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Figure 1: Visualization of recorded movement and gaze tracking data from four participants. The gaze replay view (left) allows one to
view data similar to a video player. Gaze rays indicate the current point of regard. Heatmaps display the aggregated distribution of gaze
for a specific time span. The space-time cube (right) is linked with the gaze replay and provides a spatio-temporal overview of the data.
Trajectories visualize movement and the gaze cubes display fixations of eye movement. Participant data can be filtered interactively.

Abstract
The distribution of visual attention can be evaluated using eye tracking, providing valuable insights into usability issues and
interaction patterns. However, when used in real, augmented, and collaborative environments, new challenges arise that go
beyond desktop scenarios and purely virtual environments. Toward addressing these challenges, we present a visualization
technique that provides complementary views on the movement and eye tracking data recorded from multiple people in real-
world environments. Our method is based on a space-time cube visualization and a linked 3D replay of recorded data. We
showcase our approach with an experiment that examines how people investigate an artwork collection. The visualization pro-
vides insights into how people moved and inspected individual pictures in their spatial context over time. In contrast to existing
methods, this analysis is possible for multiple participants without extensive annotation of areas of interest. Our technique was
evaluated with a think-aloud experiment to investigate analysis strategies and an interview with domain experts to examine the
applicability in other research fields.

CCS Concepts
• Human-centered computing → Visualization;

† e-mail:Nelusa.Pathmanathan@visus.uni-stuttgart.de

1. Introduction

Virtual reality (VR) and augmented reality (AR) technology pro-
vides countless new possibilities for extending the design space of
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interfaces for interaction and visualization. As an example, situated
analysis [MH12] aims to display visualization in spatial context of
the real world, often related to the source from which the visualized
data is coming from (e.g., sensor-equipped machinery [BHM∗22]).
Since such design significantly differs from traditional WIMP (win-
dows, icons, menus, pointers) environments, one important ques-
tion in this context is: how can we evaluate such scenarios?

Measuring user performance for specific tasks is important but
provides little information explaining why a task was performed
well or what issues came up. To this point, the evaluation of VR
and AR scenarios is often restricted to interviews and standardized
questionnaires [DB11, MSK∗20]. If quantitative measurements are
recorded over time (e.g., physiological measures [AF04]), they typ-
ically lack the spatial context in which they were acquired. As a
consequence, if no video is recorded for post-experimental analy-
sis, it becomes often hard to interpret important events in the data,
for instance, an increase in heart rate.

Further, the analysis of movement in a spatio-temporal context is
of high relevance for understanding complex behavior patterns of
moving subjects (e.g.,people, animals, cars). The inclusion of eye
tracking technology into modern head-mounted displays (HMDs)
allows tracking gaze for interaction [Duc18] and the evaluation of
perceptual and cognitive aspects of human behavior [JK03,MB14].
To this point, the analysis of HMD movement and gaze data is
mainly restricted to single user analyses or requires tedious anno-
tation work of areas of interest (AOIs) in every recorded dataset.

We present a new approach to support interpreting the move-
ment and gaze behavior of multiple people in real, virtual, and aug-
mented reality environments, either recorded individually in sepa-
rate sessions or simultaneously in a single session. External data
from more detailed models are incorporated to provide additional
environmental context. By mapping the data into a unified virtual
model, we display movement and gaze trajectories in complemen-
tary visualizations (Figure 1): The gaze replay displays the 3D spa-
tial context of the environment in which the data was recorded. The
view serves as a replacement for the video-based replay for tradi-
tional eye-tracking experiments in 2D. Hence, a replay of recorded
data shows how a single or multiple persons (displayed by human
figure sprites) moved through the experimental setup and where
they looked at (displayed by gaze rays). The second view shows a
spatio-temporal overview of the data to identify important events
and interpret common movement patterns and distributions of vi-
sual attention. The focus of our research is on scenarios that rely on
the 3D spatial embedding. Hence, the third view is an immersive
mode that allows analysts to investigate data in the context it was
recorded. The visualization helps them immerse themselves in the
perspective of the participants.

Our contributions are a visualization approach that combines
gaze and movement data from multiple people with additional data,
such as a 3D model into a unified model for data exploration. In
contrast to traditional eye tracking analysis methods [HNA∗11],
we retain the 3D spatial context of the environment and support
the comparison of multiple participants simultaneously. To this
point, space-time cube visualizations focused either on trajectories
of movement or on gaze data. With our new technique, i.e., the
gaze cubes, we show that a combination of both can be achieved to

analyze data. To showcase our approach, we recorded experiments
with asynchronous and collaborative behavior. We evaluated our
approach with a think-aloud experiment to examine task solution
strategies, and with an expert interview to identify requirements
for further application domains.

We see the presented approach as a promising means for the
analysis of the increasing number of experiments conducted in VR
and AR, where spatial context is of high relevance for the inter-
pretation of the data. We provide our software implementation to
researchers to evaluate their AR and VR experiments. The Unity
source code of our visualizations is available under [POB∗23].

We will discuss related work (Section 2), followed by proposing
a framework for visualizing behavioral data (Section 3). Our visu-
alization techniques (Section 4) are evaluated by two experiments
(Section 5) and results are discussed in detail (Section 6).

2. Related Work

Eye tracking in research is mainly applied for two purposes:
gaze-based interaction and for the evaluation of user behav-
ior [KFBW16]. New interaction techniques have been developed
in recent years, especially with focus on VR [PMMG17] and
AR [SPBG21]. For the investigation of such techniques and nu-
merous others, eye tracking also serves as a basis for quantitative
and qualitative methods. Examples of eye tracking studies com-
prise ones on interactive subtitles [KCH∗17,KGA∗20] and the nav-
igation on websites [BCM09, CG07]. This work focuses on new,
interactive techniques for the analysis of gaze data recorded with
HMDs. The main issue with this type of data is that existing anal-
ysis techniques cannot be applied directly [KBPR22]: To achieve
comparability between recordings, either a semantic (with AOIs)
or a spatial mapping becomes necessary. Further, the visualization
of the data in an explorable overview is challenging as 3D spa-
tial context should be included, which is not the case with most of
the existing visualization techniques. We address these issues by
a semi-automatic spatial mapping with a linked-view visualization
to make participants comparable and their movement and viewing
behavior explorable. Hence, we first discuss analysis methods for
eye tracking data in general, followed by techniques focusing on
the visualization of spatio-temporal data in AR/VR context.

2.1. Eye Tracking Data Visualization

Statistical analysis of gaze properties (e.g., fixation duration,
saccade frequency), as well as more advanced scanpath analy-
sis [GH10a], provide important insights into gaze behavior. How-
ever, with increasingly complex scenarios, as it is the case with
eye tracking with wearable glasses and HMDs, more information
about the stimuli (i.e., the surroundings) become necessary. Several
techniques address how to define and display AOIs and show them
with abstracted visualizations [BKR∗17]. The definition of AOIs is
often accompanied by time-consuming manual or semi-automatic
annotation. With our approach, we aim to provide an explorative
visualization to investigate the data and solve analysis tasks before
annotation of AOIs becomes necessary.

There also exist techniques that do not require any definition
of AOIs. In general, heatmaps are common visualization types for
displaying the aggregated distribution of visual attention [Boj09,
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Figure 2: Framework for the processing of multiple data sources (different participants and external model data) into a unified model. The
resulting model is then visualized in complementary ways to support a multitude of analysis tasks.

DPMO12] on static and dynamic stimuli. Node-link representa-
tions of scanpaths [GH10b] are also established means to show
gaze data without aggregation. These techniques have been adapted
to 3D environments [Pfe12,SND10a,PSF∗13] but as a depiction of
gaze distributions of single participants. Achieving an aggregated
visualization of gaze from multiple participants in the real-world
is not trivial and to the best of our knowledge, a comprehensive
visualization technique for multi-user comparison does not exist.

We include heatmaps in our 3D representation (see Section 4.1)
of the environment because they are well-known to researchers in
this field and provide a good entry point to overview the data. Fur-
ther, we expand this idea by including a heatmap metaphor also into
our space-time visualization as gaze cubes (see Section 4.2).

2.2. Spatio-temporal Analysis

Visualizations that consider space and time dimensions of gaze
are typically implemented by the animation of established tech-
niques such as heatmaps. For a static overview of spatial data
over time, space-time cube (STC) [Häg70] techniques have been
proposed for different data domains, for instance, geographical
data [GAA04] and videos [CBH∗06, RVP∗11]. Due to the simi-
larities between movement trajectories and scanpaths in eye move-
ment, this technique has also been applied to gaze data [BKF∗19,
KHW14,LÇK10]. However, for eye tracking applications, the STC
was only applied for static images and videos presented on a screen,
i.e., where all participants’ data were available in a common 2D
coordinate system. Mobile scenarios where people can move freely
in the environment were not investigated due to individual spatial
context and missing information about spatial correspondence. Re-
lated work focusing on movement only utilized, for example, infor-
mation from WiFi devices to localize people [OM20]. Nowicki et
al. [NS19] introduced a solution for multi-user localization in in-
door environments using information from WiFi and dead reckon-
ing. Further works used spatio-temporal trajectory data for crowd
detection [HLW∗20] and safety on construction sites [ACG18].

We introduce a new STC visualization (see Section 4.2) for a
combined representation of movement and gaze from multiple par-
ticipants. HMD data provides the necessary information to derive
the missing correspondences and allows us to visualize data in
a common spatial context over time. This visualization is further
linked with a 3D representation of the scene, allowing analysts to
overview the data (with the STC) and investigate details in the 3D
replay (see Section 4.1).

2.3. Eye Tracking in VR and AR

Techniques considering 3D eye tracking data were mainly devel-
oped for VR scenarios (e.g., Stellmach et al. [SND10a]) or were
included in desktop applications [OKYB21]. Possible gaze visu-
alizations include 3D scan paths as well as 3D attention maps
[SND10b]. Such purely virtual scenarios have the advantage that
highly detailed world knowledge is available about all rendered ob-
jects and surfaces, as well as the position of the user. We consider
our visualization approach also applicable to VR scenarios since
a unified model (Section 3) for user and environment data can be
obtained with far less effort than for scenarios in a real-world con-
text [UKJi∗22].

To this point, eye tracking in AR is mainly applied for in-
teraction purposes. However, different techniques have been pre-
sented recently, showing that a retrospective investigation of move-
ment and gaze behavior is achievable and worthwhile investigat-
ing [KBPR22]. According to Merino and colleagues [MSK∗20] the
evaluation of AR can be categorized into seven scenarios: These
are (1) algorithm performance, (2) qualitative result inspection, (3)
user performance, (4) user experience, (5) understanding environ-
ment and work practices, (6) team communication, and (7) team
collaboration. We see the main advantage of our work in the latter
three scenarios, as they can be especially supported by interpreting
the viewing behavior and movement of the participants.

Sundstedt and Garro [SG22] provide a systematic literature re-
view in which they discuss state-of-the-art visualization techniques
for gaze data in 3D environments. The presented literature mainly
focuses on visualizing the gaze directly onto the 3D Model using
point-based techniques or heatmaps. These techniques concentrate
more on the spatial dimension and often lack visualization of the
temporal dimension with more than means of animation. Muchen
and Tamke [MT21] use gaze to identify problems in spatial de-
signs. A scan of the environment is created for visualization, and
viewing behavior is displayed by motion trajectories and heatmaps.
Similarly, May et al. [MKO∗22] introduced a BIM-Based AR de-
fect management system to inspect constructions. They integrated a
post-inspection playback data-analysis tool into their system, visu-
alizing the attention of a person using a heatmap. Some approaches
exist for in-situ analysis of movement and interaction data (e.g.
MIRIA [BLD21]) without considering gaze data. Similarly, Reip-
schläger et al. [RBD∗22] embed a virtual avatar in AR and visu-
alize the gaze. These approaches focus on single participants and
visualize their data as either aggregated or animated visualization
in a model of the spatial context. We also include such techniques
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Figure 3: The spatial mesh generated by the HoloLens 2 (blue) rendered on top of the photogrammetry reconstruction of the experiment
environment. The photogrammetry mesh features greater geometric detail and also captures surface color.

and expand the means for comparative analysis of multiple people
with different views on the data in animated replays and a static
overview of temporal events.

To the best of our knowledge, this is the first approach that pro-
poses and implements such multi-user analysis for data recorded
by HMDs with eye tracking capabilities.

3. Framework Proposal

To this point, there is no common way to record and visualize gaze
and movement from multiple participants in real-world and AR
without relying on the extensive video-based annotation of AOIs.
Hence, the leading research questions for our design were:

• How can we make recordings of movement and gaze in real-
world environments comparable?

• How can we include detailed information about the surrounding
spatial context without annotation?

• How can we display the data to answer typical analysis questions
considering when, where, and what happened?

We address these questions by the framework depicted in Fig-
ure 2. We assume that HMDs with eye tracking capabilities are used
to record multiple participants performing a task, either in separate
sessions or simultaneously. Together with additional model data to
enrich the spatial context, the data is fused into a unified model for
comparability of the participants. The resulting model is the basis
for a wide range of possible visualization techniques to depict the
underlying spatio-temporal data. We discuss three complementary
techniques that do not require the annotation of AOIs and provide
an overview (Figure 4c), details down to individual time steps (Fig-
ure 4), and an immersive perspective on the data (Figure 4d). We
implemented the framework using photogrammetry as model data.
Overall, our approach is hardware-agnostic and can be applied to
all scenarios that allow for the tracking of movement and gaze in
either virtual, augmented, or real environments.

3.1. Data Processing

HMD data is the basis of our approach, enriched by model data
from additional sources. HMD and model data have to be processed
to derive a common spatial and temporal context.
HMD Data Recordings from multiple participants can be de-
rived from individual sessions. Alternatively, we see the potential
to record collaborative tasks with multiple participants simulta-
neously. The latter approach has the advantage of synchronicity
between recordings. Modern HMDs use Simultaneous Localiza-
tion and Mapping (SLAM) [CCC∗16] techniques that provide in-
formation about position and orientation in an environment. Fur-
ther, a spatial mesh is created that represents the surroundings,
typically with a much coarser resolution than the respective sur-
faces in the real world (Figure 3). Gaze measures allow esti-
mating the point of regard of a person, which is also mapped
into the derived coordinate system. For our implementation, we
recorded the gaze and movement using the Microsoft HoloLens
2 and ARETT [KBM∗21b]. The data were further processed us-
ing the ARETT-R-Package [KBM∗21a]. We applied the I-VT algo-
rithm [SG00] to calculate fixations within the recorded gaze data.
Each recording consists of an individual coordinate system which
affects the comparison between participants.
Model Data Due to the limited quality of the environment mesh
created by the HMD, the inclusion of additional data models can
be achieved in multiple ways: (1) If planned constructions such as
buildings are investigated, existing design plans can be incorpo-
rated to provide a more detailed (and potentially even semantically
labeled) model of the environment, for instance from CAD files.
(2) If such a model is not available, more detailed environment
scans can be achieved by other sensors such as laser scans [BS14].
For solutions in lower price segments, LIDAR recordings with mo-
bile devices [WNAD21] and meshes derived from photogramme-
try scans [Pie20] provide alternatives. Such models typically have
a better resolution than the HMD data and often provide RGB data
that facilitates photo-realistic rendering of the results. Apart from
the individual limitations and challenges to create 3D meshes with
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Table 1: Three complementary visualizations in combination support a wide range of possible analysis tasks.

Visualization Advantages Limitations Analysis Tasks

3D Replay
Visualizations with
spatial context

Detailed inspection
of space

Temporal overview
missing

Comparison between
multiple participants

Where did participants look?

Which image received most/least fixations at a spe-
cific point in time?

Which participants viewed a specific image?

Space-Time
Cube Overview over spatial-

and temporal dimension

Rapid detection of
interesting areas or
outliers

Spatial context
reduced to 2D

Prone to visual
clutter

Are there motion patterns?

Which images received the most/least fixations?

When did participants watch an image in spatio-
temoral proximity?

Immersive
Replay Analysis from the

point of view of the
participants

No overview
visualization

How did the participants perceive the scene?

Which images were visible in the field of view of a
participant?

each of these methods, all derived models represent a static view
of the world that does not adapt to dynamic changes. If moving
objects or persons are part of an experiment, the detection thereof
has to be handled separately. For our implementation of the frame-
work, we decided to include a photogrammetry reconstruction, de-
rived from 494 photos of the experiment environment (Figure 3).
For the reconstruction, we used RealityCapture [Gam] a commer-
cial photogrammetry software. The resulting model also consists of
an individual coordinate system with orientation and scale different
from the HMD data. A unified model is necessary to compare data.

3.2. Unified Model

A unified model that comprises HMD and model data allows map-
ping of movement trajectories and scanpaths of multiple partic-
ipants into one common coordinate system. As a first step, all
HMD recordings have to be registered. We achieve this with spa-
tial anchors [MRR17], i.e., a board with QR codes in the corner of
the utilized environment and let the participants scan the codes.
The position of the anchor serves as the origin of the common
coordinate system. Second, the environment model has to be ad-
justed. We adopted the position and scale of this mesh to the spa-
tial mesh extracted from the HoloLens2. This mesh was true to
scale, so we were able to use the recorded data without any rescal-
ing. For our current implementation, we adjusted the transforma-
tion manually to fit the meshes. In the future, we plan to incorpo-
rate automatic solutions for matching meshes based on correspon-
dences [VKZHCO11], especially for more complex models such as
multi-story buildings.

With the resulting unified model, classic trajectory analy-
sis [AAW07] becomes possible. For instance, to identify common
locations where people tend to stay or find the main walking paths.

Furthermore, fixations can be mapped to common surfaces by cal-
culating hit detections between gaze rays and the mesh of the envi-
ronment. This unified model is the basis for multiple visualization
techniques that focus on different aspects of the data.

4. Visualization Techniques

To address our research questions, we developed a combination of
two linked, complementary views with different visualizations as
the more versatile approach to address a wider range of research
questions and their respective analysis tasks [KBB∗17] (Table 1).
More specifically, we included a 3D gaze replay that provides de-
tailed information and a space-time cube for a spatio-temporal
overview. Additionally, we support immersive analysis [FP21] in
VR for data representation, similar to the gaze replay.

4.1. Gaze Replay

A 3D replay is achieved by representing the environmental model
with indicators for the current position and point of regard (or gaze
ray) of a participant (Figure 4a). Temporal evolution is displayed
with a playback function, comparable to a video player. The main
advantage of a virtual model is that the view of the scene can be ad-
justed individually to investigate events from different angles. The
unified model approach further allows the depiction of multiple par-
ticipants simultaneously for direct comparison. For interactive con-
trol, a timeline is included, which allows moving to different points
in time, in order to closely examine the space. By limiting the de-
picted range around a point in time, the user can also analyze the
data within a specific time span in the 3D replay. The play/pause
button allows the users to play back the recording, while only con-
centrating on the movements and the included visualization of se-
lected participants. The purpose of the 3D replay is a detailed in-
spection of movement and gaze behavior at specific points in time.
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(a) Gaze replay with a representative of a participant (b) Heatmap visualization of aggregated gaze over time

(c) Gaze cubes in STC view (d) Immersive mode

Figure 4: Gaze replay options in 3D space. (a) Individual time steps can be watched with a freely rotatable camera and representatives for
each participant that emit gaze rays to the current point of regard. (b) For adjustable time spans, heatmaps indicate the distribution of visual
attention of all selected participants. c) Gaze cube visualization in the STC view. Cubes show fixation, while color shows amount of fixation at
the specific location over temporal dimension. d) Analyst can move within VR by teleport actions. We included heatmaps and representatives
from the gaze replay. Footprints replace the trajectory visualizations

To achieve this detailed inspection, we included different visualiza-
tions for both data aspects:
Movement We depict the movement of a participant by a repre-
sentative and gaze direction using a ray emanating from the repre-
sentative (Figure 4a). Participants receive individual colors that are
also depicted by the representatives.
Gaze We include surface heatmaps (Figure 4b) for aggregated in-
formation about gaze distributions. To this end, we overlay the
walls of the photogrammetry mesh with a grid. Each cell stores
the number of fixations it received within the specified time span.
Based on this, a heatmap is generated by applying Kernel Density
Estimation (KDE) with a Gaussian kernel [Bli10].

4.2. Space-Time Cube

A common issue with animated visualization for data with spatio-
temporal characteristics, such as our gaze and movement data, is
that comparisons over time are difficult [RFF∗08]. The inspection
of data within space through forwarding and rewinding different
time steps can be strenuous and there are high chances of miss-
ing interesting time spans. Playback with multiple participants fur-
ther increases this issue. Hence, a static overview of trajectories
and gaze distributions is a better way of supporting such compar-
isons. A space-time cube (STC) provides such an overview and has
proven to be an effective visualization for eye tracking and move-
ment data respectively.

The STC visualizes movement over time by trajectories, that
show their location on the x-z-plane and the time on the y-axis. The
distribution of the participant’s gaze is visualized using cubes (see
Figure 4c) encoded by color according to the fixation frequency.
To visualize the gaze data in the STC, the fixations are aggregated
along the vertical axis of the 3D space and stacked over time. A
cube is generated if the number of fixation coordinates within a grid
cell exceeds a user-defined threshold. We refer to this technique as
gaze cubes. Since the visualization of the heatmap depends on sev-
eral parameters, we added filtering options to our canvas, that al-
low the user to set the parameters. These include the normalization
value based on fixation frequency and the bandwidth of the kernel
(Figure 1). While the x-z-plane of the STC has the scale of the envi-
ronment, the scale of the temporal axis can be adjusted. The linked
gaze replay helps interpret if high fixation frequencies in the gaze
cubes also show a vertical distribution in space.

4.3. Immersive Replay

For a more immersive and egocentric view of the data, a VR envi-
ronment can be derived from the unified model. An application in
AR proves more challenging due to the limited field of view and
the processing power of current-gen HMDs.

We implemented the VR approach with a VARJO XR-3 head-
set using Unity and SteamVR [Val] to provide interaction within
the virtual environment. The HTC Vive hand controllers allow us
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Figure 5: The small art gallery for data collection. Each partici-
pant was assigned to view the images in one of the displayed orders.

to interact with the environment (Figure 4d). Users can apply the
same functionalities as in the gaze replay. In addition, we adopt a
footprint metaphor to depict movement trajectories.

Heatmaps are depicted on the walls and users can teleport to
positions within the model to investigate the stimuli. This approach
allows the investigation of the environment from the perspective of
the participants with better immersion to support the understanding
of behavior.

5. User Experience Evaluation

The evaluation of our visualization techniques is based on two ex-
periments analyzing a collected data set. In the following, we will
first describe the data collection and discuss each of our experi-
ments in more detail.

5.1. Data Collection

We conducted a small-scale eye tracking study where we display a
collection of printed digital artworks. We recruited ten persons (8
male, 2 female) between 20 and 40 years. Their task was to view
the images in specific orders (see Figure 5). We counter-balanced
the assignment of viewing orders through the gallery, simulating
a between-subjects setup. Eight persons were recorded individu-
ally. Two additional persons performed the task simultaneously to
showcase the differences in the resulting data and the applicability
of our approach to such collaborative scenarios. The ordering of
group 2 (numbers below the artworks in Figure 5) was used for the
simultaneous task when people view the images together while dis-
cussing the content (see Figure 6). We provide further details about
the recorded data in our supplemental material.

5.2. Experiment 1: Think-aloud

We conducted a think-aloud experiment with participants applying
the gaze replay and the STC to investigate how they solve different
tasks. To this point, we did not include the immersive view in our
experiment as it requires a different setup and additional training
time for the participants. We asked seven participants (male, age
range 26–40) from our institution with a research focus on visu-
alization or human-computer interaction to solve a set of analysis
tasks. After giving their written consent, they watched a presenta-
tion explaining our work and how the different visualizations work.
To familiarize them with the tool, all participants performed some
small test tasks themselves. For the main set of tasks, we provided

a part of the recorded dataset (Section 5.1) consisting of six record-
ings. While the participants were solving the tasks, we recorded a
screencast and audio of the thinking aloud. The participants com-
pleted the provided tasks in approximately 45 minutes.

Motion Patterns We defined several tasks related to the move-
ment of different persons. The first task was to find motion patterns
within the data. We observed that participants used different strate-
gies to accomplish this task. One choice for solving this task is
investigating the trajectories within the STC. As P1 mentioned, “...
the trajectory shows the whole course of movement.” The partici-
pants loaded the data of all persons into the scene with the trajec-
tory visualization. P1, P5, and P7 preferred to zoom out the STC to
observe the trajectories in the overview. In contrast, the other par-
ticipants opted to zoom in on the trajectory visualization and look
for some clear patterns. Here, they also tried to filter out some par-
ticipant data, to get a better view of individual trajectories, since it
is “difficult to see individual trajectories, within the clutter of mul-
tiple trajectories.” P4 did not load all of the data at once and tried
to tackle the trajectories one by one to find some kind of pattern.

One common observation noted by the majority of participants
was that “people took different amounts of time to look at the im-
ages.” P4 and P6 also considered some datasets as “lazy” or “not
interested” when they observed short vertical trajectory lines in
front of the images. All participants checked whether there were
synchronous movements within the visualization, only some partic-
ipants also regarded the sequence in which the images were viewed.

All the participants were able to detect the data of the persons
which were recorded simultaneously (Figure 6c). P4 figured out
that those were recorded simultaneously and tried to interpret the
data by saying “...they took a long time because they were dis-
cussing the images.” The trajectories in group 1 were similar to
each other (Figure 6a) and the majority of participants were able
to detect this group, too. However, the trajectories of group 2 (Fig-
ure 6b) were not detected due to much temporal asynchrony be-
tween recordings. The trajectory of one person from this group was
similar to trajectories from the simultaneous group (which followed
the same order), thus some participants included the person from
group 2 into the simultaneous group.

P2 and P6 mentioned that “...3D is difficult to see.” This problem
became apparent when participants were asked to find three exam-
ple locations where persons could have met when they would have
been there simultaneously. While some were looking for locations
where the trajectories of different persons were intersecting, others
tried to find locations where the trajectories were in proximity to
each other. A couple of participants tried to look for an appropriate
perspective within the STC and mostly decided to take a look at the
trajectories from the side. This view helped them to detect whether
there were vertical lines close to each other. If they discovered a
possible location, they skimmed through the timeline with the gaze
replay view to confirm their assumption (see Figure 7). Another
group looked directly at the gaze replay to solve this task.

Fixation Distribution For the analysis of the gaze data, we aimed
for questions about fixation distributions as an indicator for visual
attention. Our visualizations allow viewing the distribution of at-
tention over the entire temporal dimension in the STC view and at
specific points in time in the gaze replay.
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(a) Group 1 (b) Group 2 (c) Simultaneous recording

Figure 6: The trajectories of the different groups of participants displayed in the STC. (a) Group 1 and (b) group 2 show asynchronous
movement due to the individual timings of the participants. (c) Simultaneous recording of two participants investigating the images together
leads to clear movement patterns and stay points.

Figure 7: Participant 1 and Participant 2 are in proximity in front
of the Feather image.

The first task in this category asked to limit the time span to a
specified range and identify which image received the majority of
fixations within this specified time span. To solve this task, partic-
ipants had to adjust the normalization of the heatmap to identify
the image with the most fixations (see Figure 8). The majority of
participants did this step automatically, while P4 and P7 asked for
a hint. They searched within the gaze replay for an image with the
brightest colors in the heatmap. In this particular case, it was the
Voronoi image as shown in Figure 8. P2 still used the STC view
and tried to approximate the count within the time span range. This
approach could not solve the task, since the gaze cube aggregates
multiple fixations.

Another sub-task was to identify persons viewing the image with
the majority of fixations within this time span. Here the partici-
pants followed different approaches. Two participants were select-
ing the participants individually and checked within the gaze re-
play, whether there was a heatmap on the image within the time
span. The other participants used the STC and viewed the trajecto-
ries within the given time span.

In the subsequent task, the participants were asked to detect the
image with the majority of fixations and the least fixations over
the whole data. The detection of the majority of fixations was easy
to solve for almost all participants. Only two participants did not
solve this task successfully. Three participants solved this task by
scrolling to the end of the timeline and looking at the images with
the brightest color within the gaze replay. The other participants
looked directly at the gaze cube visualization within the STC and
checked the cubes on the images (see Figure 9). Detecting the least
amount of fixations was more difficult. Two participants were not
able to tell which image received the least fixations by watching the
gaze cubes. P3 did not scroll the fixation intensity fully to the maxi-
mum, therefore multiple images seemed to receive an equal amount
of attention and it was “hard to tell”, which image received the
least amount of fixations. P2 was looking at the number of cubes
instead of the color since they “represent fixations”. This approach
led to a wrong conclusion. P1 and P4 tried to view the gaze replay
for the last time step since there were three images receiving darker
colors, it was hard to distinguish, which image received the least
fixations. Therefore, we accepted answers including one of these
images. Mainly, “ ...the background color of the images influence
the heatmap color”, which made this task more difficult.

The other participants directly viewed the gaze cube visualiza-
tion to answer the question. P5 followed an interesting approach.
They did change the fixation intensity slider to the minimum and
“scrolled the fixation slider up until a group of cubes received a
dark coloring”. The remaining participants took a look at the gaze
cube visualization at maximum fixation intensity and tried to figure
out, which image received the darkest color. They also found this
task strenuous, however, they solved the given task.

From our observation, we noticed that participants with more ex-
perience in visualization followed Shneiderman’s mantra [Shn96]
by trying to get an overview of the visualized data first by zooming
out in both views. This technique helped to rapidly detect differ-
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Figure 8: Voronoi image has the most fixations within a given
timespan in the gaze replay view.

Figure 9: Gaze cube visualization showing that the Hough image
received the majority of fixation over the whole time span.

ent kinds of events. In particular, the tasks of finding similarities
within trajectories or detecting the majority of fixations could be
solved smoothly with this strategy.

Usability We observed that participants had a heavier mental
workload for finding the image with the majority of fixations within
a provided time span. We assume that not all of the participants did
understand the concept of gaze cube visualization within the STC.
However, after a brief explanation, the majority of participants were
able to solve all the tasks related to gaze behavior.

When comparing the performance of the individual participants
based on their level of prior knowledge, we do argue that our visu-
alizations were interpretable independent of expertise. Users could
adapt fast to our tool and therefore explore and solve basic and
more complex tasks about gaze and movement data without having
a broad knowledge about eye tracking analysis.

At the end of our study, we collected data for the NASA task load
index (TLX) [HS88] and system usability scale (SUS) [BKM09].
The results showed that the participants felt quite confident, regard-
ing their performance. The TLX covered a scale from 1-20 and the
participants rated their performance on average at 15.14. Another
prominent scale was the effort they put into solving the task, here
the average lies at 13.43. The mental demand and frustration re-
ceived a neutral rating, while the physical and temporal demands
were rated as rather low. For details we refer to our supplemental
material. The SUS resulted in a good average score of 72.1. In gen-
eral, the participants would describe the tool as easy to use and not
difficult to learn.

5.3. Experiment 2: Expert Interview

To further evaluate the applicability of our approach in potential
target domains, we conducted semi-structured interviews with two
external domain experts for spatial cognition [HM73]. The inter-
views were conducted via an online conferencing system with a
shared screen for demonstrations.

Both experts focused on understanding the behavior of users
within their environment, mainly based on navigation and eye
tracking data from way-finding studies, psychological experiments,
interaction data, and data collected from methods measuring spatial
memory tasks. One of the main challenges they were confronted
with when utilizing visualization for data analysis was the com-
plexity of the data: “... a lot of post-processing has to be done by
ourselves”, “... clean up the data and combine it with complemen-
tary data.” The integration of different types of data plays an im-
portant role in analyzing behavioral data.

We then presented them with videos demonstrating the function-
alities of our framework. The videos showed the gaze replay with
the representative figures moving in the 3D scene, the trajectories
and gaze cubes in the STC, and the immersive view. According to
one expert, the gaze replay alone could be “... useful to commu-
nicate the experimental design to non-experts but does not allow
to produce aggregate statistics of movement or gaze behavior to
extract knowledge.” It was also suggested including additional con-
tinuous measures in this visualization.

The experts assessed trajectories in the STC as less useful to an-
swer their research questions, because they were mainly interested
in “... periods when people are processing information.” Although
vertical patterns in the STC indicate stay points, which are often re-
lated to people looking at something, the trajectory alone “... does
not allow any qualitative or quantitative type of observation” in this
case. The trajectory visualization could be used to explain the nar-
rative and how the experiment works. The gaze cubes were most in-
teresting for the experts since they display information about visual
attention. One of the experts mentioned that the investigation of the
users’ behavior at a specific location for different time sequences
is of special interest. They could use this type of visualization to
“... check if there were some outliers and whether the general pat-
tern of behavior follows my expectations.” One of the experts fur-
ther noticed that the gaze replay could be useful “... to replay how
each participant who looked at a particular sign crossed one spe-
cific junction (i.e., where they were looking).” They mentioned that
the usage of traditional videos would be time-consuming and with
this tool, they could “... write filtering rules that would output only
those snippets of gaze behavior in space that I am interested in.”
The immersive analysis was considered as a “... useful additional
option.” For instance, “... it would be really useful to be able to see
the behavior of all participants crossing some intersection while
being emerged in that intersection.” However, observing visualiza-
tions from the screen was “easier and faster.”

When it comes to the preferences in usage, both experts had dif-
ferent opinions. One expert would have been more interested in us-
ing the STC due to its ability to visualize aggregated data, whereas
the other expert would have opted to use the gaze replay and the
VR scene since they were more interested in direct visualization of
the heatmap into the space to see the data of multiple participants.
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They also added that the STC “... only works in a subset of potential
cases – for example, much of my work is in multilevel buildings”,
where the STC would not be suitable. Both experts would utilize
our approach “... at the beginning of data analysis” as a first step.
It was mentioned that “... being able to extract analytics for such a
scene” is important in spatial cognition and behavior research. The
addition of features to export the visualized data as a database or
a file with additional variables such as total time, trajectory length,
etc. was suggested. One specific feature mentioned by both experts
was to “... set multiple start and end within a ‘gaze recording’, for
example, to indicate separate events such as testing trials.”

6. Discussion

Based on our think-aloud experiment and the expert interviews, we
identified aspects that require further discussion.
Scalability We differentiate between scalability with respect to the
number of participants which will mainly affect visual clutter and
scalability with respect to the size of the scenario which will require
design modifications. Aggregating techniques such as heatmap tex-
tures and gaze cubes can represent data values from an arbitrary
number of participants. Hence, a general overview of the distribu-
tion of attention is easy to achieve, even with high participant num-
bers. The representation of trajectories, especially in the STC, is
more prone to overdrawing and visual clutter. Consequently, only
a limited number of participants should be investigated simulta-
neously with trajectory visualizations to keep the advantages of
the overview. Bundling techniques [HEF∗13] or clustering algo-
rithms [HHWH11] can further reduce visual clutter, for example,
by merging similar paths. In general, our approach could be ex-
tended to larger scenarios. However, apart from hardware limita-
tions to process large data streams, there are some restrictions due
to the design: The STC reduces by design the spatial context to
2D. Gaze distributions in different stories either have to be aggre-
gated or the floor plans of different stories of the building have
to be depicted separately. Virtual models of outdoor scenarios re-
quire much disk space. Here, we see the inclusion of existing (e.g.,
Google Earth) and future online services as plausible sources for
required model data. Our framework would still be valid, but the
resulting visualizations would need adjustments, probably toward
techniques known from geo-information systems [AAW07]. We
further identified shortcomings regarding the data acquisition due
to environmental aspects.
Environment Aspects Surroundings without salient visual fea-
tures will challenge modern approaches for localization and recon-
struction. We encountered issues with the photogrammetric recon-
struction of smooth and reflecting surfaces, which is a known prob-
lem with this approach. To solve these issues, we currently see the
extension of the unified model by an additional sensor (e.g., LI-
DAR) and modeling data as the most viable solution. Further, dy-
namic AOIs are not considered explicitly. We see the integration of
dynamic virtual objects as a trivial step to be integrated, as they
can be detected automatically, similar to virtual reality environ-
ments [KBPR22]. However, some scenarios might also require dy-
namic real-world AOIs. For instance, we could detect hits between
participants when they walked simultaneously through the scene.
For a more generalizable approach, a field-of-view video will be
necessary probably incorporating methods used for 2D AOIs for
detection and tracking.

Based on our findings, we further identified a general preference
for mouse input for 3D interactions. This could be influenced by
the professional background of the participants. To ease the com-
parison of asynchronous trajectories, automatic techniques such as
dynamic time warping could help adjust the visualization. Analysis
questions regarding the STC could further be supported by 2D pro-
jections of the data to overcome issues with depth perception. For
instance, a heatmap visualization of the trajectory projections could
help to investigate the duration of visits from different persons at
a specific location. Furthermore, the immersive replay provides a
stereoscopic view which could be used to also integrate the STC,
potentially as minimap for spatio-temporal navigation.

7. Conclusion

We presented an approach to process movement and gaze data from
multiple people wearing HMDs for post-hoc visual analysis of their
behavior. Further, we conducted a think-aloud experiment and in-
terviews to investigate strategies and the applicability of the ap-
proach for other scenarios qualitatively. Our use case shows that
the implemented visualizations support many analysis tasks in a
data domain that was barely addressed to this point. Applications of
this approach comprise usability studies with AR and spatial cog-
nition tasks. For example, the planning of evacuation routes in a
building [TWL∗19] could be supported with AR technology and
evaluated with our approach. Based on our research questions (Sec-
tion 3), we can support the comparison of recordings with respect
to typical analysis questions considering when, where, and what.
Our current approach supports the analysis of a static environment.
However, for an application to a wider range of experiments, future
work should also consider dynamic changes.

For future research, we see much potential in the immersive ap-
proach, as it gives people the opportunity to see how others viewed
a scene. This could not only be helpful to researchers for immer-
sive analytics but also for communicating common perceptions to
decision-makers, for instance in planned construction. In the fu-
ture, we plan to conduct additional experiments in other domains
such as augmented reality for construction and fabrication, where
we will further evaluate our technique with more domain experts.
Having the possibility to interactively investigate how other people
looked in the same spatial context is further interesting for instruc-
tion scenarios [BSYB20] where instructors later have to evaluate
the performance of trainees.

Our current approach does not include the visualization of aggre-
gated movement data. The inclusion of heatmaps projected on the
floor [CS21] could solve this in future extensions. The presented
framework could further be extended, for instance by incorporat-
ing new sensor modalities into the unified model for later analysis.
Overall, we see the visual analysis of HMD-recorded data as an
important means to better understand how people perceive and in-
teract with augmented and real environments.
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