to produce an environment mesh with SLAM-
based spatial mapping methods [CCC∗16]. These methods allow
localizing the viewers while constructing a mesh from their sur-
rounding. Since the produced mesh was not textured, a second,
textured photogrammetry mesh was used and its position, size, and
rotation were manually adjusted to match the spatial mesh.

The collected gaze and mesh data of different participants must
be in a common coordinate system to provide comparable data of
movement and gaze behavior within the replay. For this, we ap-
plied World Locking Tools (WLT) [Mic22]. We used 4 QR mark-
ers to transform the coordinate space so that the origin was moved
from the head position defined at the beginning of the application
to a common physical start position. WLT also provides persistence
across sessions by storing spatial anchors locally. This technique
also avoids inconsistencies in QR marker recognition. The world-
locked state was then reloaded for different participants.

4. Technique

Our development was divided into two stages: collecting eye track-
ing data through a pilot experiment that serves as a case study, and
the final design of the visualization framework.

For the design of our approach to annotate gaze data in AR, we
first investigated common approaches to solve this task in scenar-
ios of eye tracking with glasses and in VR. We decided on a hybrid
approach that handles virtual AOIs automatically and provides an
image-based technique in combination with spatial AOIs in 3D.
Figure 2 depicts an overview of how AOIs are typically handled.
Virtual AOIs can be identified automatically if the virtual scene de-
sign is controlled by the people conducting the experiment. Mean-
ingful labels for virtual objects or areas of a virtual mesh can be
defined and later be used for hit detection with gaze rays to find out
what a person was investigating. Limitations arise if an object con-
sists of multiple zones that need to be separated into different AOIs,
or small AOIs in general. To compensate for accuracy issues, it is
common practice to add border margins. For both cases, this might
lead to intersections between AOIs and ambiguities where the gaze
was directed to. Real-world AOIs can be addressed in similar ways
as data from mobile eye tracking devices, i.e., by annotations based
on an egocentric video. However, the advantage of AR devices is
that the multitude of sensors provides rich information about the
spatial context of an experiment. Spatial annotation, i.e., defining
boundary shapes for AOIs, either in 2D or 3D is the basis for fix-
ation labeling based on hit detection. The recorded spatial context,
for instance, represented by a SLAM-based mesh allows perform-
ing hit detection in defined areas.

4.1. Design Decisions

According to Blascheck et al. [BKR∗17], visualization techniques
based on AOIs mainly comprise transition matrices, timelines
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Gaze on virtual AOI Predefined labels Automatic mapping

Classification

Fixation labeling

Image-based

3D AOIs

Gaze on real AOI

Video annotation
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Figure 2: With predefined labels, gaze on virtual AOIs can be pro-
cessed automatically (green). For real AOIs, video-based annota-
tion is standard, either by automatic classification, manual fixation
labeling, or image-based techniques (blue). Spatial annotation in
3D requires a common coordinate system or semantically match-
ing AOIs between different recordings (orange).

showing AOI visits (e.g., scarf plots [SND10]), as well as transi-
tion graphs embedded in the stimulus. Our main focus is on anno-
tation support and an overview of scanpaths. Transition matrices
show only pairwise transitions between AOIs and scanpaths em-
bedded in the 3D environment tend to create visual clutter. Hence,
we decided to keep the 3D context for details and expand the con-
cept of AOI-based timelines for the interpretation of scanpaths. As
indicated in Figure 2, we address the annotation problem for AR
scenarios by a combination of three different approaches:

• Augmented, virtual elements are designed with predefined la-
bels, and gaze on elements is processed automatically by mesh-
based hit detection.

• Real-world AOIs are annotated with an image-based visualiza-
tion technique after virtual AOIs are processed.

• The annotation of real-world AOIs is further supported by spatial
annotations in a 3D model of the environment.

With this combination of approaches, we support static AOIs that
do not have to be trained by an algorithm. Image-based and spa-
tial annotation provides flexible strategies to label gaze: Frequently
visited AOIs can be annotated in 3D space, allowing efficient label-
ing of all fixations in this area. Image-based labeling helps identify
where AOIs are, judge ambiguous cases outside of margin areas,
and annotate data where it would be more effort to draw AOIs in
3D space. Hence, our resulting visualization framework consists of
a 3D scene view and timelines that represent fixations of individual
participants by thumbnail images. Both views are linked and com-
plement each other through spatial (3D view) and temporal (time-
lines) representations of the data.

4.2. Visualization Framework

Our visualization framework consists of two main components
(Figure 1) – the gaze replay and a timeline visualization – linked to-
gether to enable spatial and image-based annotation. The following
paragraphs first describe the components in detail. The supported
annotation techniques are explained in Section 4.3.

Gaze Replay A textured mesh is integrated into the gaze replay to
reconstruct the AR scene from an experiment and simulate the par-

ticipants’ movements and gaze behavior in a 3D view. The partici-
pants are represented by spheres with their names visible as floating
labels. A ray is emitted from the sphere to represent the gaze direc-
tion. Movement within the 3D view is enabled to examine the AR
scene from different perspectives. The individuals’ points of regard
are shown during replay and linked for analyses using the timeline.
The gaze points up to the current point in time can be visualized by
little spheres to highlight the regions already viewed. The spatial
annotation is done in the gaze replay and provides a spatial context
for the fixations, which is explained in Section 4.3.

Timeline Visualization The gaze data and video recordings col-
lected during the experiment are used to create the timeline visu-
alization. Here, the fixations extracted from the gaze data are posi-
tioned on the timeline. Each fixation is represented by a thumbnail
image obtained from the video recording. The height and width of
the image represent the distance of the fixation from the viewer,
and a bar around the thumbnail indicates the length of the fixation
(Figure 4a). The distance to the investigated AOI is encoded by the
height of the displayed bar and decreases when the AOI is investi-
gated from farther away. The consecutive fixations of each partici-
pant are positioned horizontally in separate timelines for each par-
ticipant. The sliders in the timeline and the gaze replay are linked
to show the data synchronized from different perspectives. Moving
the slider at any point in time shows the position of the partici-
pants and their point of regard in the gaze replay. The timeline vi-
sualization provides a horizontal and vertical zoom slider to switch
between a detailed view and an overview of all participants and
all fixations (Figure 1(f)). The timeline visualization supports three
different view modes (Figure 3) to provide more information about
the labeled fixations. Enabling one of these views (Figure 1(e)) pro-
vides more information about the labeled fixations:

Annotated fixations are grayed out and do not allow interac-
tion. Only the unlabeled fixations can be selected and labeled
for image-based annotation (Section 4.3). In the overview mode,
the approximate number and position of the remaining unlabeled
fixations can be determined (Figure 3a).

Virtual/real AOIs display all labeled fixations in the respective
category, according to the AOI legend. In the overview, the ratio
of virtual and real AOIs can be detected and AOI patterns in the
fixation sequences can be observed (Figure 3b).

Color AOIs present a view in which all labeled fixations are col-
ored according to their AOIs. After the labeling process is com-
plete, the AOI sequences and patterns can be identified in the
overview mode (Figure 3c).

4.3. Annotation Support

We consider three techniques and possible filtering operations to
constrain the data to be labeled. Here, image-based and spatial an-
notation are part of our visualization framework.

Fixation-based Annotation We see fixation-based labeling as the
baseline approach we want to compare against because it can be
performed in most software suites of eye tracking vendors and is
independent of dynamically moving 2D boundary shapes for AOI
annotation. We implemented this approach within the same frame-
work as our approach to provide a comparable interface for the
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(a) Annotated fixations (b) Virtual/real AOIs (c) Color AOIs

Figure 3: Different views of the timeline visualization showing annotated fixations and different AOI categories.

(a) Image-based annotation

(b) Spatial annotation

Figure 4: Annotation approaches supported in our framework. (a) Selecting a fixation in the timeline highlights the fixated region in the gaze
replay with a green box. (b) Defining AOI area within the gaze replay labels all fixations that lie within this region.

evaluation. Fixation-based annotation is done by assigning AOI la-
bels based on cross-checking with video replay (Figure 6). Here,
individual fixations must be selected to display the fixated region
within the video replay and then perform the labeling. In contrast,
image-based annotation includes a thumbnail image of the fixated
region for each fixation. The main difference with image-based an-
notation is the information contained in the fixation.

Image-based Annotation The individual thumbnails in the time-
line visualization are labeled with the corresponding AOI. Each
thumbnail represents a fixation and contains the corresponding 3D
gaze position to provide a spatial context in the gaze replay. For
annotation of fixations, one or more thumbnails are first clicked,
which are then highlighted in green, and at the same time this fo-
cused region is mapped in the gaze replay using the 3D gaze infor-
mation provided (Figure 4a). Each time a fixation is selected, the
camera moves in gaze replay to show the fixation region directly.
For the labeling, an existing AOI can be selected via the AOI leg-
end or a new AOI can be defined. There are two possible options
for multi-selection of fixations with our image-based and fixation-
based annotation method. The first option is to click on each thumb-
nail. An alternative is to select a thumbnail and successive fixations

via hotkeys. Additionally, the remaining fixations function can be
enabled to select all remaining unlabeled fixations.

Spatial Annotation The spatial annotation is performed within the
gaze replay by placing a cube on the AOI region in the 3D model.
This is achieved by clicking on an area in the mesh to align a cube to
it. In edit mode, the cube can be moved and resized in all three axes
(Figure 5). It can also be deleted as long as it has not yet been saved.
Adjusting the rotation of the cube is not supported. Before creating
the AOI cube, an existing AOI is selected from the AOI legend,
or a new AOI is defined. All fixations in the timeline visualization
whose 3D gaze positions are in the selected AOI region are labeled
whenever an AOI cube is saved (Figure 4b).

Filter Options We can load any number of datasets of participants
and decide which of them should be considered and labeled. For
this purpose, there is the participant list with all loaded datasets
that can be deselected (Figure 1 (c)). Deselection results in the re-
moval of the corresponding fixation sequence in the timeline visu-
alization, thus excluding the corresponding fixations from spatial
annotation. Another filter operation is the annotated fixations func-
tion (Figure 3a). It prevents fixations that are already annotated in
both components from being annotated again.
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Figure 5: An AOI region is defined by placing a cube. It can be moved and scaled using the axes to take the position and size of the real AOI.
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Figure 6: Different types of annotation. (1) Fixation-based label-
ing by investigating gaze replays and assigning AOI labels to in-
dividual fixations. (2) Image-based labeling where thumbnails di-
rectly show AOI images in the timeline and multiple fixations on the
same AOI can be labeled simultaneously.

AOI legend The AOI legend consists of a virtual and a real part. It
lists all predefined AOIs as well as the newly added AOIs. The leg-
end can be used to label the fixations and to create the AOI cubes,
but also to determine the percentage of fixations that have been
labeled with the corresponding AOIs. Reaching 100% in total cor-
responds to complete labeling of the fixations.

5. Comparative Evaluation

We present a showcase scenario to discuss our approach and com-
pare it with fixation-based labeling as a baseline technique.

5.1. Scenario: The Gallery

We decided to showcase our technique with data from multiple
people investigating a small art gallery at our institute. The gallery
consists of pictures that we augmented with virtual content such as
additional images, information text, and videos. This enrichment
simulates applications as they have been implemented in the con-
text of a museum or comparable educational environments.

Stimuli The investigated pictures comprise artwork of different
styles (Figure 7).

1. Software feathers show an image of a feather built from soft-
ware structures. Next to the image, a detailed description of the
underlying data was presented virtually.

2. RoboPix shows a painting by a robot using the drip technique in
the style of Jackson Pollock. The virtual content for the picture
showed a video that outlines how such a painting is created.

3. Hough images applies Hough transformations to simple shapes
in order to create new geometrical shapes. A simple Hough
transformation task was given on the virtual board.

4. Bubble hierarchies use radial structures to depict hierarchical
data structures. The virtual content includes a simple question
about the picture.

5. Frayed cell diagrams applies Voronoi tessellation to an image of
Abraham Lincoln. An original picture of it is shown virtually.

Task and Participants Overall, we asked 10 participants to walk
through the gallery and solve tasks according to the picture and
the virtual information. Two visiting orders for the pictures were
predefined and participants were split into two groups. This way,
we aimed to create two different patterns for the latter annotation
task. On average, it took 7 minutes to complete the tasks.

5.2. Annotation Task

To annotate the recorded data, we recruited 8 scientific employ-
ees (4 female, 4 male) from our institute. Five of them were in an
age group between 26 and 30, while three were between 31 and 40
years of age. All of the participants had expertise in visualization
research for at least 1 to 3 years. Four of them had more than 3
years of experience. Four of the participants had additional knowl-
edge of eye tracking data analysis. We do not exclusively address
our approach to visualization experts, but for the comparison, we
wanted to provide optimal circumstances to achieve the best per-
formance with both techniques. We hypothesize that non-experts
are also capable of performing this task with a short learning time
and a potentially longer annotation time.

Our study consisted of two annotation tasks using the Visual
Gaze Labeling approach and the Fixation Labeling approach. The
Visual Gaze Labeling approach provides the participants the possi-
bility to annotate AOIs in 3D space as well as labeling fixations di-
rectly based on thumbnail images. The Fixation Labeling approach
only allows labeling fixations by viewing the corresponding video
replay. The viewed artworks (Section 5.1) and their virtual con-
tents were considered as virtual and real AOIs. Here, the fixations
that would be labeled with a virtual and real Hough image AOI
were used for the training phase, so that the fixations for the two
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Figure 7: Gallery with algorithmically created artwork: (1) Software feathers, (2) RoboPix, (3) Hough images, (4) Bubble hierarchies, (5)
Frayed cell diagrams. The enumerated images also provided augmented information in form of text, videos, and interactive questions.

tasks could each be labeled with four virtual and four real AOIs.
We predefined the AOIs in the AOI legend so that they could be se-
lected directly. The task was to label all fixations. Fixations that did
not belong to any of the artworks were labeled with the real AOI
category: unknown.

The two tasks were performed sequentially, with the order of the
two approaches and the two datasets alternating for each partici-
pant. First, the use case study was presented, and all AOIs were
briefly shown and described. The first task consisted of a training
phase and subsequent labeling of the corresponding dataset. This
was followed by a questionnaire to determine the usability of the
approach used. The same procedure was repeated for task 2.

In a within-subject design, we separated the dataset into two
groups consisting of data from 4 participants in order to keep the
time for both annotation tasks within a bearable time frame for the
participants. We excluded one part of the data to use it in our train-
ing phases for both annotation tasks. The first data group consisted
of 999 fixations, of which 305 were unlabeled. The second data
group consisted of 766 fixations, of which 300 were unlabeled.
We logged annotation times for both tasks and took a screen record-
ing during the study to identify annotation strategies and patterns
for the two tasks to compare them between participants.

5.3. Results

For the evaluation, we considered qualitative and quantitative as-
pects. The completion time and labeling performance were in-
spected, as well as applied strategies to solve the task.

Performance On average, both annotation tasks were performed
in 43 min in total. Individually, it took 20 min (SD = 3.3 min) to an-
notate the data with Visual Gaze Labeling and 23 min (SD = 6 min)
with the other approach. Half of the participants performed better
with Visual Gaze Labeling (mean = 18 min, mean = 26 min with
Fixation Labeling). The other half of the participants performed
better with Fixation Labeling (mean = 18 min, mean = 23 min with
Visual Gaze Labeling), while one of them performed equally with
both techniques.

Fixation Distribution on AOIs To examine the distribution of
gaze on AOIs, we first assigned each fixation to the AOI with the
most votes. Then, we examined the relative distribution for both

approaches (Figure 8). The distribution of the data shows that more
than 25% of the fixations were labeled with the real Lincoln image
AOI. Fixations with Hough image were removed from the dataset to
serve as an example for the training phase. Despite the fact that fix-
ations with virtual AOIs were already labeled automatically, addi-
tional fixations in this category were labeled during the task (4.2%
for Visual Gaze Labeling, 23.5% for Fixation Labeling).

Agreement We further investigated how consistently participants
annotated the data. Deriving a ground truth for the data is hard as
point-based eye tracking measures inherently contain uncertainty
because not a point but a foveated area is perceived. We used the
majority vote to measure agreement. A comparison of the two tasks
resulted in an average agreement of 96.06% for Visual Gaze La-
beling and 88.51% for Fixation Labeling. Therefore, we examined
the agreement between the individual AOI categories (Figure 9).
The distribution of agreement of the AOIs for Fixation Labeling is
more spread out. The average agreement of virtual AOIs for Fixa-
tion Labeling is higher compared to the other approach. It should
be noted that participants labeled fixations with virtual AOIs much
less frequently in Visual Gaze Labeling (4.2%) than with Fixation
Labeling (23.5%). In addition, a lower agreement was obtained for
fixations with unknown AOIs. We also measured inter-annotator
agreement (IAA) using the Fleiss-Kappa statistic [Fle71] (0.97 for
Visual Gaze Labeling and 0.92 for Fixation Labeling).

Applied Strategies There are various approaches to label fixations
with our implemented framework. Figure 10 illustrates a workflow
for an annotation strategy centered around spatial annotation. Sev-
eral strategies were used during the study.

The annotation strategy for Fixation Labeling did not allow too
much variability. The only way was to select fixations in the time-
line and then label them. Key shortcuts could be used for more
efficient labeling of successive fixations. For example, 7 of the par-
ticipants enabled the annotated fixations feature to skip fixations
that were already labeled and used key shortcuts for labeling. An-
other participant instead enabled the colored AOIs feature to de-
cide which AOI the fixations should have based on the neighboring
fixations. One participant chose the strategy of selecting multiple
images with the same AOI assignment and then annotating them to
make fewer annotations. In addition, this participant explicitly did
not annotate the unknown fixations in order to select and annotate
them at the end using the remaining fixations feature.
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Figure 8: Average relative distribution of fixations on real and vir-
tual AOIs after labeling.

Our Visual Gaze Labeling approach allowed different strategies
to achieve the final annotation. This required first exploring the data
and then applying the annotation techniques. Figure 11 shows the
workflow of the participants’ annotation process, which reveals the
annotation strategies used.

Exploration The initial strategy of all participants was to apply
spatial annotation. To do this, they started with a brief exploration
phase to figure out where to place the AOI cube. They examined
where all unlabeled fixations were placed. The fixation positions
were shown in the gaze replay by enabling the remaining fixations
option. Dense fixation areas were evident, as shown in the picture
(Figure 10 (2)). To locate the different AOIs, they walked around
in the 3D view. Another approach was to select some of the un-
labeled fixations in the timeline and display their position in the
gaze replay. On this basis, spatial annotation was performed. The
sequences of P3 and P4 (see Figure 11) exhibit this behavior.

Spatial Annotation By defining AOI cubes in the reconstructed
3D space, it is possible to label numerous fixations simultaneously
by performing hit detections along the gaze ray. P1 and P4 mainly
used spatial annotation for labeling. After a brief exploration, a
bounding box was defined to see if all fixations were detected.
If there were still many fixations around the defined AOI cube, a
larger box was created. These participants annotated the images ac-
cording to the hanging order. All participants checked where the re-
maining fixations were located using the remaining fixations option
before proceeding with spatial annotation. AOI cubes were also de-
fined for the virtual AOIs if there were multiple unlabeled fixations.
Remaining isolated fixations that did not belong to any AOI were
finally labeled directly as unknown. Three participants recognized
that there were several fixations in a region that did not belong to
one of the important AOIs. An AOI cube was placed at this place
with the unknown AOI so that several fixations were labeled.

Combination with Image-based Annotation Six participants
mainly used spatial annotation. After larger areas were covered by
the AOI cubes, approximately the remaining 40 fixations were la-
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Figure 9: Each fixation was assigned a real or virtual AOI. On this
basis, the relative agreement was calculated for both approaches.

beled by image-based annotation. Alternatively, the remaining fix-
ations could be selected and labeled individually. Two participants
used the technique of looking at the remaining fixations first to in-
vestigate whether they could all be labeled as unknown. If not, the
corresponding fixations were then searched for and labeled, and fi-
nally, the unknown fixations were labeled. P4 regularly switched
between the two annotation methods. Some of the participants
switched to timeline visualization to detect multiple fixations in the
same region and again created an AOI cube.

Patterns in Annotation Sequences Figure 11 reveals patterns in
the history of sequences of the participants. P2, P3, P5 required
the longest time for the annotation task. We suspect that this is
because all of them spent too much time on the image-based ap-
proach. They started with the spatial annotation approach and spent
a lot of time on the image-based annotation halfway through. An-
other pattern we noticed concerns all participants: After creating
spatial annotations, they spent time exploring fixations by enabling
the remaining fixations options or selecting fixations in the time-
line visualization. During the study, there was repeated alternating
between the two methods, which resulted in a frequent change be-
tween 2D and 3D views. Except for P2 and P7, all participants
increased their spatial annotation speed over time (indicated by de-
creasing length of green boxes). This is consistent with usability
observations regarding how easy it is to use the technique after a
learning period. We assume that with larger datasets, this would
have resulted in only minor changes in the sequence history and a
slightly higher completion time, depending on the fixation distri-
bution outside the AOI regions. On the other hand, fixation-based
annotation would require significantly more time, as the annotation
process here is constrained by the manual annotation of all fixations
from each dataset.

Usability For both tasks, we asked participants how they would
use the tool. We asked them to choose the methods they felt were
most useful for the Visual Gaze Labeling task. P1, P2, P3, P6
and P8 preferred the combination of spatial annotation and image-
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Figure 10: Workflow for a strategy using spatial annotation. (1) In the initial state all virtual AOIs are annotated automatically (shown as
purple in timeline). (2) All unlabeled fixations can then be highlighted both in the timeline and gaze replay view to identify regions that
require manual annotation. (3) Placing a cube around a real AOI region in the gaze replay annotates all fixations that intersect with that
region. In the timeline, fixations can be color-coded by AOI. (4) After covering the most frequently viewed real AOIs using spatial annotation,
the number of unlabeled fixations is greatly reduced compared to the initial state (annotated real AOIs now shown in orange in the timeline).
(5) Still remaining unlabeled AOIs can be selected in the timeline to highlight their spatial location for further refinement of the spatial
annotation.
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Figure 11: Annotation strategies used by the participants over time. We can observe different patterns in participants’ workflows, e.g., P2,
P3, P5 shift from primarily using spatial annotation to using image-based annotation during the second half.

based annotation. They liked that the context to the real world was
provided by a 3D model and that they could see the attention of
the AOIs more clearly in this model than in the timeline. P4, P5
and P7 found only the spatial annotation helpful. P4 and P7 also
solved the task mainly using this technique. P4 found it very intu-
itive and convenient to use. The participant argued that with spatial
labeling, human error could be avoided because there was no need
to spend effort on individual fixations, as spatial labeling was more
automated. We also observed this during the study. When using
fixation-based labeling, they sometimes mislabeled fixations with-
out their knowledge. With spatial annotation, this would have been
less likely to occur. Additionally, this error would be more likely

to be detected because more data would be affected. The problem
could be resolved by adding a new AOI cube.

Positive aspects for Fixation Labeling were also mentioned. P1
and P6 liked the straightforward and structured linear workflow
where fixations could be labeled directly one after the other so that
nothing was forgotten to be labeled. In addition, P1, who had first
performed the Visual Gaze Labeling task, found it more convenient
that they did not have to switch between the 2D and 3D views, so
the workflow was not interrupted, allowing them to achieve good
labeling performance. In general, it was also mentioned that usabil-
ity was easy and efficient for time spans with fixations that could be
assigned to the same AOI, as multiple fixations could be quickly se-

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

381



Öney et al. / Visual Gaze Labeling for Augmented Reality Studies

lected via hotkeys. Frequent switching between AOIs, on the other
hand, required significantly more interaction so that here manual
labeling had taken more time and resulted in frustration for the par-
ticipants. Thus, the efficiency of this approach depended on the la-
beled dataset.

When asked about the two tasks, positive aspects were men-
tioned for both approaches. However, when they had to decide
which approach they would choose, spatial and image-based anno-
tation was chosen by all of them. They argued that they got a better
overview of the scene in the gaze replay, so gaze attention could be
explored better. In addition, spatial annotation has more potential
for efficient labeling once it is learned because less interaction was
needed for labeling here and the performance did not depend on the
type of dataset while Fixation Labeling suffered from frequent at-
tention shifts. Some participants mentioned that mental effort was
significantly lower for spatial labeling. It was also suggested that
the defined AOIs in gaze replay could be reused for other datasets
in the same environment.

We further asked our participants to fill out standardized ques-
tionnaires for each labeling technique, i.e., the NASA task load in-
dex (TLX) and the system usability scale (SUS). The SUS resulted
in an average score of 77 for Fixation Labeling (SD = 8.5) and 61
for Visual Gaze Labeling (SD = 19.5). The high standard devia-
tion results from one participant rating the approach with a score of
25, although this participant had achieved a better annotation time
with our method. We interpret the low score with the fact that the
user interface was more complex in design with interactions in 3D
which not all participants were familiar with.

The NASA TLX scale ranged from 0 (low) to 20 (high). The
evaluation showed that the participants perceived a higher perfor-
mance when solving the task with the Visual Gaze Labeling ap-
proach (mean = 15.5, SD = 4.3) than with the Fixation Labeling
approach (mean = 13.5, SD = 5). Additionally, they perceived less
physical demand with Visual Gaze Labeling (mean = 3.6, SD = 2.6)
compared to Fixation Labeling (mean = 5.6, SD = 3.6). The aver-
age scores for the other workload demands were slightly higher for
the Visual Gaze Labeling approach. The participants perceived the
approach as more mentally and temporally demanding and required
more effort. This is due to the fact that creating the AOI cubes in
3D was more challenging than manual labeling.

6. Discussion

We base our discussion on the results of our evaluation and ob-
servations we made during the development and application of the
presented approach.

Scalability We tested the annotation performance on a rather small
subset of our recorded data. This was mainly due to the limited
time frame we had for testing per participant. As a consequence,
fixation-based labeling and the mixed approach resulted in com-
parable annotation times. We hypothesize that Fixation Labeling
scales linearly with an increasing number of fixations to label while
spatial annotation in particular will create simultaneous annotations
for all fixations within an AOI. Therefore, there exists a thresh-
old where Fixation Labeling becomes the less efficient approach

which we will have to determine in future experiments. Regarding
the scalability with respect to the number of AOIs, the color-based
scarfplot visualization is limited to the number of perceivable col-
ors [HB03]. For the annotation phase, the addition of more labels
would be less problematic, but for the overview of the data, alter-
native visualizations, for instance, based on hierarchical aggrega-
tion [BKR∗16] might support the managing of many AOIs.

Dynamic AOIs Dynamic AOIs (e.g., moving people) are currently
covered by fixation and image-based labeling. Spatial annotation is
not possible at the moment. Tracking spatially annotated AOIs is
already challenging in 2D and would in many cases require ad-
ditional external tracking devices in AR experiments [KBPR22].
For individual recordings, keyframe-based adjustment of boundary
shapes might be an option. However, movement in different record-
ings still has to be handled individually.

Spatial Context Even if the annotation strategies did not result
in substantial performance differences, we noticed from the com-
ments of the participants that spatial context played an important
role in solving the task, and spatial annotation was preferred in gen-
eral. We see this as an indicator that AR analysis scenarios should
consider including spatial information for context.

7. Conclusion

We presented a visualization approach to analyze gaze in AR sce-
narios. We address the common issue of annotation of AOIs in this
context. While we take advantage of labeling gaze on virtual ele-
ments automatically, real-world content is included by spatial and
image-based annotation. Compared to fixation-based labeling, our
new approach provides efficient means to annotate and interpret
gaze data from multiple participants simultaneously.

For future improvements, we plan to facilitate the interaction in
gaze replay with additional capabilities to improve usability in 3D
space. We also want to extend our support for dynamic objects. Al-
though it is possible to identify moving content in the thumbnails of
the image-based timeline visualization, spatial annotation of move-
ment trajectories might further improve annotation. However, this
probably has to be applied to individual recordings, as objects will
in most cases not move identically for each participant. Overall, we
see this work as an important step to help understand how people
perceive augmented environments and how cognitive processes in
this context work to solve specific tasks and perform interactions
with novel visual interfaces.

Acknowledgements

This work is supported by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Excellence
Strategy – EXC 2120/1 – 390831618 and SFB 1244 – Project ID
279064222. Open Access funding enabled and organized by Pro-
jekt DEAL.

References
[AABW12] ANDRIENKO G., ANDRIENKO N., BURCH M., WEISKOPF

D.: Visual analytics methodology for eye movement studies. IEEE

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

382



Öney et al. / Visual Gaze Labeling for Augmented Reality Studies

Transactions on Visualization and Computer Graphics 18, 12 (2012),
2889–2898. 2

[BBHD10] BUSCHER G., BIEDERT R., HEINESCH D., DENGEL A.:
Eye tracking analysis of preferred reading regions on the screen. In CHI
’10 Extended Abstracts on Human Factors in Computing Systems (2010),
p. 3307–3312. 2

[BCNS15] BIANCO S., CIOCCA G., NAPOLETANO P., SCHETTINI R.:
An interactive tool for manual, semi-automatic and automatic video an-
notation. Computer Vision and Image Understanding 131, 1 (2015), 88–
99. 2

[BHM∗22] BECHER M., HERR D., MÜLLER C., KURZHALS K.,
REINA G., WAGNER L., ERTL T., WEISKOPF D.: Situated visual anal-
ysis and live monitoring for manufacturing. IEEE Computer Graphics
and Applications 42, 2 (2022), 33–44. 2

[BKR∗16] BLASCHECK T., KURZHALS K., RASCHKE M.,
STROHMAIER S., WEISKOPF D., ERTL T.: AOI hierarchies for
visual exploration of fixation sequences. In Proceedings of the ACM
Symposium on Eye Tracking Research and Applications (2016),
pp. 111–118. 10

[BKR∗17] BLASCHECK T., KURZHALS K., RASCHKE M., BURCH M.,
WEISKOPF D., ERTL T.: Visualization of eye tracking data: A taxonomy
and survey. Computer Graphics Forum 36, 8 (2017), 260–284. 2, 3

[CCC∗16] CADENA C., CARLONE L., CARRILLO H., LATIF Y.,
SCARAMUZZA D., NEIRA J., REID I., LEONARD J. J.: Past, present,
and future of simultaneous localization and mapping: Toward the robust-
perception age. IEEE Transactions on Robotics 32, 6 (2016), 1309–1332.
3

[CKK19] CLAY V., KÖNIG P., KOENIG S.: Eye tracking in virtual real-
ity. Journal of Eye Movement Research 12, 1 (2019), 3:1–18. 2

[DB11] DÜNSER A., BILLINGHURST M.: Evaluating augmented reality
systems. In Handbook of Augmented Reality, Furht B., (Ed.). Springer,
NY, 2011, pp. 289–307. 2, 3

[Duc17] DUCHOWSKI A. T.: Eye tracking methodology: Theory and
practice. Springer, Cham, 2017. 2

[Fle71] FLEISS J. L.: Measuring nominal scale agreement among many
raters. Psychological Bulletin 76, 5 (1971), 378–382. 7

[FLFCBNVM18] FRAGA-LAMAS P., FERNÁNDEZ-CARAMÉS T. M.,
BLANCO-NOVOA O., VILAR-MONTESINOS M. A.: A review on in-
dustrial augmented reality systems for the industry 4.0 shipyard. IEEE
Access 6, 1 (2018), 13358–13375. 2

[GSL∗02] GOLDBERG J. H., STIMSON M. J., LEWENSTEIN M., SCOTT
N., WICHANSKY A. M.: Eye tracking in web search tasks: design impli-
cations. In Proceedings of the 2002 symposium on Eye tracking research
& applications (2002), pp. 51–58. 3

[HB03] HARROWER M., BREWER C. A.: ColorBrewer.org: An online
tool for selecting colour schemes for maps. The Cartographic Journal
40, 1 (2003), 27–37. 10

[HB05] HAYHOE M., BALLARD D.: Eye movements in natural behavior.
Trends in Cognitive Sciences 9, 4 (2005), 188–194. 2

[KBM∗21a] KAPP S., BARZ M., MUKHAMETOV S., SONNTAG D.,
KUHN J.: ARETT: Augmented reality eye tracking toolkit for head
mounted displays. Sensors 21, 6 (2021), 2234:1–18. 3

[KBM∗21b] KAPP S., BARZ M., MUKHAMETOV S., SONNTAG D.,
KUHN J.: ARETT R Package: Augmented Reality Eye Tracking
Toolkit for Head Mounted Displays, 2021. Last accessed 13.03.2023.
URL: https://github.com/AR-Eye-Tracking-Toolkit/
ARETT-R-Package. 3

[KBPR22] KURZHALS K., BECHER M., PATHMANATHAN N., REINA
G.: Evaluating situated visualization in AR with eye tracking. In Pro-
ceedings of the Workshop on Beyond Time and Errors on Novel Evalua-
tion Methods for Visualization (2022), pp. 1–8. 2, 10

[KFBW16] KURZHALS K., FISHER B., BURCH M., WEISKOPF D.: Eye
tracking evaluation of visual analytics. Information Visualization 15, 4
(2016), 340–358. 2, 3

[KHH∗15] KURZHALS K., HLAWATSCH M., HEIMERL F., BURCH M.,
ERTL T., WEISKOPF D.: Gaze stripes: Image-based visualization of
eye tracking data. IEEE Transactions on Visualization and Computer
Graphics 22, 1 (2015), 1005–1014. 2

[KHSW16] KURZHALS K., HLAWATSCH M., SEEGER C., WEISKOPF
D.: Visual analytics for mobile eye tracking. IEEE Transactions on
Visualization and Computer Graphics 23, 1 (2016), 301–310. 2

[KKBW22] KOCH M., KURZHALS K., BURCH M., WEISKOPF D.: Vi-
sualization psychology for eye tracking evaluation. In Proceedings of the
Workshop on Visualization Psychology (2022), pp. 1–18. 2

[Kur21] KURZHALS K.: Image-based projection labeling for mobile eye
tracking. In Symposium on Eye Tracking Research and Applications
(2021), pp. 1–12. 3

[Liv05] LIVINGSTON M. A.: Evaluating human factors in augmented
reality systems. IEEE Computer Graphics and Applications 25, 6 (2005),
6–9. 2

[LSO20] LI T.-H., SUZUKI H., OHTAKE Y.: Visualization of user’s at-
tention on objects in 3D environment using only eye tracking glasses.
Journal of Computational Design and Engineering 7, 2 (2020), 228–237.
2

[Mic16] MICROSOFT: MixedRealityToolkit-Unity, 2016. Last ac-
cessed 17.03.2023. URL: https://github.com/microsoft/
MixedRealityToolkit-Unity. 3

[Mic22] MICROSOFT: MixedRealityToolkit-Unity, 2022. Last accessed
17.03.2023. URL: https://learn.microsoft.com/en-us/
mixed-reality/world-locking-tools/. 3

[MPPO19] MEISSNER M., PFEIFFER J., PFEIFFER T., OPPEWAL H.:
Combining virtual reality and mobile eye tracking to provide a naturalis-
tic experimental environment for shopper research. Journal of Business
Research 100, 1 (2019), 445–458. 2

[MT21] MUCHEN Y., TAMKE M.: Augmented reality for experience-
centered spatial design: A quantitative assessment method for architec-
tural space. In Towards a new, configurable architecture: Proceedings of
the eCAADe Conference-Volume 1 (2021), pp. 173–180. 2

[NBW16] NETZEL R., BURCH M., WEISKOPF D.: Interactive scanpath-
oriented annotation of fixations. In Proceedings of the ACM Symposium
on Eye Tracking Research and Applications (2016), pp. 183–187. 3

[OPB∗23] ÖNEY S., PATHMANATHAN N., BECHER M., SEDLMAIR
M., WEISKOPF D., KURZHALS K.: Visual Gaze Labeling for Aug-
mented Reality Studies, 2023. doi:10.18419/darus-3384. 2

[PB06] POOLE A., BALL L. J.: Eye tracking in hci and usability re-
search. In Encyclopedia of Human Computer Interaction, Ghaoui C.,
(Ed.). IGI Global, Hershey, PA, 2006, pp. 211–219. 2

[PHG∗04] PAN B., HEMBROOKE H. A., GAY G. K., GRANKA L. A.,
FEUSNER M. K., NEWMAN J. K.: The determinants of web page view-
ing behavior: an eye-tracking study. In Proceedings of the 2004 sym-
posium on Eye tracking research & applications (2004), pp. 147–154.
3

[PKP10] PONTILLO D. F., KINSMAN T. B., PELZ J. B.: Semanticode:
Using content similarity and database-driven matching to code wearable
eyetracker gaze data. In Proceedings of the ACM Symposium on Eye-
Tracking Research and Applications (2010), pp. 267–270. 3

[SG00] SALVUCCI D. D., GOLDBERG J. H.: Identifying fixations and
saccades in eye-tracking protocols. In Proceedings of the Symposium on
Eye Tracking Research & Applications (2000), pp. 71–78. 3

[SG22] SUNDSTEDT V., GARRO V.: A systematic review of visualiza-
tion techniques and analysis tools for eye-tracking in 3d environments.
Frontiers in Neuroergonomics 3, 1 (2022), 910019:1–15. 3

[SND10] STELLMACH S., NACKE L., DACHSELT R.: Advanced gaze
visualizations for three-dimensional virtual environments. In Proceed-
ings of the Symposium on Eye-Tracking Research & Applications (2010),
pp. 109–112. 4

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

383

https://github.com/AR-Eye-Tracking-Toolkit/ARETT-R-Package
https://github.com/AR-Eye-Tracking-Toolkit/ARETT-R-Package
https://github.com/microsoft/MixedRealityToolkit-Unity
https://github.com/microsoft/MixedRealityToolkit-Unity
https://learn.microsoft.com/en-us/mixed-reality/world-locking-tools/
https://learn.microsoft.com/en-us/mixed-reality/world-locking-tools/
https://doi.org/10.18419/darus-3384


Öney et al. / Visual Gaze Labeling for Augmented Reality Studies

[VRZ∗17] VÁVRA P., ROMAN J., ZONČA P., IHNÁT P., NĚMEC M.,
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