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Abstract—We contribute a design study on using visual an-
alytics for AI-assisted music composition. The main result is
the interface MAICO (Music AI Co-creativity), which allows
composers and other music creators to interactively generate,
explore, select, edit, and compare samples from generative music
models. MAICO is based on the idea of visual parameter space
analysis and supports the simultaneous analysis of hundreds
of short samples of symbolic music from multiple models,
displaying them in different metric- and similarity-based layouts.
We developed and evaluated MAICO together with a professional
composer who actively used it for five months to create, among
other things, a composition for the Biennale Arte 2024 in Venice,
which was recorded by the Munich Symphonic Orchestra. We
discuss our design choices and lessons learned from this endeavor
to support Human-AI co-creativity with visual analytics.

Index Terms—Music composition, human-AI, comparative vi-
sualization, glyphs, similarity, design study.

I. INTRODUCTION

PROFESSIONAL and hobbyist artists alike are increas-
ingly integrating generative algorithms into their creative

work [11], [34], [55]. Generative music models, for instance,
can take a primer melody together with parameters or a
prompt and then create variations of this melody, propose
continuations of it, suggest harmonic/polyphonic extensions,
or even construct entire songs [26], [32], [35], [49], [57].
For most composers, however, a fully automated generation
of entire songs is not the goal, as it strongly contrasts the
human creative process of composition, lacks personality, and
often misses the intention of the composer [23], [81]. Instead,
generative models are used as tools [18], [51] that can provide
music snippets, foster inspiration, assist the composer with te-
dious tasks at different stages of the workflow [56], or provide
externalized music knowledge for beginning composers [62].

We argue that generative artificial intelligence (AI) should
not replace human creativity but instead could serve as a com-
plementary tool in a composer’s toolbox, fostering inspiration
and providing alternative perspectives. Many musicians are
looking for new sounds and techniques, which has continu-
ously contributed to the increasing variety of music in the past.
Consider, for instance, the digital revolution in music through
sampling and digital audio workstations (DAWs) [21], which
offered composers a plethora of new possibilities. AI promises
to be the next big step in this development. Although there
are several risks regarding the power of AI to generate whole
songs and the resulting worry of a human replacement, use
of copyrighted art, and biases (for example, toward Western
music) [21], composers are eager to incorporate these new
tools into their composition workflows. Additionally, current

law does not allow the copyright of AI-generated pieces if
there is no substantial human contribution, with little to no
human-in-the-loop. Instead, our goal is to always leave the
composer in control and only assist in steps in the composition
pipeline through adequate user interfaces with the AI [43].

Other user interfaces already allow composers to leverage
generative models by repeatedly generating single snippets,
such as the one by Bazin et al. [4]. However, unsatisfying re-
sults lead them to repeatedly re-generate further snippets [31],
and properly steering models and integrating them into artistic
and creative work remains an open challenge. To this end, it
would be beneficial to look at many samples from different
models and parameter settings simultaneously and more sys-
tematically. Otherwise, composers might not know which AI
model to use, which parameters to change, and whether the
next generations will produce better or worse samples.

Generating larger numbers of samples with AI can help
answer these questions, but analyzing many samples manually
and sequentially is a tedious and time-consuming task. To
better support this analysis, we combine the concepts of visual
parameter space analysis [75] and notational audiation [8]
(visually imagining music). Visual parameter space analysis
uses visual overviews and interactive exploration for analyzing
models and model ensembles (fig. 2). Similar approaches have
shown to be useful in many application areas that need to
systematically explore and understand models and simula-
tions, for instance, when judging different scenarios of flood
simulations [90] or parameterizing classification models [28].
Little work [62], however, exists on how this approach can be
leveraged for exploring the output of generative music models.

While visualization cannot fully replace listening, it has
always played an important role in composition: in the form
of sheet music notations. With training, it is possible to under-
stand (i.e., “hear”) music simply by visually reading it [8], an
indispensable approach in professional composition [63]. We
aim to use this listening/reading dualism and investigate how
more sophisticated visual analytics approaches can support
composers working with generative music AI.

Toward better understanding this area and supporting com-
posers in their workflow, we contribute the design and eval-
uation of MAICO (Music AI Co-creativity), which allows
creators to generate a collection of hundreds of samples from
different generative music models at once. Previous work [62]
has already helped beginners with visualization to process a
small number of samples simultaneously. We extend this work
with a focus on professionals and their workflow with larger
sample sizes from multiple different models. Our goal is to
assist composers in efficiently generating and systematically
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Fig. 1: MAICO’s main visualizations to explore generative music models: a) Menu for data generation & model selection,
clustering & filtering, and layout & encoding options. b) Overview visualization with glyphs placed by similarity; glyphs and
their background color-code parameters and metrics. c) Brushed selection of samples, for which more details are shown in d)
a detail panel with piano rolls and meta information.

exploring this large sample collection visually to find samples
that fit a composition. Furthermore, we want to support the
comparison and analysis of models to help composers learn
about how and when to use which model.

We specifically focus on models that generate symbolic
music and output discrete notes (like notation) instead of audio
– which allows composers to first focus on sample selection
and adjustment and then assign instruments separately. During
MAICO’s design process, we closely followed design study
methodology [78] and worked together with the professional
composer Benedikt Brachtel, who we included as a co-author
due to his substantial contributions. MAICO provides visual
overviews to get an approximate image of the space of possible
outputs along with their parameters and interactions to narrow
the space down to essential samples. For generated samples,
we explore different glyphs [5] that accelerate readability in
the overview. Using different musical metrics, our visual-
izations show clusters of music samples using similarity or
correlation and provide aggregations and summaries.

We first evaluated our initial design with usage scenarios,
followed by the design study and interviews with music
experts from different backgrounds. Brachtel generally pre-
ferred our approach over the manual sampling baseline, and
MAICO assisted him in creating two commissioned works.
These results demonstrate MAICO’s potential for processing
large numbers of samples, interacting with them, and thereby
assisting composers in elaborating on motifs more efficiently.

Our supplemental material contains more extensive versions
of some of the following sections, a video showcasing func-
tionality and user interaction, examples from sessions and one
of the commissioned works, as well as the source code and a
web-based demo of our prototype2.

In summary, we contribute 1) a design study on AI-assisted
composition with a professional composer, resulting in inter-
active visualizations that help investigate behaviors of and
differences between music-generating models, the influence
of parameters, and each model’s samples for music creation,
2) an evaluation through usage scenarios, a multi-dimensional
in-depth long-term case study (MILC [80]), and expert inter-
views, as well as 3) a web-based prototype (MAICO)2.

II. RELATED WORK

We review related work on interfaces for algorithmic music
composition, as well as the more general areas of visualization
of musical data and visualization of machine learning models
that underlie the ideas of our work.

A. Algorithmic Music Composition

While algorithmic composition has been used since the
1980s [27], advances in deep learning brought a variety of
new methods [7] for audio [49] and symbolic music gen-
eration [35], including recurrent neural networks [26], [57],
variational autoencoders [59], [66], and generative adversarial
networks [19]. Other work contributes combinations of the
surveyed methods [17], [35], transformers [32], [45], agent-
based and heuristic algorithms [41]. Recent research explores
large language models for music generation [46], affective
music generation through Markov models and rule-based
systems [16], and better controllability [61], [91].

2https://github.com/visvar/MAICoV2/

https://www.benibrachtel.com/
https://github.com/visvar/MAICoV2/tree/main/Example_Session
https://github.com/visvar/MAICoV2/tree/main/Example_Mosi
https://github.com/visvar/MAICoV2/
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Interfaces for Algorithmic Composition: Controllable
models together with respective user interfaces can serve to
augment artists’ workflows and creativity [81] while the artist
retains authorship and freedom of expression [31]. Although
interfaces that provide more control perform better, offer more
authorship, and are therefore preferred by users [42], [43], re-
search in this area is sparse compared to AI development [12].
While others used visual interfaces for audio synthesis with,
e.g., corpus-based methods for generation [74], [86], they
mostly followed) an audio-focused end-to-end approach. In
contrast, we focus on a symbolic approach, which has a clear
separation between note information and sound, allowing for
a more faceted control in the composition process. Apply-
ing human-AI interaction design guidelines for co-creative
systems [18], [65], some human-in-the-loop interfaces allow
creating a piece step-by-step [4], [25], [45], [60], [62], [94]. In
our own previous work [62], we proposed an interface for AI-
supported composition for novice users. The main idea was to
use visualization to guide the choice between a few generated
alternatives and edit them more efficiently. Building on these
initial ideas, MAICO takes them to the next level by targeting
professional composers as the intended user group. To do so, it
allows for a systematic analysis of a much larger sample space,
giving more control during generation, exploring multiple
models and parameterizations in more detail, and comparing
models to improve understanding and control.

Embedding into DAWs: Algorithmic composition tools
have also found their way into widely-used digital audio
workstations. The DAW Ableton Live, for instance, allows
integrating Magenta Studio [67] to use models like Musi-
cRNN/MelodyRNN and MusicVAE [66] for generating a few
samples directly as clips with limited steering possibilities.
In comparison, we incorporate more user control with filters
and allow for simultaneous assessment of many more samples
through visualization. In fact, we use the same models and,
therefore, the same generative quality but further allow inte-
grating similar models as plugins. While integrating MAICO
into Ableton Live is out of our scope, future work could turn
it into a plugin to make it available to a broader audience.

User Evaluation: Algorithmic composition approaches
have been evaluated in several musical settings before. In the
context of an AI song contest [31], for instance, Micchi et
al. [51] incorporated AI into songwriting by generating single
samples repeatedly until one worth working with appeared.
Deruty et al. [18] worked together with musicians and tested
various AI tools (such as NONOTO [4]) in contemporary pop-
ular music production, showing that adequate interfaces/tools
are needed in order to make these tools interesting for artists.
To this line of work, we contribute a longitudinal in-depth
evaluation with a professional composer who used our tool
for commissioned compositions.

B. Visualization of Musical Data

Visualization has been used for different types of musical
data before. Typical visualization techniques like charts, maps,
and piano roll views have been used for different data types
like musical works, collections, musicians, or instrument data.

Fig. 2: In visual parameter space analysis [75], the models’
output gets sampled for different parameterizations (pi) and
then visualized. Iterative re-sampling allows the analyst to
further explore interesting areas of the parameter space. This
analysis provides insights into the model’s behavior and en-
ables more effective usage.

As a full coverage of this area is beyond the scope of this
paper, we point the interested reader to two comprehensive
surveys by Khulusi et al. [33] and Lima et al. [40]. Khulusi et
al. [33] show the recurring combinations of maps for musical
collections and piano rolls for musical works, two relevant
techniques and representations for our work. Lima et al. [40]
focus more on the specific techniques of music representation
and feature encodings, including glyphs, which also play a
major role in our design. By classifying approaches according
to goals and users, they also identified a lack of papers that
target music composers, which is the focus of our work.

Focusing on analysis tasks in musicology, visual analytics
has been used to investigate music corpora [53] and semantic
structures of sequences [10], or to augment music nota-
tion [52]. Fourney and Fels [22] explored how visualization
can help deaf consumers get a feeling for the music without
listening to it, a topic related to our ideas of leveraging nota-
tional audiation. Wu et al. [92] contributed a visual interface
to control modes during live performance, comparable to our
interface for controlling AI models. However, little research
looked at visualization and analytics for generative AI in a
musical context [62], which is the focus of our work. We use
common approaches like maps for a sample collection [33],
enhanced with metrics and glyphs [40], supporting the explo-
ration of an AI-generated sample space in the context of music
composition, rather than for purely analytical tasks.

C. Visualization of Machine Learning Models

One goal of our work is to help composers better understand
the models they use, a task that is shared by other work on
machine learning visualization. A recent survey [89] on visual
analytics for machine learning focused on data types and tasks
and showed a gap for generative models, even outside of
generative AI for music. Many visual analytics tools examine
other AI models at different stages of the machine learning
pipeline [68], most of which focus on the development of
new techniques. In contrast, comparing and selecting models,
which is highly impacted by user’s needs [9], is under-
researched [29]. A few works, such as by Heyen et al. [28]
and others [2], [64], analyze the performance and accuracy of
classifiers in order to help choose the best classifier. Abstractly,
our approach follows a similar intention, but we focus on a

https://www.ableton.com/de/live/
https://magenta.github.io/magenta-js/music/classes/_music_rnn_model_.musicrnn.html
https://magenta.github.io/magenta-js/music/classes/_music_rnn_model_.musicrnn.html
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different domain with different tasks – music composition. Our
goal is to support the individual and subjective analysis of
music-generating models, as a fully objective and automatic
evaluation is usually insufficient for supporting human artistic
creativity [24], [27], [93].

III. DESIGN

In the following, we discuss our design process, user and
data characteristics, and the resulting design with its visual-
izations and metrics.

A. Process

Following design study methodology [78], we closely co-
operated with a professional composer, Benedikt Brachtel1, as
a domain expert. He studied classical composition and works
as a freelance composer and music producer since 2010. He
regularly encounters contemporary means of compositional
creation and developed a tool (dodecaphony enforcer/avoider)
in 2019 that turns music automatically into a 12-tone series
based on Schoenberg’s theory [71]. His clients included the
Bavarian State Opera and the Burgtheater Vienna.

We started with an initial prototype focusing on model
comparison, which we evaluated in semi-structured interviews
with four musicians with different levels of musical expertise.
Despite an initial learning curve – which was expected as
MAICO is an expert tool – all participants offered highly
positive feedback on the visual approach. Our design helped
them to get an overview of large spaces with many different
samples. They found that visualization is very important to find
specific samples and makes them like to explore multiple op-
tions and analyze what fits best. Using model glyphs (density
piano roll), one participant found that “many samples are the
same, and there is a bit of variation”, showing the usefulness
of these glyphs to filter models (more details on this initial
study can be found in the supplemental materials).

After we had implemented their feedback, we showed
the prototype to our expert in an initial meeting using a
pair analytics approach [3] to analyze the requirements for
MAICO. He was immediately interested in using it and curious
about what he could do with it and how it could help him with
his work, leading us to start our in-depth collaboration.

Over the course of five months, we met weekly to iteratively
extend and adapt MAICO’s design, resulting in a total of 15
video-recorded sessions. During these five months, Brachtel
used our prototype for his own work, and we tracked his in-
teractions and generated samples. In our meetings, he gave us
feedback on the existing features and the needs that occurred
during the prior week. Together, we developed solutions to
address these needs, implemented them, and analyzed their
impact during the next meeting or after he used them. With
this iterative design and regular updates, we were able to
incorporate his ideas and demands immediately and verify
MAICO’s applicability.

1https://www.benibrachtel.com

B. Users & Tasks

Our primary target audience is professional composers and
songwriters who work with symbolic music and desire inspi-
ration from generated content or want to evaluate or integrate
it. A composer’s typical workflow consists of these steps:

• S1) identify themes and requirements of the work,
• S2) find musical motifs,
• S3) elaborate on motifs and bring them into context,
• S4) find suitable instrumentation for the arrangement,
• S5) write down the score, and eventually
• S6) record or perform the work.
We intend for composers to use MAICO at the beginning of

the workflow (S2, S3) as inspiration for finding motifs and/or
elaborating on these motifs, which is the most challenging
composition step. For the other steps, good tools already
exist. As the composer’s goal is to generate and find suitable
samples (S2, S3) for their personal composition efficiently, we
identified the following high-level tasks:

• T1) steer models (using T4, T5) toward ideas, generate
samples,

• T2) systematically explore the space of samples and thin
it out,

• T3) find musical variations and characteristics in sets of
samples,

• T4) analyze the influence of model parameters on the
generated output and find appropriate values, and

• T5) compare multiple models and select the best-fitting
one(s) for a specific use case.

C. MAICO Overview

To support these tasks, we leverage a visual parameter space
analysis approach as illustrated in figure 2. After selecting a
primer input, we generate the samples using different mod-
els and parameters. These samples are then prepared and
displayed visually for further analysis. By gaining insights
throughout this analysis, the composer can narrow down the
search and exploration space and make increasingly more
effective choices for inputs, models, and parameters before
re-sampling and repeating the analysis on the new output.

In our case, the primer input and generated data are musical
samples, where each data point is one symbolic snippet. At
the heart of our approach is a visual overview, which shows
a similarity map of the samples (fig. 1b), akin to many other
visual parameter space analysis approaches [28], [44], [69].
This map offers a large space to organize samples, form
clusters, and show outliers [6].

Because sequential analysis is not possible – listening to all
samples one after another takes too long – we need metrics
to organize and visualization to allow composers to explore
the sample space. To cater to the creative, subjective, and
ill-defined nature of composing, we need a broad range of
different metrics, like quantitative metrics that describe the
musical aspect, as well as a similarity metric to define the
similarity between two samples.

Along these main components, an interactive environment
is needed to dynamically support the composer’s workflow

https://www.benibrachtel.com/
https://www.benibrachtel.com/
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and tasks. In the following, we describe these different design
components in detail.

D. Data & Sampling

Our primary data are the samples generated by the selected
models, each representing a short motif/snippet of symbolic
music, i.e., a set of discrete notes temporally ordered by a
rhythm. A sample can either be monophonic, that is, a single
melody/voice with no notes being played simultaneously; or
polyphonic (in our case counterpoints), with two or more
simultaneously played melodies/voices, adding potential har-
monies to the composition.

Monophonic Samples: To focus on motifs while keeping
a manageable scope, we started with models that generate
monophonic samples – only one note at each time. The models
we chose have one parameter called temperature that – put
simply – controls the randomness of the generated samples.
We use pre-trained models (Google’s MusicRNN/MelodyRNN
and MusicVAE [66]). Our selection of models is exchangeable,
as we integrate them through a plugin system that allows us to
use any model with similar parameters and outputs hosted on
the internet. In doing so, we intend to be flexible toward the
needs of different composers. In our case, using some notes
to prime a model (primer input), we sample up to 10 models
simultaneously and up to 15 different temperature values to
represent each model’s output diversity. Primer, models, and
temperature values are all chosen by the composer.

Polyphonic Samples: Because polyphony is interesting to
many composers, we generate novel, polyphonic music sam-
ples by systematically combining generated monophonic sam-
ples. In doing so, we support a more experimental approach to
composition and sidestep the rather repetitive replications of
existing content that occur in polyphonies directly generated
by AI [12]. Using a systematic and exchangeable rule, we
create polyphonic two-, three-, or four-voice samples by com-
bining monophonic samples that have no overlap of notes at
any time. Therefore, one monophonic sample symbolizes one
“voice” of the polyphonic sample, which is a counterpoint,
as these are distinct melodies rather than harmonics. This
approach contrasts classical compositions because it allows
the generation of polyphonic samples that are rather distant
from the music one typically composes, but still uses some
variation of the primer melody.

E. Metrics

In order to judge and compare the generated samples, com-
posers need to know about their characteristics. For example,
composers might have certain characteristics in mind when
looking for samples, varying from lower-level statistics like
“number of notes” to higher-level concepts like “brightness”.
We, therefore, include metrics that allow us to correlate,
compare, and visualize samples and visually place them in
space. These metrics, for instance, allow us to represent a
monophonic or polyphonic sample compactly in our overview
visualization (T3) (fig. 5b-d). After considering a large set of
potential metrics, which we evaluated, we implemented the

Fig. 3: The workflow that Brachtel uses to ultimately find
interesting samples from hundreds of generated ones. He
starts off by generating samples using different models and
parameters (top left), then gets an overview of the space using
a similarity-based layout with glyphs and clustering, refines
the selection by looking at musical harmonic information in
order to export the right samples, and starts over again with
increasingly better primers, models, and parameters.

following metrics to represent different statistical and music-
theoretical aspects of the samples. While these metrics are
specifically chosen for Brachtel and his ongoing composition
projects, other compositions or composers may need different
metrics due to different individual requirements.

Statistical Metrics: With the first set of metrics, we intend
to quantify different statistical properties that are relevant to
musically characterize samples or reveal information about
input settings for AI generation. The number of notes and the
percentage of time that is not occupied by rests (ratio of non-
silent beats) directly count characteristics of samples, while the
mean note duration and mean pitch (how high a note sounds)
directly average the characteristics of the notes. In order to
apply suitable instruments later, a composer usually needs to
know the pitch range of a sample’s notes, which is why we
calculate the maximum and minimum pitch and the range in
between. For monophonic samples, the variance of pitch in-
tervals, meaning the pitch difference between two consecutive
notes, reveals whether a sample is lively with many different
intervals or monotone. For polyphonic samples, we calculate
the intervals between two neighboring voices, showing their
relationship. In order to learn more about a model’s behavior
and improve steering in the future, composers can look at the
input setting, that is, the provided model and the temperature
value that was used to generate the sample.

Music Theory Metrics: To allow for more musical rea-
soning, we include metrics that take music theory into account:
For each sample, we determine the percentage of notes that
are offbeat (not on the counts of quarters), rhythmic complexity
(whole and per beat, by taking rhythmic changes and offbeat
notes into account) [84], [85], as well as the direction of
the monophonic sample – whether it is rising (more positive
intervals than negative) or falling (more negative than positive
intervals). For intervals between consecutive notes, we take
the percentage of perfect intervals like fourth, fifth, and

https://magenta.github.io/magenta-js/music/classes/_music_rnn_model_.musicrnn.html


6

octave [83]. In the initial prototype, we used the musical key
(tonic plus major or minor), the percentage of notes that fit
this key (in-scale notes), and collected harmonic information,
for example, by counting tonic, dominant, and subdominant
notes [83]. To detect the key, we tried three different algo-
rithms: one from the tonaljs (github.com/tonaljs) library and
two by Krumhansl and Schmuckler [36] and Temperley [82].
Through our interviews, we noted that using musical keys
is sometimes ambiguous, especially for short monophonic
samples, due to the amount of special cases that can occur
on randomly generated samples. To address this ambiguity,
we allowed composers to manually select a key.

Talking to experts, we found that using the key was not
beneficial, as they could tell the key by looking at samples
better than our algorithms, often leading to disagreements or
multiple possibilities. Therefore, we replaced the key with a
timbre metric Brachtel proposed, which uses the circle of fifths
and overcomes certain biases of Western music theory. Instead
of fixing a key, the timbre metric indicates whether a sample
implies a bright or dark harmonic. We use a root note, which
functions as a musical reference point, and rotate the circle of
fifths such that the root appears at the top. For each note in the
sample, we determine whether it appears on the right side of
the circle, which indicates brightness, or the left for darkness.
Because the bottom note can be added to both sides, we add
their occurrences toward the leading side and finally derive a
value between zero for dark and one for bright samples. Since
this metric relies on a root note, which is hard to detect in
some scenarios and can, therefore, be misleading, we allow
composers to manually select one.

Similarity Metrics: In order to relate samples directly
to each other, we also need dedicated similarity metrics.
Since other similarity metrics for symbolic music [58] lack
controllability and composers are often more interested in
either rhythmic or harmonic structures, we use a weighted
approach for a normalized similarity metric that takes in
rhythmic and harmonic information independently and works
for both monophonic and polyphonic symbolic samples. This
metric allows us to compare two samples in order to display
similar intent or use pairwise similarities for visual placement.
Together with the interviewed musicians (section III-A), we
analyzed the metric’s validity, and they all approved the simi-
larity between samples. Music commonly expresses emotion,
so we combine statistical (e.g., number of notes) and music-
theoretical (e.g., key, but not timbre) metrics to create an
emotion-based similarity metric [13], [39], [50], [70], [73].

F. Visualization Design

In this section, we describe the visualizations and our design
choices along Brachtel’s workflow throughout the project
(fig. 3). Our visual interface (fig. 1) consists of three main
parts: 1) a menu for data generation via selected models or
algorithms, visualization options like layouts and encodings,
and model summaries, 2) an overview that represents samples
as glyphs positioned by parameters/metrics or similarity, and
3) a detail panel for selected samples.

(a) (b)

Fig. 4: Two filters allow steering model sampling (a) by pitch
range per step and (b) by allowed chroma. In this example, (a)
we narrow the range toward the end to get a controlled and
more concentrated ending. Also, (b) we allow any chroma but
C\, D\, and F\ (gray), while we select D as our root note
(orange) to look for samples that are highly related to the D
minor key using our other visualizations, as Brachtel did in
his commissioned work.

Generating Samples: Brachtel’s workflow begins with
uploading a primer melody and querying all selected models
using their parameters and our filters. Alternatively, we allow
importing an existing dataset of samples from earlier sessions.
As Brachtel usually already has rough ideas in mind, he wants
to steer models by limiting the range of pitch as well as the
melody direction (rising/falling) of samples and the ability to
enforce tonality (T1). Using common visualization designs for
music, in the form of piano rolls and piano keys, he can define
a pitch range for each timestep in the sample (fig. 4a) by
drawing two lines that the notes have to be between. We chose
piano rolls over sheet music, as they avoid biasing to stay
within a key, allowing for more musical freedom. To enforce
any wanted tonality, composers can use the piano keys to select
keys that should be allowed in the results, highlighted in blue,
and to select a root note, highlighted in orange (fig. 4b). If a
generated sample does not pass the filters, we automatically
move the conflicting notes up or down by octaves or single
steps until they fit. As composers might change their minds
later, we allow them to adjust samples using these filters after
generation as well. With the above tools, they can “steer” a
model’s output (T1) even if the model itself is does not provide
such features or has limited controllability.

Getting an overview: To get an overview of the samples,
Brachtel then explores the space (T2) with a similarity-based
layout to visualize all samples as dots simultaneously. We
compute this layout based on our similarity metrics (sec-
tion III-E), the result of which we feed into dimensionality
reduction to get two-dimensional positions (fig. 6). Concretely,
we allow choosing between MDS [37], [38] and UMAP [48]
from DruidJS [14], as these optimize for local and global sim-
ilarity respectively. As an alternative, we also allow choosing
two metrics for the scatterplot axes.

In order to provide a meaningful overview without a biased
selection by the composer, the similarity-based layout (fig. 6a)
places similar samples close together, and dissimilar ones are

https://github.com/tonaljs/tonal


7

(a) (b)

(c) (d)

Fig. 5: The different types of glyphs that represent samples:
(a) piano rolls show the raw data, (b) rhythm pie charts
show distribution of note durations, (c) metric flower glyphs
show different pitch metrics, (d) voice lines show voices and
their movement and additionally display the distances between
voices at each step through color at the top.

far away. Brachtel easily finds outlier samples – those totally
different from the primer or other generated samples – as they
are placed far away from most others.

In some cases, multiple samples share roughly the same
position. This makes displaying and investigating all of them
difficult, as the samples’ representations overlap, reducing the
ability to make fast notational audiation and visual overview
judgments. We thus apply gridification [15] to produce an
occlusion-free layout, with the drawback of losing some
accuracy in the layout as positions are shifted and distances
might change (fig. 6b).

In order to explore the space systematically (T2), a com-
poser needs more information about the characteristics of a
sample to find interesting regions and thin out the space
effectively. Therefore, we color the dots using a composer-
selected metric (T3, T4, T5). We additionally use Voronoi
cells to assign each sample a separate background color that
encodes another chosen metric and allows composers to look
for patterns regarding two metrics at once. Because overly
large cells at the outskirts of the plot visually bias findings,
we use a convex hull to cut off background colors.

By displaying the model and temperature information as
colors, Brachtel can keep track of models and temperatures
that work well for him (T5), gaining knowledge about their
behavior (T4). This knowledge helps him to reduce the number
of samples by excluding models he dislikes and improves his
choice of models and parameters for more efficient generation
next time (T1).

Representing Samples with Glyphs: In our initial
overview with dots, we encountered the problem that color-
coding only two metrics was often not enough to find inter-
esting regions based on musical characteristics. Therefore, we
replaced the dots with different types of glyphs [5] that reveal
more information about a sample (T2, T3).

To encode a set of metrics compactly, we use flower glyphs
(fig. 5c), which are more readable than the commonly used star
glyphs [87]. We display the rhythmic variety of samples as pie
charts (fig. 5b) of the distributions of note duration, allowing
for normalized comparison of samples with different numbers
of notes. To represent the effect of a note’s duration, we display
short notes in red, as shorter notes often show activity, while
long notes are colored blue, indicating calmness.

Talking to experts, we noticed that the above glyphs do
indeed help but are not effective enough to display the music
itself, making it hard to find regions of interesting samples. Al-
though these metrics can help characterize samples regarding
their liveliness and pitch range, imagining the motif through
notational audiation is not possible with them. For this use
case, we had already implemented piano rolls and later added
voice lines. These show the data of the sample itself (T3) and
became Brachtel’s go-to glyphs to use.

Our most detailed representation is a simplified piano roll
(fig. 5a). Piano rolls represent notes as rectangles according to
their start time (x-axis), pitch (y-axis), and duration (width).
This representation is easy to understand, common in music
software, and shows the complete raw data of a sample.

Because polyphonic samples have multiple voices, where
notes belong to one voice each, previous glyphs did not allow
spotting whether samples have similar voices (T3). Thus, we
use all notes from one voice to interpolate a line to show the
“flow” and approximate the perception of Brachtel, which is
why we did not use linear interpolation. We use the mean
pitch of each voice to determine their order (lowest, middle,
and highest for three voices). Each voice is then visualized as
a line on the same layout as the piano roll glyph, always using
the same color, which we selected due to separability, for the
same position of the voice, for example, blue for the lowest.
These voice line glyphs (fig. 5d) reveal the potential overlap
of voices, are easier to read at first glance than piano rolls, and
improve the comparability of samples. As the distance between
voices indicates the musical energy, we add a colored bar that
uses yellow for high energy and large intervals and purple
low energy and small intervals. Therefore, the color indicates
the distance of neighboring voices for each step, which allows
composers to, for example, quickly spot samples where two
voices are similar but shifted by an octave.

Investigating Clusters: When using previous visualiza-
tions and thinning out the set of interesting samples (T2),
experts were missing information about regions in some cases
to exclude them. Therefore, we provide a clustering visu-
alization based on hierarchical clustering and our similarity
metric that highlights similar samples with a representative
glyph of the region. This visualization allows for selecting and
comparing regions and provides aggregated information from
all samples in a cluster. First, we show a histogram that depicts
the distribution of occurring models (fig. 7a) (T4). Second,
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(a) (b)

Fig. 6: Two options for a similarity-based layout with rhythm pie glyphs (fig. 5b). The glyphs are laid out by a) melodic
similarity, b) optionally gridified to avoid overlap. In this example, each glyph’s background color encodes the source model.
While some areas are clearly occupied by a single model (purple area in the left), there are some overlaps (single green sample
amongst yellow, top left). The glyphs confirm that neighboring samples have similar rhythmic characteristics, many from the
yellow model look almost identical (top of b)). Composers can quickly spot outliers or regions of samples with, for example,
only short notes (large red parts of glyphs).

a density piano roll displays common and different note
occurrences and allows analyzing or comparing the variety of
samples in selected clusters (fig. 7b). This especially highlights
pitches that occur more or less at specific timings. Last, we
show harmonic information (fig. 7c) in the form of occurrence
percentages of tonic, dominant, subdominant, in-scale, and
out-of-scale notes regarding the selected root note. The tonic,
dominant, and subdominant are musical terms and indicate
notes that sound well together – their occurrence tells how
standard or unique the samples are and how strongly a region
follows the rules of music theory.

As polyphonic samples played a big role in one of the
compositions, we needed another possibility to explore the
space and quickly exclude regions (T2): Due to our method
of producing polyphonic samples, the same single voice can
occur in many samples, allowing composers to exclude regions
if the voice is not interesting. We, therefore, connect every pair
of samples that shares the same monophonic sample with a
colored line (fig. 8). We use a set of differentiable colors to
indicate the ten biggest clusters, allowing composers to find
many interesting samples faster. Excluding a big cluster thins
out the space more efficiently than excluding small ones. To
avoid clutter in dense regions, we apply edge bundling [30].

Analyzing Harmonics: After limiting the space to fewer
interesting samples, Brachtel is interested in musical harmon-
ics for multiple root notes (T2, T3). He worries that selecting
only one root already biases the representation when not

looking for a specific musical key. As previous visualizations
cannot show samples for multiple roots, we calculate the
timbre metric (section III-E) for each root note (C, C\, D
. . . , B) and display them simultaneously. We use a parallel
coordinate plot, where the root notes are used as features and
the timbre as value to determine the positions. Thus, each
sample occurs 12 times (instead of once like in other layouts)
and is colored by timbre from dark (purple) to bright (yellow)
– encoding timbre brightness as color brightness. This plot
allows composers to follow the sentiment of a single snippet
over multiple root notes, as well as select interesting regions
based on timbre, ultimately selecting samples that could fit
a sentiment or intention. We position the root notes in the
sequence of the circle of fifths, as this represents its calculation
best and reveals interesting patterns (fig. 9).

Representing Samples in Detail: After selecting samples
with the previous visualizations, further investigations can be
done via our detail panel, which displays meta information
and an extended piano roll (fig. 1d). In this view, Brachtel can
also mark samples to export them later. The piano roll shows
the raw data – all notes – of the sample and the underlying
line of the voice. For monophonic samples, we encode the
faithfulness to its timbre in the rectangles’ color when a root
note is selected: Blue marks a note that contradicts the timbre
to highlight outliers that are interesting to him, combining
advantages of common staff notation (seeing musical patterns)
and piano rolls (all notes have the same visual importance).
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Fig. 7: Similarity-based clustering with two selected clusters at the bottom (arrows). Visualizations on the right show the
distribution of a) models, c) harmonic information, and b) the density of piano rolls for each cluster (purple and light green
refer to the selected clusters; green, red, and blue to models). Additionally, the heatmap reveals that all samples of the green
cluster start identically, while the purple cluster shows more variety but sticks to five different pitches.

Fig. 8: This representation reveals three big clusters in blue,
red, and orange, showing that around 70% of all polyphonic
samples share one of these three monophonic samples. Clearly
visible is a big cluster of polyphonic samples that share
the same voice (blue links), which can all be excluded if
their voice is not interesting. The voice line glyphs show
interesting samples with clearly separated voices (top left) and
overlapping/crossing voices (bottom right)3.

At the end of each session, he exports all marked samples and
can feed some of them back into MAICO as a primer in future
sessions to explore their variations.

IV. EVALUATION

As our application is highly creative, subjective, and ill-
defined, there are no simple quantitative measures to evaluate
their success and efficiency. These characteristics are typical
for visual analytics evaluation [72], and we thus follow a
primarily qualitative evaluation reporting anecdotal evidence
from expert users [54]. Below, we first report usage sce-
narios, which we derived from our initial expert interviews
(section III-A). We then reflect on the experience from our
five-month multi-dimensional in-depth long-term case study
(MILC) [80], followed by interviews with experts from differ-
ent music backgrounds. We present a summary of the findings.

A. Usage Scenarios

The following scenarios illustrate how MAICO is used
to support two common composition tasks in our visual
parameter space analysis framework: Variation identification
with some diversity (T3, T4, T5) and analysis of rhythmic
complexity (T2, T4, T5).

3Figures scaled down. In our studies, all visualizations were full-size and
readable without any problems. See supplemental material for larger versions.
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Fig. 9: Harmonic visualization for polyphonic samples using
the timbre brightness metric. This example shows the brightest
samples at A\ while E shows the complete opposite, as it is
the parallel key. Most samples for C have a bright sentiment3.

1) Scenario 1 – Variations that Fit the Primer: A typical
composition task is finding interesting variations of a motif,
in this case, the primer melody (model input). In our case,
this task means identifying model outputs that are similar
to the initial primer melody and sound interesting. To do
so in MAICO, one can first filter samples that are close to
the primer. In figure 10a, for instance, doing so reveals that
the pink model (melody rnn) brings up the largest number of
similar samples, as indicated by the background color. Overall,
we can see that most samples are generated with a lower
temperature values, since most glyphs are blue.

Going forward, a composer can then change the layout
to encode similarity to the primer in the y-position and
temperature on the x-position (fig. 10b). The background color
shows that the pink model produces the closest samples at
the top but sometimes only repeats the primer (similarity is
1), especially at low temperatures. An interesting sample is
the right-most one: It is similar to the primer even though it
has a high temperature – contradicting the above findings that
similar samples usually have low temperatures.

When inspecting the detailed piano roll of this sample
(fig. 10c), we can see that it has the same first two bars
as the primer but contains a variation in the second part
while keeping the rhythm. This sample also uses a F\, which
contradicts the sample’s timbre, as indicated by the blue color
(in fact, it is the tritone interval to C – long described as
the ‘devil’s interval’ – which can add interesting tension and
variation to compositions).

Overall, while the pink model generates useful variations
at any temperature value, lower values tend to produce rather
conservative changes to the primer, and composers can, there-
fore, prefer higher values for more varied patterns.

2) Scenario 2 – Rhythmic Complexity: Figure 11 shows an
example where we want to find samples that have a complex
rhythm and investigate the rhythmic capacities of different

(a) (b)

(c)

Fig. 10: Case Study 1: A step-by-step search for variations of
the primer. (a) Filtering only samples with the same number of
notes and a high similarity (> 0.5) to the primer. Similarity-
based layout with piano rolls. Glyph- and background color
encode temperature and model. (b) The same samples and
colors as in a), but with x- and y-axes for temperature and
similarity to the primer melody. We can estimate a weak
negative correlation between temperature and this similarity.
(c) We select the right-most sample from (b), which has a
similarity to the primer of 0.8. The variation shows a different
ending, compared to the primer, including a note that does not
benefit the timbre regarding the root note C (blue note).

models in that regard. The different models are encoded by the
glyph colors in this example. We can see that the blue model
has more diverse characteristics, as indicated by very different
glyph shapes for rhythm complexity metrics. In contrast, the
yellow and turquoise models at the top show similar glyph
patterns across all samples. This overview also shows that
the purple model often produces samples with considerable
rhythmic changes (right petal), which occurs much more often
than in other models. In addition, some samples from the
blue and red models (green rectangle in figure 11) contain
many off-beat notes (left petal), possibly because they were all
produced with a high temperature, as indicated by the reddish
background color. Although a high temperature induces more
random patterns by design, the visualization shows that the
impact of a high temperature differs for different models. In
figure 11, only red and blue glyphs react with rather extreme
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Fig. 11: Case Study 2: Flower glyphs with rhythm complexity metrics show regions for different models in a similarity-based
layout. These glyphs are colored by model; background colors encode temperature (red for higher). The green rectangle marks
an area that contains a few samples with many off-beat notes (larger left petals than most other samples).

changes compared to the grey model. These insights can help
to generate specific samples with complex rhythms using the
blue model or ones that stick to a rhythmic scheme (turquoise
model at the top right).

We discussed these usage scenarios with Brachtel, who used
similar approaches in his work with the tool. He confirmed
the ecological validity of our scenarios and provided further
comments. In this scenario, for instance, he was specifically
curious to look at the green-marked region and investigate
whether this yields interesting samples due to the extreme
rhythm characteristics indicated.

B. Multi-Dimensional In-Depth Long-Term Case Study

Using the guidelines from Shneiderman and Plaisant [80],
we conducted a long-term case study (MILC) with Brachtel.
Over the course of five months, he incorporated MAICO into
his workflow to create two commissioned works: a compo-
sition and a theatre piece called “Mosi”. After completion,
the composition was recorded by the Munich Symphonic
Orchestra and it premiered in Venice at the Biennale Arte on
April 17th, 2024. “Mosi”, on the other hand, was performed
live for the first time at the Residenztheater in Munich on
April 27th, 2024.

For the Biennale composition, Brachtel continuously used
MAICO throughout the composition process, overall, in 47
sessions for a total time of over 31 hours. He generated a
total of over 30,000 monophonic samples that represent around
122 hours of music material. Due to technical difficulties, we
could only record the data on polyphonic generations for seven
sessions, in which around 4,300 polyphonic samples (around
19 hours) were produced using 6,400 monophonic samples. By
extrapolating these values, we get around 20,200 polyphonic
samples (around 81 hours) for a total of over 200 hours of
music material generated, processed, and analyzed in 31 hours
– which is only possible with a visual approach.

The final recorded composition is 30 minutes long. Software
that was used for other steps in his composition workflow in-

cluded the DAW Logic Pro (workflow step S4), and the music
notation software Sibelius (S5). MAICO was specifically used
for finding and elaborating on musical motifs (S2 and S3,
section III-B). Brachtel used the motifs and snippets identified
with MAICO as inspiration for the composition, adapted and
combined them with other ideas, and sometimes also directly
used them in the composition.

The play “Mosi” encompassed 75 minutes, 50 of which
contained music. In contrast to the previous composition,
this piece was not recorded but rather played with live
instrumentation during the performance (S6, section III-B),
using a monophonic synthesizer (S4) and monophonic MIDI
data. To better compensate for limited time and last-minute
changes, MAICO was used to produce and select a multitude
of variations efficiently, which Brachtel exported as long
sequences of monophonic variations with a few “out of the
box” samples (S2 and S3), and further added his own ideas.
While the composition for the Biennale focused on polyphonic
counterpoints, “Mosi” showed a use case of monophonic
samples, validating their support in MAICO.

Brachtel initially needed time to get a feeling for using
the AI parameters and MAICO but he quickly became accus-
tomed. By “not changing too many [parameters] at the same
time”, he learned what he did (not) want from our models
and how to manipulate them with our filters. After using our
tool for around three hours and generating many rounds of
samples, he found several interesting samples, which changed
his perspective on the content. He found two favorite and
one least favorite model, which allowed focusing more on
this selection in the future. The main reason for favoring one
model was that “it often produces innovative samples that try
something different but also keep elements from the primer”.

In order to process a generated space even with an increas-
ing amount of data, Brachtel highlighted the importance of
visualization multiple times during our meetings to keep a
fast and efficient workflow. Because he “would never listen
to more than 20 samples in one session”, (visually) filtering

https://www.labiennale.org/en/art/2024
https://www.residenztheater.de/stuecke/detail/mosi-the-bavarian-dream
https://benibrachtel.com/samples/240420_biennale/
https://www.apple.com/logic-pro/
https://www.avid.com/sibelius
https://benibrachtel.com/samples/240428_mosi/
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and excluding samples is needed to thin out the space to the
most important regions. To foster this need, he emphasized
the value of notational audiation in order to “hear with your
eyes”. Notational audiation is the ability to tell how a melody
sounds simply by looking at their visual notation (sheet music,
piano roll). It is a core skill that is taught in the education of
professional composers, and Brachtel illustrated it to us many
times by easily recognizing melodies of different complexity
from their piano roll notation. We further supported fast access
to a large exploration space through our different music-driven
metrics and visual encodings. Looking at the representation in
figure 8, for instance, allowed him to quickly scan the layout
and spot interesting samples with large intervals, indicated
by the yellow bars, or samples where voices (lines) intersect,
which can lead to interesting tonal colors.

His go-to settings were the gridified similarity-based layout
with a direct representation of the samples, where the voice
line glyphs were superior to the piano roll glyph and the
timbre coloring in the background. These settings also allowed
him to quickly skim regions for interesting samples using the
“easy-to-read glyphs”, which are more important than the
more precise positions without gridification. These settings
allowed for an easy start to every session and provided a good
overview. Still, temperature and model coloring were more
interesting at the beginning to learn how the models work
and which provided the best samples. While his go-to settings
were used most of the time, the other visualizations were used
situational after thinning out or when analyzing harmonics.

When we asked Brachtel about MAICO’s influence on the
compositions, he continuously praised the “great inspiration”
he got from it and the positive impact it had on the compo-
sition. Our visualizations helped him, for instance, to select
many samples that were “worth adjusting for specific instru-
ments and putting them to paper”. He mentioned that two of
nine parts of the final Biennale composition explicitly resulted
from using MAICO, “but essentially, the entire composition
was [also] influenced by the work with the tool”. As the final
result is a mixture of AI and human influences, he could not
tell exactly how much influence AI had and which part was
influenced precisely how much by the tool.

As our design got more complex over time, it “completely
fulfilled [Brachtel’s] hopes from when we started half a year
ago”. He mentioned that MAICO was not just an experiment
to him but a tool that he, from now on, will add to his personal
repertoire to use for future compositions.

In conclusion, we verified that visualization can help com-
posers process a large sample space through notational au-
diation and that our “approach serves as a tangible, never-
ending source of inspiration and helps organize large numbers
of samples effectively”. Brachtel told us that MAICO fits
his workflow and “this will definitely not be the last time
[he works] with MAICO”, but it is important to keep in
mind that requirements and needs could be different for other
composers. Nevertheless, other artists we talked to about our
project mentioned their interest, showing the potential of our
approach to be applied to other cases as well.

C. Expert Interviews

An interesting question in design studies relates to the
transferability of the resulting design to a broader set of
application cases [78]. To test this aspect, we conducted semi-
structured interviews with five other composers from different
music backgrounds. We contacted 12 professionals, but only
five found time during the two-month frame in which the
interviews took place. Each of the experts had substantial
composition experiences in different genres (techno/electronic
music, metal, jazz, theater, and opera). They studied music
and have worked professionally as composers, directors, DJs,
teachers, and/or musicians for 8 to 23 years. During the
interviews, we first showed and explained our prototype, then
let them test it and asked for their thoughts on the application,
usage scenarios, and requirements to integrate it into their
own workflow. Four of the five interviews were conducted
online, while the fifth took place in person. The interviews
lasted 51 minutes on average. We expected mixed results
as composition workflows are substantially different between
individuals, and MAICO is thoroughly tailored to Brachtel’s
workflow. Therefore, we are interested in what features of
MAICO work well in a broader context and what would need
to change for other composers.

When asked about the application of MAICO in their own
work, one expert said he would use it as is, three would use it
with further minor adaptations, while only one required more
fundamental changes. He would work with it, “if this program
would be an Ableton Live plugin and melodies would be moved
directly into the active clip” (P3).

In terms of how to integrate MAICO into their compo-
sition activities, all participants thought of several different
approaches, some similar and some different from Brachtel’s
approaches. Similar to Brachtel’s approach, P2 normally uses
an iterative approach to create a melody and likes to integrate
experimental aspects. As such, he stated that MAICO would
suit this style by exploring variations of a motif. Others (P3,
P4, P5), however, rather avoid an experimental approach and
stick to small variations of good ideas. P5, for instance,
wanted to use MAICO to find simple and good motifs to
then incorporate musical ornaments on his own or take the
ideas a step further: “I would take this part and repeat it
later again” (P5). On a more general note, P4 stated that a
music tool has to be precisely designed for a single step in
the workflow. In that sense, all participants mentioned that
MAICO would be especially helpful in exploring and finding
variations, matching the focus we set out in our user and
tasks analysis (section III-B). The main criticism mentioned
was on a technical level: “Switching [between programs] is
too big a hurdle” (P3), and P3 would, thus, rather prefer a
direct implementation in the DAW Ableton Live. Integrating
new solutions into existing environments is a known challenge
in design study research that is often outside the scope of a
research project – as is also the case for us [76].

While MAICO uses visualization approaches that are not
common in the music domain, every participant understood the
general idea and visualizations quickly, even without a prior
visualization background. All participants found the similarity-
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based layout the most helpful for getting an overview, ordering
the space, and sorting out unwanted suggestions to avoid going
over every sample manually. We found that participants used
a combination of visual selection and listening to samples
in order to process the generated space, while four of them
could imagine how a sample would sound based on visual rep-
resentations (notational audiation). Especially for polyphonic
samples, P2 found the edges between samples (fig. 8) with
shared voices helpful to work through the space efficiently. As
emotions play a big role in music, P4 found the timbre metric a
good start in that direction but would like to have more specific
options to create and find a certain emotion. P5 had a clear
direction in mind and wanted a dark mood, where he used
the timbre metric and the parallel coordinate plot to explore
the corpus. He followed certain melodies over different root
notes, understood the metric, and ultimately found several dark
samples that would fit his envisioned composition. Similar
to our previous findings, all participants preferred a direct
representation (piano roll or voice line glyphs) of the melody,
but “statistics could also be a possibility to compose new
music from” (P2). Although all participants understood the
visualizations, two of them were a bit “overwhelmed” (P1)
by this “extensive project” (P2) and the number of features
and representations in the beginning. Both mentioned that it
might take some time to learn how to use it efficiently.

As MAICO supports investigating the AI models and their
parameters, P2, who worked with generative tools before,
underlined the importance of knowing the input-output relation
to reduce the frustration of using a black box. All of the
participants mentioned that they first have to get a feeling
for using the generative models in order to be efficient later
on by creating precise results. The features that were noted
as most helpful were the colors that helped better understand
parameters and the filters, which were mentioned as a good
basis for more control. P4 suggested additional rhythm-based
filters if the AI does not allow controlling for that.

While polyphonic samples are generally helpful to “give
context to a single voice” (P5), all participants found that the
way of creating polyphonic samples in MAICO is experimen-
tal and differs from other common approaches in music theory.
One suggestion by P4 was to add polyphonic AI models or
stricter rule-based combinations to also support a more tradi-
tional way of composition. However, not surprisingly, every
participant had their own ideas and came up with their own
different approaches. This finding illustrates the individuality
in music composition: every musician has different personal
preferences, styles, and needs, making it hard to find a good,
one-size-fits-all solution.

Generally, all participants found MAICO and its visual
approach helpful and praised MAICO’s potential to support
experimental composition. To better integrate MAICO into
their own work – aside from DAW integration – they wished
for additional features like better AI control and “adjusting
parameters live during inference” (P3). Other wishes were
improvements to listening to samples like a sequencer, rec-
ommendations on interesting samples, and different options to
create polyphonic samples with AI or different rules.

V. DISCUSSION

Throughout our design study on AI-assisted music composi-
tion, we found increasing evidence that using visual analytics
can be a well-suited approach for this application area. AI-
assisted music composition is an ill-defined, subjective, and
creative process. Therefore, there is no single representation
that will cover all aspects of space and music in every case. It
is not a process that can be automated in a multi-objective
optimization fashion but instead needs to offer flexibility
to composers to interact with models and explore the rich
output space. These characteristics resemble well the goals
and strengths of visual analytics [20].

In addition, we learned that notational audition is a powerful
skill that most professional composers exhibit and that offers
great potential for visualization approaches. For instance, our
voice line and the piano roll glyphs were the most successful
representations, as they allow composers to visually “hear”
samples without actually listening to them, processing them
much faster than by listening.

Another lesson we learned is that many contemporary
composers are fine with complex interfaces and are used
to feature-rich interfaces with notation software and digital
audio workstations. Although some participants from our
expert interviews were initially overwhelmed by the number
of new concepts, our long-term study showed that learning
the interface can lead to effective and successful work. From
the beginning, Brachtel was excited about what MAICO’s
richness and fully supported the complexity that comes with
this focus: “it is so delightful to see so many music samples at
once”. A rich and complex tool gives him new opportunities
and allows for the agency needed to articulate compositional
creativity. Even with an initial learning curve, he explained that
composers are willing to use new complex interfaces outside
their comfort zone since “nowadays, as a composer, you can’t
get around using complex systems”.

We also encountered common challenges in working with
experts in design studies [77]. It was, for instance, already hard
to even start a collaboration with professional composers, as
they are often already booked out for months or even years in
advance. Therefore, the time one can get with them for long-
term studies is also limited, and collaborating only works if a
new approach can add immediate benefit.

While we focus on generative music models, the data source
is independent of our visualizations. Our approach could
similarly work with any other algorithm, ways of creating
polyphonic samples, or even with human data like existing
compositions sliced into snippets. Except for the model steer-
ing (fig. 4) and the connection of polyphonic samples (fig. 8),
visualizations can also be used to browse and analyze (T2, T3)
a collection of snippets with the same features from any data
source. However, parameters like temperature and the tasks
related to them (T1, T4, T5) are specific to generative models
and the resulting visualizations.

Although our metrics and glyphs are specific to symbolic
music snippets, they might generalize to longer symbolic or
audio samples of music, and our layouts and visual encod-
ings could also apply to other musical data. Furthermore,



14

the close integration of generative systems and steerability
allowed Brachtel to use generative AI in the first place, as
switching between too many systems is often a hindrance for
professional composers.

Despite instrumentation playing a big role in music, we
consciously did not implement different instruments, as they
appear in different steps of the workflow and we wanted to
avoid biases. We are aware that this might also be a personal
preference, and others would combine these steps in their
workflows. Therefore, we support the playback of samples on
a (hardware or software) synthesizer via MIDI.

A natural limitation of our work is that we heavily focus
on a case study with a single expert. Therefore, our work is
potentially limited in that specific metrics and visualizations
might only be beneficial for this person. Our primary goal
is realism through an in-depth investigation of a case study.
We do not seek statistical generalizability to larger populations
as postulated by controlled experiments [47] and instead echo
the many previous calls for in-depth qualitative research for
design/case studies like ours [72], [78], [80]. We think that es-
pecially the in-depth collaboration with a professional helped
us to gain insights and develop the metrics and visualizations
that might also benefit other professional users in the long run.
In our case, fully-fledged long-term case studies with multiple
composers with this level of expertise would not have been
feasible, as practices differ substantially between individual
composers, and their availability is highly limited. As such,
as a next step, it would be interesting to see how MAICO
could be transferred to the workflows of other composers.
We think that “everyone might use it differently because the
principles are not the usual ones”, proclaiming interesting
characteristics to be studied in the future. Toward the next step
of transferability, we have already received additional feedback
from four musicians (section III-A) and five different experts
(section IV-C). We plan further in-depth investigations with
other users in the future.

VI. CONCLUSION

We propose MAICO, the result of a design study on using
visual analytics for AI-assisted music composition to inter-
actively generate, explore, select, edit, and compare samples
from generative music models. MAICO’s design builds on
statistical and musical metrics, based on which we designed
similarity-based layouts and glyph representations. Our us-
age scenarios, MILC study with the professional composer
Brachtel, and expert interviews demonstrated the utility of our
design. He has adopted MAICO into his toolbox and continues
to use it in commissioned compositions for inspiration and
efficient sample selection. For him, MAICO is a professional
software, a “new component of his toolchain, not just an exper-
iment”, and he “hope[s] it stays online like this forever”. His
work with MAICO showed that visualization, via notational
audiation, can contribute to music composition, an ill-defined
and subjective application area with a data-rich process.

Future extensions could add other models, including poly-
phonic models and the integration of more powerful prompt-
[1], description- [88], or theme-based [79] models, that would

improve precise generation for composers. Extensions for
manual labeling and action analysis could benefit recom-
mendations on interesting samples or models to enhance
exploration, interactivity, and efficiency. This would allow
for a personalized version of MAICO that generates better-
matching samples for individual composing styles. To explore
the flexibility of MAICO, we plan to do a study with further
composers and projects to investigate other workflows and
usage scenarios. As MAICO focuses on specific tasks and
steps in the workflow, one could create further utensils for
artists’ toolboxes or extend MAICO, respectively. Such exten-
sions could support other musical features, such as dynamics,
instrumentation, or composition techniques, like spectralism.
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